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I. Abstract 

What is the nature of the cortical organization that gives rise to binding codes in the neural 

representation of objects and events? Unfortunately, the details of cortical circuit connection and 

many of the details of cortical cell physiology are far from completely understood. Furthermore, 

none of the current hypothetical structures proposed by various researchers are free from 

disagreement with experimental data at the detail level. In this paper those facts that are generally 

agreed to at the present time by a majority of neuroscientists are reviewed with the goal of putting 

together a comprehensive picture of the role of functional column structure in the neocortex. We 

first review the state of knowledge of neocortical organization. We then review the mathematical 

theories of oscillator and wave models in the context of functional column structure and discuss 

their implications for larger-scale modeling of object and event binding through retroactive 

multiregional feedback. In the course of this review, we will examine the implications for the 

chain-of-oscillators, synchrony, and wave propagation paradigms for modeling neural binding 

code mechanisms.  

 

II. Organization of Cortical Layers 

It is well known that the neocortex has a layered structure with three superficial layers (layers I-

III) and three deep layers (IV-VI). The cortex thickness ranges from about 2 mm to about 4 mm. 

Functional columns are believed to extend through the entire depth of the cortex and to be a 

fraction of a mm in diameter. Layer organization shows the following general tendencies [1]:  

• Layer I is called the acellular layer and contains dendrites from deeper-lying neurons 
and axons that travel and form connections in this layer. It contains very few 
neurons [2], and those it does contain are inhibitory interneurons [11]. 

• Layer II is comprised mostly of granular cells and apical dendrites from neurons in 
layers V and VI. Kelly [2] tells us that layer II cells are primarily small pyramidal 
cells, and that layers II and III supply much of the output to other cortical regions. 

• Layer III contains a variety of cells, most of which are small pyramidal cells. 
• Layer IV is also composed of granular cells. White [3] tells us that these are local 

plexus, basket, and chandelier cells, all of which are inhibitory interneurons. Spiny 
stellate cells are also found exclusively in layer IV. 

• Layer V is comprised mostly of large pyramidal cells. It also contains basal 
dendrites of neurons in layers III and IV. White [3] tells us that at least the axons 
and possibly basal dendrites of non-spiny bipolar cells are found in layer V, as well 
as local plexus cells. There are two types of non-spiny bipolar cells, one of which is 
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inhibitory and the other of which appears to be excitatory. White also tells us that 
chandelier cells are found in layer V.  Kelly [2] tells us that layer V contains the 
largest pyramidal cells, and that these cells project long axons that leave the cortex 
and descend to the basal ganglia, brain stem, and spinal cord. 

• Layer VI is a heterogeneous layer of neurons blending into the white matter. It also 
contains basal dendrites from neurons in layers III and IV. Kelly [2] tells us that 
many layer VI pyramidal cells project back to the thalamus. 

 

Most cortical neurons can be classified according to signaling properties into four groups: regular 

spiking (RS), fast spiking (FS), intrinsic bursting (IB), and continuously spiking (CS). 

Computational models for each of these types have been provided by Wilson [4]. Excitatory 

neurons in the superficial layers tend to be RS-type. The deeper layers contain excitatory neurons 

of both the RS- and IB- or CB- types. 50% of the inhibitory interneurons in the neocortex are the 

FS-type [5]. With regard to the bursting neurons, it is worth noting that in many cases bursting in 

neocortical neurons is not endogenous but rather is a condition that is evoked experimentally by 

means of injecting a constant-current stimulus into the cell [6, pp. 165-6]. 

 

III. Cortical Circuit Models 

Various models of cortical circuit organization have been proposed over the years. As we review 

these models, one point to emphasize at the start is that many of the neuronal connections 

depicted are hypothetical. Generally, the determination of connectivity in the neocortex requires 

painstaking anatomical study. The experimental issues involved are described in [3].  

 One of the earlier models was proposed by Shepherd in 1978 [7]. Shepherd’s model, 

reproduced from [8] along with his caption given there, is shown in figure 1. (Note that in this 

caption Shepherd’s 1978 citation is misprinted as 1987). This model is now out-of-date and has 

been replaced by more accurate versions. Shepherd’s model speculates that some pyramidal 

neurons in layers II and III feed their own output signals back into their own dendritic tree. This 

feedback pathway is generally not depicted in more recent models. Nonetheless, Shepherd’s 

circuit contains some useful information often taken for granted in most of the more up-to-date 

models.  

 First, Shepherd proposes that neocortical organization follows a general framework exhibited 

elsewhere in the brain (in particular, in the olfactory cortex and the hippocampus). He calls this 

the olfactory-hippocampal-general cortex model. The ‘simple cortex’ (A in figure 1) is modeled 

after the olfactory cortex. The ‘primary afferents’ depicted in figure 1A are indeed sensory 

afferents in the olfactory cortex, but this is not the case for the general cortex where primary 

afferents come by way of the thalamus and mostly target neurons in layer IV. Afferents in layer I  
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Figure 1: Shepherd’s model of cortical circuit organization. This model is now out of date. 

