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I. Affectivity in Learning Processes  

The signals produced by neural network models can be broadly divided into two classes: (1) 

cognitive (objective) representations, and (2) affective (non-cognitive) representations. It is not 

particularly difficult to understand what cognitive representations represent. Representations are 

said to be cognitive if they represent objects, either as entities or as events, or feature fragments 

that can be assembled to make a representation of an entity or event. Neurologically, cognitive 

representations are closely tied to the sensory cortices and to the association cortices in the 

temporal, parietal, and occipital lobes of the neocortex. Psychologically, cognitive representations 

are closely linked to the notions of intuitions and concepts.  

Affective representations, on the other hand, do not represent objects (they are not 

“cognitions”) but rather have to do with such psychological notions as feelings, emotions, moods, 

interest, motivations, drives, and values. Because they are non-objective, affective 

representations cannot be communicated by one person to another; what one is doing when trying 

to describe his “feelings” or “emotion” to another person is communicating a descriptive idea of 

an objective model. That human beings can communicate affective representations to one another 

at all is largely due to the fact that we all experience feelings, emotions, and so on and thereby 

can empathize with the description we are given. The non-communicability of affective 

representations is denoted by saying such representations are autistic.  

Throughout most of the modern history of science affectivity (“emotion”) was treated as a 

taboo subject. It was seen as too will o’ the wisp, too “touchy-feely” to be a legitimate topic for 

cold, clinical scientific research. “Emotions” were regarded as something that got in the way of 

rational thinking and lowered human kind to the level of the brutes. Science’s attitude toward 

“emotion” in particular (and affectivity more generally) began to change only in the 1890s when 

William James (founder of the first experimental psychology laboratory in the United States) 

brought out the first truly scientific theory about emotions, values, and “willpower.” (Prior to 

James’ theory, known today as the James-Lange theory, “emotion psychology” was nothing more 

than a dreary catalog of the “symptoms” of various “emotions”).  

Even so, widespread interest in studying affective phenomena did not catch on in earnest until 

about thirty years ago. As one might expect of any science barely out of its infancy, the present 

1 



LCNTR Tech Brief: Affective Control of Learning Processes 

state of affectivity theory is in rather poor shape.1 Nonetheless, the past thirty years have seen 

more scientific advances in this topic than in the entire previous history of science.  

Prior to about ten years ago, affectivity was something neural network theorists by and large 

completely ignored. One reason this attitude changed was the push of ever-mounting evidence 

that affectivity is central and crucial for learning, decision making, and even cognition. This was 

not a discovery scientists greeted with great enthusiasm. Indeed, there was a heated controversy 

among psychologists that raged all throughout the 1980s and into the 1990s on the question of 

whether affect followed cognition or cognition followed affect. The former position was fought 

for by Richard S. Lazarus (“cognition has primacy over affectivity”), while the latter was 

championed by R.B. Zajonc (“preferences need no inferences”). Their debate went back and forth 

in the pages of American Psychologist (Lazarus 1984, 1991), (Zajonc 1980).  

While it is safe to say the issue is still not completely settled in the psychological community, 

the 1980s also brought to light a host of neurological findings that seem to clearly settle at least 

one question: Lack of affectivity severely impairs thinking and judgment (Damasio, 1984) and 

may even be central to the representation of what is often called “one’s sense of self” (Damasio, 

1999). A now large body of evidence in neuroscience implicates the same neural structures 

known to be involved in the experiencing of emotions with such cognitive abilities as 

attentiveness and various modes of memory and learning. Probably the most extreme view on the 

subject is taken by Wells (2006), whose theory of mental structuring holds that processes of 

reflective (i.e., affective) judgment are necessary for and precede the formation of cognitive 

representations even though processes of cognitive and affective judgments to a large extent go 

on in parallel. Wells argues that because (1) the “copy-of-reality” hypothesis is provably false, 

and (2) human beings are in possession of no rationalist “innate ideas” then it follows that the 

fundamental ground for any possibility of cognitive perception must ipso facto be a non-cognitive 

ground, and therefore can only be the outcome of a process of non-objective judgment. A very 

large fraction of (Wells 2006) is devoted to developing the technical details of this theory and 

vetting it against empirical findings from psychology and neuroscience. Not surprisingly, this 

tech brief is based in large part on this theory, which Wells calls “mental physics.”  

One of the earliest artificial intelligence theorists to champion the view that affectivity not 

only can but must be incorporated into “intelligent agent” systems was Rosalind Picard (1997). 

Picard writes:  

I never expected to write a book addressing emotions. My education has been dominated by 
science and engineering, and based on axioms, laws, equations, rational thinking, and a pride 

                                                 
1 For a summary overview see Wells (2006), pp. 1308-1362.  
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that shuns the “touchy-feely.” Being a woman in a field containing mostly men has provided 
extra incentive to cast off the stereotype of “emotional female” in favor of the logical behavior 
of a scholar. . . 

 Clearly some kind of conversion has happened; this is a book about emotions and computing. . 
. I ran into a fundamental and relatively unknown role of emotions while investigating what 
scientists assume to be the rational mechanisms of perception and decision making. I was trying 
to understand how people perceive what is in a picture – how they decide what the contents of an 
image are. My colleagues and I have been trying for decades to make computers “see” . . . Most 
of my research has focused on the problem of modeling mechanisms of vision and learning, and 
has had nothing to do with emotions. 