are therefore primarily laterals from nearby cortical columns. These axons are generally 

unmyelinated (layer I is part of the ‘gray matter’) and, consequently, it may be presumed that 

their sources are within a few mm of the receiving column. Although layer I is called the acellular 

layer, it does contain sparse populations of neurogliaform cells (inhibitory interneurons (INs) that 

target dendritic shafts), inhibitory Cajal-Retzius, and “small layer I” cells that target dendrites and 

dendritic tufts. It is reasonable to posit that layer II/III pyramidal neurons make recurrent 

connections (RE in figure 1) with other layer II pyramidal neurons. However, self-looping 

feedback such as that depicted in figure 1A does not appear to be confirmed by later studies.  
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 The agranular neocortex model (figure 1B) and the granular neocortex model (figure 1C) are 

in slightly better agreement with more recent models, although once again it is to be emphasized 

that in the primary sensory cortex it is the thalamus that is the principal pathway for sensory 

afferents in figure 1C. In the case of the association and motor cortices (1B), the cortical inputs 

are likely to be layer I collaterals from nearby functional columns and layer III projections from 

other columns (if they come in from the white matter). The latter is because the main projection 

neurons in the neocortex found in layer V project mainly to the basal ganglia, brain stem or spinal 

cord, while layer VI projection neurons project back to the thalamus [2]. Layer II pyramidal 

neurons project mainly to layer IV. Layer III projection neurons, on the other hand, appear to be 

the principal cortex-to-cortex projection neurons. Unmyelinated axon collaterals from these 

neurons most likely travel, via layer I, to nearby columns. The main trunks of their axons project 

to more distant columns via the white matter [2]. Therefore direct column-to-column signaling is 

to be attributed to layer III pyramidal cells, while any column-to-column signaling via layers V 

and VI pyramidal cells is going to be indirect. This is because these cells signal via pathways that 

can only return to the cortex via the thalamus. For instance, the basal ganglia signal to the 

prefrontal, premotor and motor cortices by projecting their outputs to the thalamus, and it is via 

the thalamus that these signals re-enter the cortex [9].  

 This organization is reflected in a more up-to-date model proposed by Douglas and Martin and 

depicted in figure 2. Figure 2 gives the impression of considerably more detail than Shepherd’s 

model, but to a large degree this is illusory. First, figure 2 is greatly oversimplified inasmuch as it 

omits a great many intra-columnar interconnections and depicts only three types of cortical cells 

(pyramidal, spiny stellate, and smooth stellate). It also does not distinguish between spiny stellate 

cells and pyramidal cells. Third, the connections that are shown are putative rather than 

anatomically confirmed.  

 White [3] has ascertained some of the anatomically correct connections present in the 

neocortex, and this is depicted in figure 3. Again, it is to be understood that even figure 3 is some-

what misleading inasmuch as the ratio of excitatory cells (pyramidal and spiny stellate) to 

inhibitory cells is not biologically correct. In the cortex only about 15% of the cells are inhibitory. 

Figure 3 puts the inhibitory neuron population much higher relative to the excitatory cell 

population.  

 It is often presumed that the ratio of inhibitory to excitatory synaptic connections follows the 

ratio of inhibitory to excitatory cell populations. However, this too is an assumption. Inhibitory 

INs make primarily local connections with perhaps a few inter-columnar connections made at the 
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Figure 2: The Douglas-Martin model. This figure is taken from [10], pg. 63. 

 

 
Figure 3: Anatomically confirmed cortical connections. The figure is taken from [3]. 

boundaries between adjacent functional columns. (These ‘boundary connections’ are one posited 

mechanism for the hypothesis that functional columns are non-static structures and can 

dynamically re-arrange their organization [3]). White and his collaborators have proposed several 
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general rules of cortical organization. They are [3]:  

 

• Rule 1. Every neuron within the target area of a projection receives input from the 
projection. 

 
• Corollary to Rule 1. Axon terminals from any extrinsic or intrinsic source synapse onto 

every morphological or physiological neuron type within their terminal projection field. 
In practice this means that a pathway will form synapses with every element in their 
target region capable of forming the type of synapse normally made by the pathway, i.e., 
asymmetrical (excitatory) or symmetrical (inhibitory). 

 
• Rule 2. Different dendrites of a single neuron form similar synaptic patterns; that is, the 

numbers, types proportions, and spatial distribution of synapses is similar, provided the 
dendrites are exposed to similar synaptic inputs. 

 
• Corollary to Rule 2. Axonal pathways form similar synaptic patterns onto all the 

dendrites of a single neuron, provided the dendrites occur within the target region of the 
axonal pathway. 

 
• Rule 3. Neuronal types receive characteristic patterns of synaptic connections; the actual 

numbers, proportions, and spatial distribution of the synapses formed by each neuronal 
type occur within a range of values. 

 
• Corollary to Rule 3. Different extrinsic and intrinsic synaptic pathways form specific 

proportions of their synapses with different postsynaptic elements (spines vs. dendritic 
shafts, one cell type vs. another).  

 
• Rule 4. The receptive field properties of every cortical neuron are shaped by the spatial 

and temporal integration of inputs from a variety of excitatory and inhibitory sources. 
Inputs from a single source cannot be the sole determinant of the receptive field 
properties of cortical neurons. 

 
• Rule 5. Only a fraction of the synaptic inputs to a cortical neuron are activated at one 

time. Therefore, the receptive field properties of cortical neurons are transitory and are 
determined by the cortical circuitry active at a given time. 