 But what I ran into, in trying to understand how our brains accomplish vision, was emotion. 
Not as a corollary, tacked on to how humans see, but as a direct component, an integral part of 
perception . . . The latest scientific findings indicate that emotions play an essential role in 
rational decision making, perception, learning, and a variety of other cognitive functions (Picard 
1997, pp. ix-x).  

Although neural network theorists have been relatively slow to explicitly incorporate the idea 

of affective signal processing in neural network system models, mathematical ideas bearing a 

strong homologue to unsupervised adaptation by means of affective evaluations have long been in 

use. These methods are commonly known by the name reinforcement learning (Barto, 2003a) 

and employ what is called an actor-critic anatomy (figure 1). In part, actor-critic models grew out 

of early work in optimization theory in the 1950s by Bellman and others under the name dynamic 

programming. The first recognizable actor-critic anatomy was published by Widrow et al. (1973). 

Barto, Sutton and others are credited with further advancing actor-critic theory and with 

introducing the name “reinforcement learning” (Barto et al., 1983), (Barto, 2003b). Although the 

actor-critic literature has always used affect-laden terms such as punishment/reward and value, 

this terminology was by and large regarded as metaphorical by mainstream theorists.  

  
A               B 

Figure 1: Actor-critic models. (A) Conventional actor-critic model. (B) Extended actor-critic model showing explicit 
relationship to affective signal processing. 
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Figure 1A illustrates the basic actor-critic model used by Barto, Sutton, and others. Even 

though affective terminology appears in this model, the neuroscience analogy most often used by 

these theorists is owed to ideas taken from the psychology of classical conditioning experiments 

(which for a long time also tended to avoid “emotion” terminology). By restricting one’s view to 

only conditioned reinforcement and ideas of simple reflexes, it is possible to skirt the question of 

affective behaviors altogether, and this is what the early theorists did. This has been a tradition 

dating back into the 1950s from artificial intelligence work such as game-playing machines, e.g. 

(Samuel, 1959). Note in figure 1A that signal flow between the actor and the critic is one-way 

and in the direction from critic to actor. This is typical of conditioning models, e.g. (Grossberg, 

1972a, b).  

In recent years, neural network theorists have begun “taking emotions seriously” in their 

investigations. One of the best comprehensive examples of this was recently published by Levine 

et al. (2005). This model employed a large-scale network architecture to examine the role of 

emotion in human decision making. The model of Levine et al. primarily addresses the issue of 

what others sometimes call “emotional intelligence” and includes model representations of the 

major components of the brain’s limbic system (which is known to be heavily implicated in both 

emotional expression and in the formation of memories). The model does not directly address the 

role played in learning phenomena by sensory-action coupling (Wells, 2007a), but other 

researchers, notably Bullock, Grossberg, and others (Bullock, 2005) have been studying this 

aspect, albeit without the explicit modeling of the brain’s affective subsystems.  

From the viewpoint of theoretical neuroscience, both the so-called “emotional” aspect of 

human learning and the sensory-action substrate – i.e. the “logic of meanings” aspect – have 

cooperating and complementary roles in the development of intelligence. Wells (2007b) has 

proposed an extension of the original actor-critic anatomy for taking more explicit account of the 

interacting roles of these coordinate aspects of human intelligence. Figure 1B illustrates this. The 

signal pathway terminology here is altered (as a sign post indicating limbic system involvement 

in the learning process) and two-way interaction between the “actor” and the “critic” is called out. 

In this model, the actor element is associated with the sensorimotor subsystem, discussed 

previously in Wells (2007a). The critic element is the main subject of this tech brief.  

Another subtle difference in this model – not clearly visible in figure 1B – is in how we will 

regard the affective content of the signals projected from the critic module to the actor module. In 

the older actor-critic paradigm, the “value” network (critic) is regarded in terms of reward or 

punishment with an implicit assumption that a “reward” signal represents an evaluation of the 

system state as “good” while a “punishment” signal represents an evaluation of “bad.” These can 
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likewise be regarded as signals representing a state of “satisfaction” or “dissatisfaction.” Wells 

agrees with this latter viewpoint but differs somewhat on how “satisfaction” and “dissatisfaction” 

are to be defined. For deeply theoretical reasons (Wells, 2006), he regards a state of “satisfaction” 

as an indication of the affective evaluation “not bad.” Similarly, a state of “dissatisfaction” is 

regarded as indicating an evaluation of “not good.” This is, of course, a mere logical inversion of 

the usual implications presupposed in a “reward/punishment” model. Materially, though, an 

evaluation of “good” or “bad” carries with it a meaning implication that seems to require 

cognitive appraisal, i.e. the psychological hypothesis that cognition takes primacy over 

affectivity. “Not bad” or “not good,” on the other hand, implicates only an affective appraisal, 

which Wells holds is the real relationship for judgment in the “mental physics” of mental 

phenomena. To make this point more explicit, he borrows from Kant the terminology 

Wohlgefallen (which translates as satisfaction in the sense of “not bad”) and Mißfallen (which 

translates as dissatisfaction in the sense of “not good”).  