 
• Rule 6. Excitatory and inhibitory synaptic interactions between cortical neurons 

preferentially link neurons situated in close proximity to one another, and these 
interactions typically link neurons having similar receptive field properties. Synaptic 
interactions between closely spaced neurons, having similar receptive field properties, 
provide a basis for the similarity of receptive field properties of neurons within a 
functional column. 

 
 Finally, it is important to note that the principal inputs received by any cortical column come 

from other cortical areas. It has been estimated that only 1 in 100 or even 1 in 1000 fibers in the 

white matter are involved in subcortical projections (thalamus and basal ganglia) [12]-[13]. The 

remaining white matter fibers are involved in intra- and inter-hemispheric connections from one 
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part of the cortex to another. It is thought that all cortical inter-columnar connections are 

reciprocal, i.e. that a cortical area receiving input from another cortical area also signals back to 

that area. The substantial majority of these cortico-cortical connections target pyramidal cells. In 

contrast, thalamic afferents target inhibitory interneurons as well as pyramidal neurons (see 

figures 2 and 3). Although the thalamus projects to all layers of the cortex, its most dense 

projections are to layers IV and VI, where they form about 5% to 10% of the synapses in those 

layers [13]. In addition, more than 20 other subcortical structures project to the neocortex. At 

present we have no simple schematic of these pathways, although the monoaminergic innervation 

of the cortex (metabotropic synapses using dopamine, norepinephrine or serotonin as the 

neurotransmitter) has perhaps been the most studied. The monoaminergic connections are 

modulatory rather than “data pathway” signals. One of their roles – and perhaps their primary role 

– is to modulate the level of excitability of cortical neurons, typically over a relatively large area 

involving a multiplicity of functional columns.  

 

IV. Cortical Neurons 

Although the classification of cortical neurons into four basic signaling types might seem to 

imply a certain simplicity in cortical signal processing, this is misleading. There is a surprising 

diversity of different morphological classes of cortical neurons, and each of these classes contains 

a multiplicity of subclasses. Different groups of authors do not even seem to agree on a common 

naming system for describing these different classes. Nonpyramidal neurons have been 

extensively surveyed by Fairén et al. in a comprehensive comparative anatomical review [14]. 

Toledo-Rodriguez et al. have presented a less comprehensive review of cortical neurons [11], 

which we summarize in table I.  

 Table I hints at the underlying diversity of cell types in the neocortex. Even so, it does not 

convey the full story. For example, within the general class of regular spiking (RS) responses, 

there are still more subtle differences. Most RS pyramidal (PC) and spiny stellate cells (SSC) 

show weak accommodation (that is, in sustained firing patterns the firing rate gradually decreases 

slightly), but some subpopulations in layers IV-VI show strong accommodation (that is, in 

sustained firing patterns the firing rate rapidly and significantly decreases). [11] documents a 

number of subclasses of signaling characteristics for the inhibitory neurons as well.  

 Different cortical neurons can co-localize neuropeptide neuromodulators as well. For example, 

a PC neuron of the RS class in table I can co-localize somatostatin (SOM) with its glutamate 

neurotransmitter, or it can co-localize cholecystokinine (CCK) but not both simultaneously, and it 

might not co-localize either one. This points to the possibility of different behaviors by neurons of 
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        Table I: Brief Summary of Cortical Neuron Classes        
Cell Type  Signaling  Primary   Co-localized Location of Dendritic Principal Axonal 
    Class   Neurotransmitter Neuropeptide Cell Body  Location  Targets 
                               
PC    RS    glutamate   SOM, CCK layers II-VI  all layers WM, dendrites. 
PC    IB    glutamate       V    all layers WM, dendrites. 
SSC   RS    glutamate       IV    IV   dendrites in II-IV. 
LBC   FS, RS  GABA    NPY, CCK  III, V      soma and proximal 
                        dendrites with sparse 
                        intra-laminar and 
                        intra-columnar 
                        projections and long 
                        inter-columnar 
                        projections. 
SBC   FS, RS  GABA    VIP, CCK  III-V      local soma and 
                        proximal dendrites 
                        with dense intra- 
                        laminar and intra- 
                        columnar projections. 
NBC   FS, CB, RS GABA    NPY, SOM III, V      local soma and 
             CCK          proximal dendrites 
                        with sparse to dense 
                        intra-laminar and 
                        intra-columnar 
                        projections. 
BTC  FS, CB, RS  GABA    SOM, CCK,        intra-columnar over 
             VIP          all layers 
BPC  FS, IS, CB, RS GABA    VIP   II-IV   all layers dendritic shafts over 
                        all layers but few and 
                        very restricted target 
                        cells. 
e-BPC  ?     glutamate?  ?    II-IV   ?   dendrites. 
DBC  FS, CB   GABA    VIP   II/III   ?   dendrites over all 
                        layers in a column. 
e-DBC  ?     glutamate?  ?    II-V    ?   dendrites. 
NGC  FS     GABA        I, III/IV   local layer dendritic shafts in the 
                        same layer, column. 
MC   FS, CB, IS   GABA    NPY, SOM VI    VI+?  dendrites with intra- 
             CCK          laminar and intra- 
             NPY+SOM        columnar projections 
                        and inter-columnar 
                        projections. 
CRC  ?     GABA        I    I   local dendrites. 
ChC  FS, CB   GABA        III, V   III, V/VI local axons in same 
                        layer and column. 
                               
PC=pyramidal cell; SSC=spiny stellate cell; LBC=large basket cell; SBC=small basket cell; NBC=nest 
basket cell; BTC=bitufted cell; BPC=bipolar cell; e-BPC=excitatory bipolar cell (putative); DBC=double 
bouquet cell; e-DBC=excitatory bitufted cell (putative); NGC=neurogliaform cell; MC=Martinotti cell; 
CRC=Cajal-Retzius cell; ChC=chandelier cell; RS=regular spiking; FS=fast spiking; CB=continuous bursting; 
IS=irregular spiking; GABA=gamma aminobutyric acid; NPY=neuropeptide Y; VIP=vasoactive intestinal 
peptide; SOM=somatostatin; CCK=cholecystokinine; WM=white matter. 
 
even the same general morphological class.  

 The presence of neuropeptides in the synaptic terminals of cortical neurons greatly 

complicates the picture insofar as signaling action by individual neurons is concerned. The onset 

of metabotropic second-messenger reactions due to the binding of a neuropeptide to a receptor in 

the postsynaptic cell is slow to begin, but the modulatory effects are generally very long lasting. 
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This has significance for understanding binding codes in the cerebral cortex. The situation is 

further complicated by the fact that neuropeptides have not received anything approaching the 

theoretical or the experimental treatment that has been applied to the various ion channels and 

their signal modulation effects (e.g. various Na+, K+ or Ca2+ ion channels that give different 

neurons their different basic signaling properties).  

 The effect of somatostatin (SOM) on the postsynaptic cell is generally inhibitory. SOM 

hyperpolarizes the postsynaptic cell by opening K+ channels, thus depressing the ability of the 

postsynaptic neuron to respond to action potential (AP) signals [15, pp. 214-217]. It is thought 

that the half-life of SOM is on the order of less than 3 minutes. CCK acts on the postsynaptic cell 

via the phosphoinositol second messenger system (PhS) [15, pp. 393-400], [16], stimulating the 

production of diacylglycerol and raising intracellular levels of Ca2+. The metabotropic reactions 

of the PhS are widely varied, and it is not known in detail what the precise effect of CCK on 

cortical neurons is. However, a common effect of the PhS on postsynaptic cells tends to be 

excitatory (e.g. phosphorylation of AMPA receptors, which increases their sensitivity). The 

vasoactive intestinal polypeptide (VIP) acts through the cAMP second messenger system [16], 

[17] and is known to have both excitatory and inhibitory effects [15, pp. 400-402]. The effects of 

neuropeptide Y (NPY) in the cerebral cortex are not well documented, but provisionally appear to 

be inhibitory. NPY receptors in the central nervous system belong to the superfamily of G protein 

binding receptors that interact with the Gi protein, which reduces levels of cAMP [15, pp. 419-

421]. Reduction of cAMP is usually linked to inhibitory effects on postsynaptic response.  

 In summary, there is simply too little presently known about the effects of these different 

neuropeptide modulators in the cerebral cortex. It seems to be a reasonable guess that synaptic 

release of the neuropeptides is likely to be less probable than release of the small molecule neuro-

transmitters with which they are co-localized, thus implying that neuropeptide release would be 

stimulated by sustained AP bombardment but not occasional AP events. However, this is mere 

speculation at this time. SOM and NPY are probably inhibitory. The effects of CCK and VIP are 

probably mildly excitatory [13]. But we simply do not have sufficient experimental data to 

predict exactly what the roles of the neuropeptides are in the cerebral cortex. What we can say 

with some degree of confidence is: Whatever these effects may be, they are slow to onset and 

relatively long-lasting compared to normal synaptic transmission of signals.  

 Whatever may be the effect of neuromodulation in cortical neurons, their normal synaptic 

signaling properties are much better understood. Wilson [4] has provided computationally 

efficient models for cortical neuron firing for the four major classes of cortical neurons. Figure 4 

illustrates  the  behavior of the RS-class response, a category that includes pyramidal neurons and 
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       A               B 

Figure 4: Background and stimulated firing activity for an RS-type neuron. A. Background excitation set 
to produce AP responses at approximately 150 msec intervals (6 pulses per second background firing of the 
neuron). Note the pronounced after-hyperpolarization (AHP) following each AP. This is the mechanism for 
firing rate accommodation in the RS-type neuron. B. Response of the same neuron to synchronous volleys 
of 55 synaptic inputs each, spaced at 10 msec. intervals, beginning at 50 msec. with the last volley 
occurring at 80 msec. Note that the AHP prevented firing in response to the volleys at 60 and 70 msec.  
 