II. Agent Processes 

The majority of neural network models, whether they employ supervised or unsupervised 

adaptation algorithms, can be characterized as “passive.” This is to say the network is “presented” 

with an input which is allowed to dwell for some time while the network adapts to it. The 

network is then presented with another input and the process repeats. The inputs the network 

“practices on” are supplied by an external agent (the theoretician or designer) and the network has 

no means by which to affect its “environment.” This is not the case in robotics research, by 

contrast, where the robot or robotic vehicle can interact with its environment. In artificial neural 

network research such a system is typically called an agent and the model bears a much closer 

relationship to the types of capabilities of interest to theoretical neuroscience.  

  
A             B 

Figure 2: Two models of “reasoning” and “judgment” in agent theory. (A) Woods’ reasoning loop model. (B) Wells’ 
judgment model. Woods’ model is objective appraisal based. Wells’ model incorporates affectivity as part of appraisal. 
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Figure 2 illustrates two generic models for active learning processes in which the system 

interacts with its environment. Figure 2A (Woods, 1986) is representative of models typically 

encountered in artificial intelligence research, robotics, and artificial neural network theory. The 

paradigm represented in this model is a reasonable one for engineering applications of neural 

network theory and has also been somewhat popular with adherents to what is widely called the 

“parallel distributed processing” (PDP) school of cognitive psychology. As a model of human 

neuropsychological phenomena, it has some shortcomings. First, its “reasoning function” is 

typically merely a set of rules proposed ad hoc according to one or another theory of artificial 

intelligence theory (both classical AI and so-called “expert systems” theory) or one or another 

paradigm of fuzzy systems or “neuro-fuzzy” soft-computing research. It expressly employs, in 

these rules, the sort of rationalist “innate ideas” model developmental psychology has 

demonstrated to be false in regard to human intelligence. The model likewise employs a cognitive 

appraisal, and thereby it aligns with the actor-critic model of figure 1A.  

Another shortcoming from the viewpoint of neuroscience is this model’s feedback pathway 

from its “action” function to its “expectation” function. This is an example of what used to be 

known to psychologists as the theory of the feeling of innervation (James, 1950, 2: 493-522), and 

is a theory convincingly refuted by experimental psychology. Briefly put, the theory held that we 

have conscious knowledge of the signals innervating the brain centers for voluntary motion 

control. In fact, the only perceptions human beings have in regard to voluntary movement comes 

from kinæsthetic feedback from peripheral nerves that are affected by actual movement. 

Therefore, an “expectation” – which is an inherently cognitive notion – cannot be set by an action 

(motor) function; rather, it must itself be the product of the organism’s cognitive processes.  

The model of figure 2B (Wells, 2007b) overcomes these deficiencies. Wells defines 

“judgment” as the act of subsuming one representation under another. If the general 

representation is given and the particular representation is to be subsumed under it, the process is 

called determining judgment and it belongs to the cognitive dimension of mental phenomena. If 

particular representations are given and a general representation for them is to be found, the 

process is called reflective judgment and it belongs to the affective dimension of mental 

phenomena (Wells, 2006). Within the framework of Wells’ general theory, the action module in 

figure 2B also has a context with reflective judgment, but this context is associated with mental 

processes Freud termed “unconscious” and Piaget called the “logical division of the unconscious” 

(Piaget, 1976). In classical actor-critic theory, this forms part of what is known as the actor’s 

“policy function.”  

In the model of figure 2B, the module labeled “judgment function” is aligned primarily (but 
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not exclusively) with a process of determining judgment, while the module labeled “evaluation 

function” is exclusively aligned with a process of reflective judgment. In terms of the actor-critic 

model of figure 1B, the former process of judgment is associated with the actor module, the latter 

primarily (but not exclusively) with the critic module.  

The models we have looked at so far are viewpoints taken in what we can call the 

psychological dimension of neuroscience. Alongside this dimension we also have what we can 

call the biological dimension. Figure 3 illustrates the biological counterpart to the models we 

have so far introduced. This model is due to Burke (1986, pg. 23) with some minor addition to 

include sensory modalities not originating in the somatosensory system and conducted to the 

central system via the spinal cord.2 The model can be broadly divided along functional lines into 

two parts: (1) the limbic system, and (2) the sensorimotor system. As it happens, this model also 

aligns more or less adequately with general functional divisions in Wells’ general theory, and also 

aligns quite adequately with the actor-critic model of figure 1B. In the latter case, the limbic 

system serves in the critic role, while the sensorimotor system serves the actor role.  

The role of the sensorimotor system in meanings-based learning and adaptation has been 

discussed in an earlier tech brief (Wells, 2007a). Here we will give our attention to the limbic role 

 
Figure 3: Burke’s model of the limbic-sensorimotor system with minor modification to add non-spinal sensory 

afferents. 

                                                 
2 In point of fact, the “other sensory modalities” primarily enter via cranial nerves projecting via the brain 
stem. However, this detail is not particularly important for the purposes of this tech brief.  
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in adaptation and learning. The term “limbic system” is an idea not without some degree of 

controversy in neuroscience. Primarily the disagreements center around what brain structures 

should and should not be included in the limbic system. This disagreement is about 80% over 

terminology and about 20% neuroscience. Most researchers generally expect the latter to be 

cleared up in due time by more experimental research in neurobiology and neuropsychology. At 

that point, the terminology debate will almost certainly disappear. As we must adopt one limbic 

system model or another for purposes of particularity in this tech brief, we will do so without 

prejudice to the larger debate.  