     
 
Figure 5: Response of the FS-type neuron to 4  Figure 6: IB subtype 1 neuron with background 
synchronous volleys of 55 APs beginning at 50  firing rate set to approximately 5 pulses per sec. 
msec. and occurring every 10 msec. The last of 
the volleys occurs at 80 msec. Note that although 
there are only 4 incoming volleys, the neuron has 
5 AP spikes in response. The final 3 are at a rate 
faster than once every 10 msec. 
 

spiny stellate cells. It has been estimated [18] that under typical quiescent conditions pyramidal 

cells exhibit normal background firing in response to unsynchronized input activity at a rate of 

about 5 pulses per second. This is illustrated in figure 4A, where a background firing parameter 

has been set in the Wilson RS model in order to produce the background firing activity level. The 
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Figure 7: IB subtype-1 neuron response to four  Figure 8: IB subtype-2 neuron response to five 
synchronous volleys of 55 synaptic inputs. The  synchronous volleys of 55 synaptic inputs with the 
first volley occurs at 100 msec. and come every  first volley coming at 150 msec. Background firing 
10 msec. The last volley occurs at 130 msec. Note  rate was set to 5 pulses per second. Note that the 
that although 4 volleys are received, the neuron  neuron responds to all 5 of the five volleys. It 
responds only to the first 3.        was observed that at slightly higher levels of back- 
               ground excitation the neuron responds with two 
               background pulses rather than with one. 
 

B figure illustrates the RS response to a volley of 4 consecutive synchronous inputs, spaced 10 

msec. apart, equivalent to 55 simultaneous synaptic inputs each. Note that the neuron fails to 

respond to the second and third volleys. This is due to the pronounced after-hyperpolarization 

(AHP) mechanism present in RS-type neurons. The AHP mechanism is what causes their firing 

rate accommodation behavior, and which limits the maximum firing rate of RS-type neurons. 

 Most inhibitory neurons, on the other hand, belong to the FS-type category. These neurons are 

easily stimulated, do not accommodate their firing responses, and produce high-rate output pulses 

in response to stimulation. In figure 5 we illustrate the FS-type response to the same volleys as 

applied to the RS neuron in figure 4. Background firing activity for the FS neuron was assumed to 

be zero. This is because of two factors. First, there are far fewer inhibitory neurons in a functional 

column (approximately 15% of the population), and these synapse mostly to local pyramidal 

cells. Therefore we expect less background activity being received by these neurons. Second, FS 

neurons have a more “hair trigger” response and, consequently, do not appear to be statistically 

capable of the same low background firing rates as observed for PC neurons. Note in figure 5 that 

although the FS neuron received only 4 input volleys, it responded with 5 action potentials. The 

final 3 APs were emitted at a rate faster than the 10 msec input volley rate. 

 Figure 6 illustrates background firing activity for Wilson’s IB-subclass 1 neuron. Intrinsic 

bursting neurons are not spontaneous bursters, and the activity in figure 6 is due to random (non-
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synchronous) input signals. These have been adjusted to produce 5 pulses per second background 

firing. Figure 7 illustrates the response of this neuron to 4 synchronous input volleys (the same as 

used for the previous figures) beginning at 100 msec. Note that the neuron does not respond to the 

final input volley. This is due to the voltage-gated channel mechanisms responsible for bursting 

behavior in this neuron. There is a limited firing time for IB-class neurons, and figure 6 illustrates 

this. Wilson also models a second subclass of IB neuron, and this is illustrated in figure 7. This 

neuron had its background firing level adjusted to 5 pulses per second. It received a tetanus of 

five consecutive synchronous volleys (same parameters as in the other cases) spaced at 10 msec 

intervals and beginning at 150 msec. Note that this neuron responded to all 5 volleys. Note also 

the distinct difference in the neuron’s repolarization dynamics as compared to IB subclass 1. 

 The clear lesson from this is that the physiological firing characteristics of the neurons in a 

functional column determines the manner in which this column can act as a synchronized 

assembly of cells. (In the next section we will briefly review the experimental evidence behind 

the hypothesis that functional columns act as synchronized oscillators in the neocortex, and that 

the synchronization of their firing patterns constitutes a possible binding code for object 

representation in the cortex. The section after that reviews some of the theoretical structures, the 

so-called population code models, that have been proposed as models of cortical 

synchronization). The firing patterns of such assemblies will clearly depend on the firing rates 

possible for neocortical neurons and upon the intensity of input activity needed to achieve them.  

 As an illustration of this point, figure 9 depicts two different firing responses of an RS-type 

neuron  receiving  volley  inputs  of different strengths at an interval of 20 msec. between volleys. 

 

   
 
       A               B 
Figure 9: Response of an RS neuron to different strength volleys at 20 msec. spacing between volleys. A. 
Response to volleys of 75 synchronous synaptic inputs. B. Response to volleys of 100 synchronous 
synaptic inputs. 
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Figure 10. Theoretical high-level current injection limit in the response of the RS neuron model. A 
constant current of 2.5 nA is injected at 10 msec. The response is initially an accommodating high-

frequency burst of action potentials. This response gives way to a depolarized membrane potential of 
approximately –50 mV after 40 msec of firing. No additional action potentials are generated thereafter. The 

initial interval between the first and second APs is approximately 4 msec., and this interval increases 
continuously until the burst dies out. 

 

With 75 synchronized synaptic inputs (figure 9A), the neuron can respond fully to the first two 

volleys, but then its accommodation dynamics suppresses response to the next two. The neuron is 

able to respond to the fifth volley. With 100 synchronized synaptic inputs (figure 9B) the neuron 

responds to the first three volleys, suppresses the fourth, and responds to the fifth. Volley 

suppression for volleys received at less than 20 msec. intervals is even greater (see figure 4B). 