All researchers agree that, however the limbic system is actually constituted, its role belongs 

to affectivity function, control of memory and learning, and emotional expression in behavior. 

This in a way is a kind of de facto practical definition of the term “limbic system.” The role of the 

limbic system is described by Fellous et al. (2003) in the following terms:  

 The disparate theories of emotional experience thus all point to a common mechanism – an 
evaluative system that determines whether a given situation is potentially harmful or beneficial 
to the individual. Since these evaluations are the precursors to conscious emotional experience, 
they must, by definition, be unconscious processes. . .  

 Traditionally, emotion has been ascribed to the brain’s limbic system, which is presumed to be 
an evolutionarily old part of the brain involved in the survival of the individual and species. 
Some of the areas usually included in the limbic system are the hippocampal formation, septum, 
cingulate cortex, anterior thalamus, mammillary bodies, orbital frontal cortex, amygdala, hypo-
thalamus, and certain parts of the basal ganglia. . .  

 The contribution of the amygdala to emotion results in large part from its anatomical 
connectivity (reviewed in LeDoux, 2000). The amygdala receives inputs from each of the major 
sensory systems and from higher-order association areas of the cortex. The sensory inputs arise 
from both the thalamic and cortical levels. . . These can be viewed as the sensory and cognitive 
gateways, respectively, into the amygdala’s emotional functions. At the same time, the amygdala 
sends output projections to a variety of brainstem systems involved in controlling emotional 
responses, such as species-typical behavioral responses . . . autonomic nervous system 
responses, and endocrine responses. . .  

 Although many emotional response patterns are hardwired in the brain’s circuitry, the 
particular stimulus conditions that activate these are mostly learned by association through 
classical conditioning. The amygdala appears to contribute significantly to this aspect of learning 
and memory and may be a crucial site of synaptic plasticity in emotional learning. This form of 
memory is quite different from what has come to be called declarative memory, the ability to 
consciously recall some experience from the past. . . Declarative memory, in contrast to 
emotional memory, crucially requires the hippocampus and related areas of the cortex. . . 
Emotional memories are formed in the amygdala, in the same manner as declarative memories 
are formed in the hippocampus (Fellous et al., 2003). 

This is not to say the “memories” are stored in the hippocampus or the amygdala. The statement 

is that these structures form declarative or emotional memories, not that they store them. It is 

generally accepted that “memories” – of whatever kind – are “stored” in distributed fashion 

throughout different regions of the brain. This “storage” is what the adaptive weights in an ART 
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network (Wells, 2007a) represent, and it is why these are referred to as “long term memory” or 

LTM in adaptive resonance theory.  

Most of what we require for the purposes of this tech brief is encapsulated in the above quote. 

As it turns out, the hypotheses expressed by Fellous et al. are for the most part quite congruent 

with Wells’ general theory, although that theory arrived at these conclusions by a completely 

different route. Ideas such as that of conditioning networks will play an important role in this 

tech brief. Lest we get too far ahead of ourselves, though, it is appropriate to caution that while 

the eminence given to the amygdala in the quote above is well-earned, the amygdala does not do 

everything all by itself, and we shall have something for the other components of the limbic 

system model to do as well.  

Figures 2B and 3 are high-level abstractions hiding a lot of detail within the blocks shown in 

these diagrams. One of the details that is not brought to light in either figure, despite the name 

“agent” given to this form of model, is the idea of decision making or, in more philosophical 

terms, the power of choice. Consequently, the system depicted by figures 2B and 3 is also often 

referred to as an automaton model. Engineers working in the field of artificial neural networks 

and artificial intelligence deal with this omission by simply introducing an ad hoc “executive 

subsystem” comprised of rules for selecting responses, rules for creating new rules, and so on. 

When they are done, they still have an automaton model and the “executive subsystem” is usually 

just a block within the “reasoning function” block of figure 2A.  

Neuroscientists typically discuss central nervous system function in terms of what is called the 

four systems model: (1) the sensory system; (2) the motor system; (3) the cognitive system; and 

(4) the motivational system. It is this fourth system that is missing from the figures 2B and 3.  

 Drives or motivational states are inferred mechanisms postulated to explain the intensity and 
direction of a variety of complex behaviors. . . Behavioral scientists posit these internal states 
because observable stimuli in the external environment are not sufficient to predict all aspects of 
these behaviors. In simple reflexes . . . the properties of the stimulus appear to account in large 
part for the properties of the behavior. On the other hand, more complex activities are not 
consistently correlated with external stimulus conditions. . . Neurobiologists are now beginning 
to define the actual physiological states that correspond to the motivational states inferred by 
psychologists. In some instances it has been possible to approach motivational states as 
examples of interaction between external and internal stimuli. The problem of motivation thus 
can be reduced to that of a complex reflex under the excitatory and inhibitory control of multiple 
stimuli, some of them internal. This approach has worked particularly well with temperature 
regulation. In contrast, the relevant internal stimuli for hunger, thirst, and sexual behavior have 
been exceedingly difficult to identify or to manipulate. Nevertheless, even for these behaviors 
the concept of drive state remains useful for behavioral scientists (Kupfermann, 1991).  