Computer simulations indicate that the RS neuron can achieve a steady firing rate on the order of 

80 Hz (12.5 msec intervals), but it cannot sustain this rate unless the later volleys come in with a 

higher number of synchronized synaptic inputs than we have shown here. Note too that these 

results have not accounted for inhibitory action by the column’s GABA-ergic neurons. The RS 

neuron can achieve very short bursts at higher firing rates than this, but it cannot maintain this 

higher rate for more than a few tens of milliseconds. Figure 10 illustrates the behavior of the RS 

neuron in the limit of high levels of constant current injection. Although initially the neuron 

responds with very high frequency spiking (approximately 4 msec between the first and second 

APs), this initial rate cannot be maintained, and after 40 msec of firing activity the spiking 

response ceases altogether. (Note that the mathematical model of the RS-type neuron does not 

address the issue of whether such a high level of current injection would kill the cell).  
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 Based upon experimental estimates of neuron density in the cerebral cortex [19] and the 

estimated sizes of functional columns, a single functional column is likely to contain tens of 

thousands of neurons. Therefore a population-code modeling approach is probably a practical 

necessity in cortical modeling. However, confidence in a population model cannot be argued 

merely on the grounds that its underlying dynamical equations are simplified versions of ‘neuron-

like’ responses (e.g. a Morris-Lecar-like model [20] or a ‘thalamic-neuron-like’ model [21]). This 

is especially the case when, as has often been the practice, the population model takes a ‘one-size-

fits-all’ approach to the ‘neurons’ used in its population element model. There is no a priori 

reason to suppose that the emergent behavior of a large assembly of neurons is a direct mirror of 

an individual neuron’s dynamics. 

 

V. Synchronized Oscillation and Wave Activity in the Neocortex 

In 1981 Christoph von der Malsburg proposed the idea, regarded as radical and speculative at the 

time, that object representation in the neocortex was constituted by a temporal code of correlated 

and synchronized firing activities involving multiple and reconfigurable assemblies of cells [22]. 

Von der Malsburg’s hypothesis was slow to catch on and is still somewhat controversial today. It 

did not begin to attract widespread serious attention until the late 1980s and early 1990s when 

experimental evidence pointing to the existence of synchronized oscillations in the neocortex 

began to emerge from various laboratories [23]-[27]. Also during this time other challenges were 

being mounted in opposition to the conventional thinking about cortical organization of the time. 

On the basis of studies of patients who had suffered bilateral damage to the rostral integrative 

cortices, anterior temporal lobe damage, anterior frontal lobe damage, and damage to single-

modality sensory association cortices, neurologist A.R. Damasio proposed that binding of entities 

and events in the brain depended on time-locked multi-regional retroactivation of neural groups 

by means of small assemblies of neurons he called “convergence zones” (CZs) [28]-[29]. In 

Damasio’s model, signal propagation is both caudo-rostral from sensory cortices toward the 

frontal lobes and vice versa. Pathways converge, level by level, at convergence zone networks, 

which feed back directly to their immediately upstream sources and feed forward to immediately 

downstream CZ targets. Projections from the hippocampal system and other non-cortical circuits 

in the basal forebrain, brain stem and neurotransmitter nuclei facilitate multiregional time 

locking. Damasio’s model, illustrated in figure 11, stood in sharp contradiction to the earlier (and 

still adhered to by many) model of caudal-to-rostral information flow within the brain, in which 

the successive integration of information increases in complexity and detail as one progresses 

from the rear (caudal) areas of the brain toward the frontal (rostral) areas.  
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Figure 11: Damasio’s model of neural organization. In his hypothesis, signals from upstream neural 

assemblies converge on small assemblies of neurons dubbed convergence zones (CZs). A CZ provides 
feedback signals directly to those upstream assemblies that directly converge upon it. This rostral-to-caudal 

feedback is also presumed to be capable of re-stimulating these regions even in the absence of direct 
sensory stimulus (thereby providing a neural substrate for the capacity of ‘imagination’). CZs also project 

signals downstream to ‘higher level’ CZs, which in turn project retroactive feedback to them. There is 
further and more non-specific involvement by non-cortical regions of the brain (e.g. the brain stem) and 
subcortical regions, particularly the hippocampal system. Convergence zones are presumed to produce 

spatio-temporal binding codes that produce time-locked synchronous activity in various ‘feature-fragment-
representing’ regions of the early sensory cortices. Objects are supposed to be represented by this 

synchronized signaling activity. V=visual cortex; A=auditory cortex; SS=somatosensory cortex; NC=non-
cortical nuclei; H=hippocampal system. 

 
 Early models proposed for temporal coding employed a very simple picture of synchronized 

pulse trains. Theoretical arguments for this model were advanced by Abeles in the form of 

“synfire networks” based upon known physiological properties of neuron excitability and 

statistical models of network behaviors [18]. Many of these models more or less implicitly 

assumed that synchronization was driven in the caudal-to-rostral direction with little explicit role 

given to feedback signals returning upstream to the early sensory cortices. Due to technological 

limitations at the time, the synchronization model had to be inferred from single-unit recordings, 

and the activity of neural populations had to be inferred from this data. Most of the early thinking 

directed at the synchronization model largely conformed to the traditional neuroscience view that 

information processing in the brain takes place hierarchically in the caudo-rostral direction. 