The problems of “motivation” and “will power” are closely conjoined and have long been the 

topic of controversy – frequently quite heated controversy – among scientists and lay persons 

alike. It is a very complicated topic, discussed at great length in (Wells, 2006), that we will not 

9 



LCNTR Tech Brief: Affective Control of Learning Processes 

enter into in this tech brief other than to remark that there is near-universal agreement among 

neuroscientists that, whatever else may go into the motivational system, the limbic system plays a 

central role in it. Piaget calls “will” a “regulation of regulations” (Piaget, 1981). Wells explains it 

in terms of a process of practical judgment coupled with what he calls a process of “ratio-

expression” under the master regulation of a central process of equilibration (Wells, 2006). The 

important point so far as this tech brief is concerned is that the system models depicted above 

give us only a partial representation – a subsystem within a much more complicated overall 

system – to which our attention will be confined in this tech brief.  

III. The Limbic System 

Figure 4 presents one model of the limbic system that enjoys wide, but not universal, 

acceptance by neuroscientists. For the purposes of this tech brief it is an adequate model for 

depicting the functional representation of the limbic system block in figure 3. What we wish to 

particularly examine in this tech brief is the generic character of the input/output connections 

between the limbic system and the sensorimotor system. We will not attempt to unpeel the signal 

processing details within this system here. Our objective is the simpler goal of approximating the 

 
Figure 4: A model of the limbic system. Not depicted in this figure are the signal projections made by the 

hypothalamus by means of the neuroendocrine system (the system of blood-borne chemical messengers called 
hormones). The endocrine system is the second major “communication system” of the body (alongside the nervous 

system). The hypothalamus is the central nervous system’s “control center” for the endocrine system, and by means of 
it the hypothalamus exerts numerous effects that reach every part of the body. 
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functional relationship between the limbic system and sensorimotor adaptation processes.  

The first point to note is that the limbic system communicates with every part of the 

neocortex, either directly or indirectly, and exerts a modulation function on the way networks in 

the neocortex will respond to “data path” signals (a term we will use to mean “signals that go into 

the making of objective representations, i.e. cognitions). The term “modulate” means “to regulate, 

adjust, or adapt.” Three major areas of the cortex – the prefrontal cortex, the orbitofrontal cortex, 

and the cingulate gyrus – are regarded as being part of the limbic system rather than part of the 

sensorimotor system. Somewhat loosely speaking, these regions of the cortex can be viewed as 

the cortical substrate for “emotional intelligence” and they make cortico-cortical projections, 

most of which are reciprocal, to the non-limbic areas of the neocortex.  

If one accepts the idea that it is meaningful to speak of “emotional memories,” the limbic 

cortices are the most likely candidates for where such memories are “stored.” One theory, by no 

means universally accepted at present, is that the neurological substrate for such “emotional 

memories” are small neural networks called somatic markers.  

The somatic marker hypothesis provides a systems-level neuro-anatomical and cognitive 
framework for decision making and the influence on it by emotions. The key idea of this 
hypothesis is that decision making is a process that is influenced by marker signals that arise in 
bioregulatory processes, including those that express themselves in emotions and feelings. This 
influence can occur at multiple levels of operation, some of which occur consciously and some 
of which occur non-consciously. . . The orbitofrontal cortex represents one critical structure in a 
neural system sub-serving decision making. Decision making is not mediated by the orbito-
frontal cortex alone, but arises from large-scale systems that include other cortical and sub-
cortical components. Such structures include the amygdala, the somatosensory/insular cortices, 
and the peripheral nervous system (Bechara et al., 2000).  

The thalamus (figure 3) receives a large number of “driver” inputs (Sherman and Guillery, 

2006), including some descending from the neocortex to high order thalamic nuclei (Wells, 

2007a), and it is likely that at least some of these play a modulatory role for attentional 

mechanisms and the formation of “memories” (modeled as adaptive weights in an ART network 

model) in the non-limbic cortex. A more direct control center for objective memory is provided 

by the hippocampal formation, which is known to be critical for the ability to form long-term 

memories. In contrast, the amygdala appears to be for “affective memory” (e.g. somatic markers) 

what the hippocampus is for objective memory. Thus, within the limbic system we find both a 

putative control mechanism for memory formation and, in the case of affective memory, a 

cortical substrate for these putative “memory” functions.  

Another limbic mechanism thought to be related to attentional control and motivation is 

provided by the hypothalamus-septum-hippocampal subsystem. Their joint action is sometimes 

characterized by calling this subsystem a “needs checker” by motivational psychologists. Within 
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the limbic system are found neurological structures thought to be responsible for the production 

of drive signals that mediate experience-dependent conditioning of the cognitive data pathway. 

One model for the general phenomenon of conditioning was proposed by Grossberg (1975).  

 [We] will suggest that the nonspecific neural activity generated by a novel event filters through 
all internal drive representations. The effect of this activity on behavior will depend on the 
pattern, or context, of activity in all these representations when a novel event occurs. Sometimes 
the novel event can enhance the effect of an ongoing drive, sometimes it can cause a reversal in 
sign (as in the frustration reaction), and sometimes it can introduce and enhance the effect of a 
different drive. We will be led to assume that every novel event has the capacity to activate 
orienting reactions, but whether or not, it does depends on competition from the drive loci which 
the event also activates. The nonspecific activity generated by the novel event will also be 
assumed to reach internal sensory representations, where it helps determine which cues will 
enter short-term memory to influence the pattern of internal discriminatory and learning 
processes (Grossberg, 1975).  