Although it was known that neural feedback connections are common in the neocortex, it was 

nonetheless supposed that by and large object and event representation was by means of a 

“synfire-like” and primarily feedforward organization. Naturally, this new hypothesis did not 

immediately gain the assent of the neuroscience community at large. The binding-by-

synchronization hypothesis has been experimentally tested through psychophysical and spike-

recording experiments. Results from these studies lead some researchers to challenge the 

hypothesis [30]-[33]. However, these findings were not conclusive and explanations have been 
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put forth in answer to the criticisms that have been raised [34]-[37].  

 Strangely enough, Damasio’s hypothesis has received very little follow up work by 

experimentalists. Although it has long been accepted that any two areas of the cerebral cortex that 

signal to each other do so reciprocally, and despite the experimental evidence presented below, 

there has been no concentrated effort to confirm or refute Damasio’s convergence zone 

hypothesis. What relatively little experimental work has been carried out has been mainly of a 

psychological nature and has focused primarily on one piece of Damasio’s proposal, namely 

those convergence zones that he dubbed “somatic markers” [38]-[39]. Not surprisingly, most of 

the work supporting the model has been carried out by Damasio and his associates, e.g. [40]-[41]. 

Some lukewarm support has also been reported independently by Lösel and Schmucker [42]. 

Some indirect possible support for the PET scan studies of Damasio and his coworkers has also 

been seen by Burgess et al. [43], although their paper makes no remarks linking their data on the 

ventromedial prefrontal cortex (Brodmann’s area 11) with [41].  

 Experimental evidence for the existence of oscillator-driven traveling wave phenomena in the 

neocortex has found firmer empirical footing [23]-[24], [26], [44]-[48]. Of course, the existence 

of neural oscillators, such as the central pattern generator, has long been recognized. Much of the 

work in this area has been carried out in connection with invertebrates or with subcortical regions 

of the vertebrate brain. The confirmation of oscillator mechanisms in the neocortex, and the 

accompanying evidence for traveling waves of activity over large regions of the neocortex, is of 

much more recent vintage. In a tradition developed from EEG methods, oscillation phenomena is 

typically divided into four frequency bands: 1) the low frequency band (0-3.5 Hz); 2) the alpha 

band (7-14 Hz); 3) the beta band (14-28 Hz); and 4) the gamma band (28-80 Hz).  

 Figure 12 illustrates the traveling wave phenomenon in the gamma band in monkey visual 

cortex [45]. This data was recorded from a linear array of microelectrodes spaced at a pitch of 0.5 

 

 
Figure 12:15-channel recording of gamma-band signals in striate cortex of an awake monkey. Data was 
recorded from a linear array of microelectrodes spaced with a 0.5 mm pitch. Visual stimulus was applied 
beginning at 100 msec. The illustration is taken from [45]. Gabriel and Eckhorn interpret the results as 

indicative of a broad wavefront, interpreted to be a traveling wave, arriving nearly simultaneously at the 
fifteen different microelectrode positions. 
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mm. The data was bandpass filtered in the 30-70 Hz (gamma band) frequency range. Gabriel and 

Eckhorn interpreted this result as indicative of a traveling wave with a broad wavefront arriving 

simultaneously (or nearly simultaneously) at each location. The details of this particular 

measurement method reported in [45] are somewhat imprecise. For example, it is not explained 

why the result is regarded as a traveling wave rather than as indicative of a standing wave. The 

general mathematical form of a one-dimensional traveling wave traveling in the +x direction is  

   ( ) ( tvxutxyr −=,  )

)

)
)

where u is some function and v is the wave velocity. The general form of a wave traveling in the 

opposite direction is 

    ( ) ( tvxutxyl +=, .

The simplest example of a traveling wave is that of a traveling sinusoid 
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for waves traveling to the right or left, respectively. Here x is position, t is time, k is spatial 

frequency (2π/λ, λ = wavelength), and ω is the temporal frequency in radians/sec. The temporal 

and spatial frequencies are related to each other as vπλω 2= . If figure 12 is representative of a 

wavefront, this is equivalent to saying that the x position is the same for all the electrodes. In this 

case, the result is not distinguishable in time from a standing wave 

   ( ) ( ) ( )tkxyytxy lrs ωcossin2, =+=  

since the x variable would be constant. In order to unambiguously distinguish a traveling wave 

from a standing wave, a two-dimensional grid of microelectrodes would be required.  

 Due to technology challenges in making measurements of cortical activity, it is often a matter 

of interpretation whether the data is indicative of a traveling wave or a standing wave 

phenomenon. Indeed, many descriptions are reported qualitatively rather than quantitatively. 

Because quantitative measurements of wave characteristics in neural systems are rather heavily 

laden with mathematical signal processing necessary to extract the pertinent quantitative data, 

how the wave is interpreted, i.e. as a traveling vs. a standing wave, is crucial. This is because the 

mathematical signal processing to be employed and the interpretation of the results depends on 

whether one assumes a y(x, t) of the form given above or of the form u(x-vt)+u(x+vt). For 

instance, in [45] it is assumed that y(x, t) = u(x-vt), and this assumption sets up the mathematics of 

the data extraction in that paper. 