Grossberg’s conditioning model implicates the hypothalamus, septum, hippocampal formation, 

and part of the brainstem (specifically, the reticular formation) as having functional involvement 

in the conditioning process (what he calls the “orienting system” in adaptive resonance theory).  

Figure 5 illustrates the simplest form of a Grossberg conditioning network. The basic 

functional description of this network system are supplied in the figure caption and explained in 

more detail in (Wells, 2007b, pp. 491-495). Central to Grossberg’s model are elastic projections 

 
Figure 5: The simplest form of a Grossberg conditioning network. The conditioning function is carried out by a sub-

network called a dipole layer. S1, S2 and M denote sensory and motor networks in the cognitive (“data”) pathway. The 
dipole layer receives “drive” inputs (which we will presume arise in the limbic system) and adaptively conditions the 
sensory network layer S2, by means of the S1-D1-S2 pathway on the basis of these drive inputs. The dipole layer can 

putatively be regarded as a form of somatic marker network. If a feedback pathway from S2 to S1 is added to this 
diagram, S1 and S2 jointly form the adaptive resonator of an ART network. The network system depicted in this figure 

specifically instantiates aversive conditioning (Mißfallen in Wells’ terminology). Attractive conditioning 
(Wohlgefallen) is implemented by exchanging the inhibitory and excitatory projections from map nodes I5 and I6 to S2. 
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denoted by z1 and z2. These projections model the effect of short-term depression (Wells, 2003) 

in neural synaptic pathways. Active signaling from I1 and I2 produce a fast-acting decrease in the 

weight values of z1 and z2, respectively. When activity ceases from I1 or I2, the elastic weight 

slowly recovers to its original full-strength value. In this way, a rebound effect occurs, switching 

the arousal signal from D1 to S2 from aversion to “relief” (for the inhibitory and excitatory 

projections shown in the figure from D1 to S2). Rebound effects are observed in psychological 

studies of classical conditioning. This is explained in greater detail in (Grossberg, 1972a, b).  

We can regard figure 5 as the starting point in researching the functional effect of the limbic 

system on meanings-based unsupervised learning processes in the non-limbic subsystem of figure 

3. Specifically, the question before us is how to mate, at a simple and preliminary functional 

level, the attentional and orienting effects of the brain’s affective system within a logic of 

meanings context in a meanings-network model of the earliest sensorimotor cortices of the 

neocortex (Wells, 2007a). At this point, we do not seek to examine the inner details of the limbic 

system of figure 4, but only to assess the mathematical and logical implications of this system 

regarded as a “black box” in figure 3.  

This approach – in which we make an abstraction ignoring the inner details of figure 4 in favor 

of understanding its relationship to the sensorimotor logic-of-actions and logic-of-meanings 

paradigm – follows what has historically been a fruitful tactic in computational neuroscience 

research, well illustrated by the historical course taken by Grossberg in deducing adaptive 

resonance theory from earlier research into what he named “embedding fields.” Grossberg long 

ago wrote,  

 The theory [of embedding fields] introduces a particular method to approach the several levels 
of description that are relevant to understanding behavior. This is the method of minimal 
anatomies. At any given time, we will be confronted by particular laws for individual neural 
components, which have been derived from psychological postulates. The neural units will be 
interconnected in specific anatomies. They will be subject to inputs that have a psychological 
interpretation which create outputs that also have a psychological interpretation. At no given 
time could we hope that all of the more than 1012 nerves in a human brain would be described in 
this way. Even if a precise knowledge of the laws for each nerve were known, the task of writing 
down all the interactions and analyzing them would be bewilderingly complex and time 
consuming. Instead, a suitable method of successive approximations is needed. Given specific 
psychological postulates, we derive the minimal network of embedding field type that realizes 
these postulates. Then we analyze the psychological and neural capabilities of this network. An 
important part of this analysis is to understand what the network cannot do. This knowledge 
often suggests what new psychological postulate is needed to derive the next more complex 
network. In this way, a hierarchy of networks is derived, corresponding to ever more 
sophisticated postulates. This hierarchy presumably leads us ever closer to realistic anatomies, 
and provides us with a catalog of mechanisms to use in various situations. The procedure is not 
unlike the study of one-body, then two-body, then three-body, and so on, problems in physics, 
leading ever closer to realistic interactions . . .  

 At each stage of theory construction, formal analogs of nontrivial psychological and neural 
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phenomena emerge. We will denote these formal properties by their familiar experimental 
names. This procedure emphasizes at which point in theory construction, and ascribed to which 
mechanisms, these various phenomena first seem to appear. No deductive procedure can justify 
this name calling; some aspects of each named phenomenon might not be visible in a given 
minimal anatomy; and incorrect naming of formal network properties in no way compromises 
the formal correctness of the theory as a mathematical consequence of the psychological 
postulates. Nonetheless, if ever psychological and neural processes are to be unified into a 
coherent theoretical picture, such name calling, with all its risks and fascinations, seems 
inevitable, both as a guide to further theory construction and as a tool for more deeply 
understanding relevant data. Without it, each theory must remain a disembodied abstraction 
(Grossberg, 1972a). 

In this tech brief and its companion brief (Wells, 2007a), the minimal anatomy target for this 

research topic is that which is involved in affective unsupervised learning control within the 

sensorimotor subsystem – specifically, its role within the orienting and attentional subsystems 

mathematically required in ART networks by adaptive resonance theory. This is why we will 

largely plan on “black boxing” most of the limbic system but “white boxing” in part its putative 

functional interactions with the sensorimotor system, starting from figure 5 as a guess at our 

minimal anatomy, and linking this minimal anatomy with the general structure in (Wells, 2007a). 

IV. Toy Problems and a Toy Problem Definition: The Martian 

It is a common and largely successful tactic, employed throughout science, to approach very, 

very complex problems by means of smaller, simpler “toy” problems that capture the main effects 

of the phenomenon under study without introducing unfathomable analysis complexity into the 

model system. In doing so, one must always keep on eye on what Minsky and Papert have 

dubbed “the scaling problem” (Minsky and Papert, 1988). In simple terms, when one is producing 

a system model for a toy problem, one must always pay attention to whether or not the proposed 

model solution can be extended to larger, more realistic problems without model failure due to 

runaway issues in parameter precision, computational complexity, outright fundamental limits to 

what the model can achieve in a realistic setting, or restrictions that must be imposed upon it ad 

hoc in order to avoid these issues. For example, there are much simpler classification networks 

than ART networks. Unfortunately, all of them run afoul of a fundamental problem, which does 

not occur with ART, when the toy scenario they work within is extended to more realistic 

situations.  

 Analysis of the competitive learning model revealed a fundamental problem which is shared 
by most other learning models that are now being developed and which was overcome by the 
adaptive resonance theory. . . In Grossberg (1976), a theorem was proved which described input 
environments to which the model responds by learning a temporally stable recognition code. . . 
The theorem proved that, if not too many input patterns are presented . . . relative to the number 
of coding nodes . . . or if the input patterns form not too many clusters, then learning of the 
recognition code eventually stabilizes. In addition, the learning process elicits the best 
distribution of LTM traces that is consistent with the structure of the input environment. . .  
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 Despite the demonstration of input environments that can be stably coded, it was also shown, 
through explicit counterexamples, that a competitive learning model cannot learn a temporally 
stable code in response to arbitrary input environments. Moreover, these counterexamples 
included input environments that could easily occur in many important applications. . .  

 This instability problem was too fundamental to be ignored. In addition to showing that 
learning could become unstable in response to a complex input environment, the analysis also 
showed that learning could all too easily become unstable due to simple changes in an input 
environment. Changes in the probabilities of inputs, or in the deterministic sequencing of inputs, 
could readily wash away prior learning (Grossberg, 1987).  

With this caveat emptor in mind, let us now consider what sort of toy problem the research 

question at hand requires. The target of our investigation is to better understand the 

attentional/orienting subsystem of an ART network in terms of the sensorimotor interplay 

between neocortex and thalamus (meanings networks) in light of the role affective processes play 

in controlling the learning process. Thus we take as given that a core component in the modeling 

process will be constituted by the resonator structure of an ART network, for purposes of which 

the ART 2 model of Carpenter and Grossberg (1987) provides a suitable initial platform (figure 

6). The research question requires the exploration of a more specific neural network structure 

along the lines of the meanings network postulate (Wells, 2007a) and an interaction between such 

a network and the material presented in this tech brief.  

A great many “problem environment” and stimulus source models have appeared in the neural 

network literature over the years. For example, one often-used toy problem is known as the 5-4 

category problem (Grossberg, et al. 2005), which is used to study self-supervised incremental 

learning. Another is the retina problem, used to study pattern recognition, imaging processing, 

and classification problems in artificial neural network theory. The retina problem is illustrated in 

(Wells, 2007b, chapters 16-17).  

 
Figure 6: The ART 2 network. 
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The drawback to these and similar problems is their lack of any locomotion capacity. The 

network under study cannot affect the stimuli it receives nor perform any motor action. They are 

examples of “passive network” toy problems. There are numerous engineering example problems 

in robotics research, but many of these involve very complex motor models or elements, and we 

presently wish to minimize the complexity involved here while retaining a biological flavor in the 

problem structure. A reasonable compromise is to make a slight extension to the basic retina 

problem by adding a sensory “window,” that captures only a portion of a larger retina field, and 

adding some basic, simple but limited locomotion capability to produce an agent system. Because 

it is convenient to have a name by which to call this toy agent, we will refer to it as “the Martian” 

in reference to the fictional creatures in H.G. Wells’ novel, which were presented as beings of 

high intelligence but severely limited locomotion capacity.  

We must give the Martian a basic sensorimotor system environment. Such an environment in 

retina form is illustrated in figure 7. Any space-filling geometric shape, such as a hexagon, a 

triangle, etc., can be used to define the pixels provided both retinas use the same geometry. The 

background retina is stationary, and each pixel contains a non-negative number representing the 

intensity of the stimulus encountered when the movable sensory field window overlays it. The 

sensory field window is movable via a muscle system (not shown). For simplicity, we can choose 

to allow the agent’s sensory window three degrees of freedom, left-right, up-down, clockwise-

counterclockwise, by assuming the agent has three pairs of muscles, each pair arranged as an 

agonist muscle and an antagonist muscle. The muscle-to-central-systems interface will be set up 

in conformity with Burke’s model of figure 3.  

 

Figure 7: Retina-based sensorimotor environment for the Martian. The external world is represented by a large N × N 
pixel grid. Each pixel is given a number representing the intensity of sensation to be produced when the smaller M × M 
sensory field window overlays that pixel. The sensory field window is attached to three muscle pairs (not shown), each 
such pair arranged in an agonist-antagonist anatomy (analogous to a flexor muscle and an extensor muscle). One pair 

allows locomotion in the left-right direction, the second in an up-down direction, and the third allows rotation 
clockwise-counterclockwise. Although the pixels are illustrated as squares, any space-filling shape, such as the 

hexagon or the triangle, can be used to represent the pixel elements provided both retinas have the same geometry. 
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In modeling the Martian’s central systems, it is prudent to arrange the model so that it can be 

extended in a straightforward fashion to study progressively more complex learning problems. 

This can be accomplished by defining a basic process unit, in conformity with figure 3 and with 

the schematic organization of central systems discussed in (Wells, 2007a), reproduced in figure 8 

for purposes of clarity of discussion. A very simplified block diagram model for the basic Martian 

 
Figure 8: Thalamocortical network schematic, taken from (Wells, 2007a). 

 
Figure 9: Simplified block diagram of a basic Martian process unit incorporating ART networks to model functional 
columns in the non-limbic neocortex. Two ART networks are depicted, although more may be incorporated to extend 

the model. The two networks shown are presumed to be in mutually antagonist relationship in terms of motor 
innervation commands. 
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process unit is illustrated in figure 9. The purpose of this diagram is to suggest a starting point for 

interfacing neocortical functional columns, represented by the ART networks, with the function 

of the thalamic pathways and the actions of the limbic system. While more ART networks can be 

added to extend this model, what is important here is that the two ART networks shown are in a 

mutually antagonistic relationship to each other in terms of locomotion commands, i.e. the 

activation of one muscle bundle (e.g. left-right) should tend to focus attention in the ART 

network associated with that muscle pair’s central control and impede attention in the ART 

network associated with control of the other muscle pairs. This is done in order to mimic the 

neurological substrate for meaning implications (Wells, 2007a). Furthermore, the limbic system 

should interpret an attempt to activate both muscles in any one muscle pair as “not good” (e.g., as 

“pain”) since, to a first approximation appropriate for the crude level of modeling in figure 7, the 

activation of both the agonist and antagonist muscles is analogous to the production of a “muscle 

cramp.”  

The Martian’s limbic system function requires a proxy for mimicking certain basic 

“preferences” such as are observable in new-born infants. Toward this end, let us make the 

following preference definitions. 

1. The Martian will find high-contrast edges in its sensory field to be “interesting” and will 
prefer to “dwell” on images of contrast boundaries. 

2. The Martian will find images with no contrast among pixels to be “boring” and will tend 
to not pay attention to them. 

3. The Martian will find pixel patterns that form enclosures to be “interesting.”  

4. The Martian will have an aversive response if it tries to move the agent window outside 
of the background retina, and this aversion will increase geometrically the more the 
sensory window trespasses beyond the background border (this mimics a pain response to 
hyper-extending a muscle). It will have a similar aversive reaction if it tries to rotate the 
sensory field past plus or minus ninety degrees.  

5. The Martian will have a “drive” to move its sensorimotor orientation in order to try to 
make the sensory field match a previously learned feature category. (Any category will 
do; this drive is affective, not cognitive).  

6. The Martian will experience an increasing degree of satisfaction the more successful it is 
in finding a match between the sensory field and one of its learned categories; 
contrariwise, it will experience an increasing degree of dissatisfaction the less successful 
it is in accomplishing this. 

7. The Martian will experience a “sense of complete satisfaction” (Wohlgefallen) when its 
sensory window is positioned such that the “interest” it affectively finds in its sensory 
data is maximal; this complete satisfaction will implicate that further motor commands 
will be neutralized. 

8. The Martian will experience an “attraction drive” when a learned pattern is recognized by 
one of its ART networks and respond by attempting to maximize this attraction, i.e. drive 
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5.  

9. The Martian will experience an aversive drive when motor movements lead to a 
reduction in satisfaction in its recognition of the sensory field. 

This small set of affective “preferences” and “drives” serves to provide objective conditions 

for modeling drive signals originating from the Martian’s limbic system, and for processing these 

drives in simple conditioning network schemes, e.g. figure 5. As clearly artificial as this problem 

definition appears, it is nonetheless consistent with a number of innate reflexes and early acquired 

habits observable in infants from birth through the first few weeks of life. For example, this toy 

problem is compatible with the infant’s looking, listening, and sucking reflex behaviors and the 

first acquired habits arising from them (Piaget, 1952). Similarly, the Martian’s “interest” in 

topological sensory patterns (contrast lines, enclosures) is congruent with experimental findings 

that the infant begins life with the capability of perceiving topological (but not geometrical) 

features (Piaget and Inhelder, 1967). Thus, although it is a toy problem, the Martian problem as it 

is defined here is a surprisingly appropriate vehicle for exploring infantile behaviors at the 

beginning of the sensorimotor stage of the development of intelligence.  
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