 Neuroscientists involved in this area of research typically are willing to accept the traveling 

wave interpretation of the data in figure 12, but [45] does provide a noteworthy example of an 
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instance where the reader cannot be altogether sure that the traveling wave interpretation is not an 

instance of the experimenter seeing what he expects to see. It is known that traveling waves, or, 

more accurately, traveling wave packets, do appear in some central systems. One example is a 

slow traveling wave observed in the procerebral lobe of limax, a structure responsible for 

olfactory processing in this slug [49]. However, this does not mean that all wave-like phenomena, 

such as figure 12, are necessarily traveling-wave phenomena, especially when one considers the 

existence of retroactive (that is, reciprocal) coupling from ‘downstream’ regions back to 

‘upstream’ regions. Nonetheless, it has been established that the wave phenomena is a fact 

descriptive of cortical behavior [50]-[55].  

 Waves in biological systems, unlike the more familiar waves of mechanical or electromagnetic 

systems, propagate in a thoroughly inhomogeneous medium, namely neurons (and glial cells1). 

Among other things, this means that wave velocity is not necessarily a constant within this 

medium. Thus, the ‘wave mechanics’ of neural systems is considerably more complicated than 

that of the more familiar mechanical or electromagnetic systems. In the next section we will take 

a look at some of the approaches being tried in the attempt to understand these nonlinear wave 

mechanics. 

 The waves with which we are here concerned are ‘activity waves,’ i.e. spatially and 

temporally distributed firing activities of neural assemblies. Now, a wave can be regarded as a 

large-scale cooperative phenomenon. It is no longer a question of whether or not wave behavior is 

characteristic of neural systems. The question is whether or not synchronized or coherent waves 

of neuronal activity constitute a form of information representation, i.e. a neural code. This is the 

famous binding code hypothesis and it is at the forefront of present day research. Therefore we 

are bound to ask, “What properties of activity wave phenomena are to be examined as possible 

forms of information representation in large-scale neural systems?”  

 

V.A: Mathematical definitions of wave properties. 

 There are two such properties that presently command the attention of researchers. These are 

called synchrony and phase continuity. Both require us to understand the concept of “phase” in 

wave phenomena. As used in signal processing theory, phase2 refers to the relative alignment of 

two periodic signals. In the simplest case these two signals have the same fundamental frequency 
                                                 
1 Glial cells do not, of course, produce action potentials. However, it has been established in recent years 
that networks of glial cells do propagate calcium throughout broad regions of the cortex and do so in waves 
(so-called ‘calcium waves’). This particular wave phenomenon will not concern us further in this paper. 
2 The term “phase” has various meanings in different fields of science. For example, in the study of matter 
or in thermodynamics the term is used in such contexts as “solid, liquid, and gas.” In signal processing 
theory the definition of “phase” is at root purely mathematical. 
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(the reciprocal of the period of the signal). One period of the signal is said to correspond to an 

angle of 2π radians. Thus, for a period of T seconds and a frequency of ω radians per second, we 

have ωT = 2π. At every time t a periodic signal is said to have an angle Ttπθ 2= . The relative 

phase of two signals, y1 and y2 is the angle 21 θθφ −= .  

 As a simple example, let us take two signals of the form ( ) ( )tkxtxy jjj ω−= sin, , j = 1, 2. The 

phase between these signals is easily found to be φ = k(x1 – x2) = ω (x1 – x2)/v where the symbols 

are as defined earlier. The two signals are said to have in-phase synchrony if φ is an integer 

multiple of 2π, and are said to have anti-phase synchrony if φ is an odd integer multiple of π 

(that is, π, 3π, 5π, etc.). This definition is easily extended to two different spatial positions in a 

periodic non-sinusoidal traveling wave provided that the wave velocity is constant. It can also be 

modified to apply to two independent signals (that is, two signals not necessarily belonging to a 

wave) provided that there exists a period T that is the least common multiple of their two periods. 

If their fundamental frequencies are equal, the two signals are said to be frequency locked. 

Otherwise they are harmonically locked. The relative phase φ is defined in terms of what is 

known as the phase delay, TD. Let y1(t) be the lower frequency signal. Some reference point y1(t0) 

is chosen (usually a peak value, a zero crossing point, a half-amplitude point, or some other easily 

identifiable value of y1). A corresponding reference point is chosen for y2 such that this point first 

occurs at time t0 + TD, TD < T, and repeats over every time interval T in y2(t). The relative phase 

of y2 with respect to y1 is then defined to be φ = 2πTD/T.  

 If two signals are frequency or harmonically locked and φ is a constant, the signals are said to 

be “phase locked.” If φ is non-zero, the signal whose reference value occurs first is said to “lead” 

the other signal and, conversely, the other signal is said to “lag” the former. If two signals are not 

frequency or harmonically locked, no meaningful definition of relative phase φ is possible and the 

signals are said to be “incoherent” with respect to each other. If the two signals have the same 

fundamental frequency and are phase locked, they are said to be “phase locked 1:1”; if the second 

signal has a fundamental frequency twice that of the other and they are phase locked, they are 

said to be “phase locked 2:1”; if mT1 = nT2 = T (with m and n integers) they are “phase locked 

n:m” etc. 

 Next let us consider two points, x1 and x2, for the simple standing wave described earlier. Any 

location for which kx is an integer multiple of π is called a node and ys is equal to zero at that 

point at all times t. What is the relative phase between any two points that are not nodes? From 

inspection, we can see that at every non-nodal point xj we will have ys(xj, t) reaching either its 

peak value or its negative peak value, depending on the sign of sin(kxj), at the same time t, 
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namely whenever t is an even integer multiple of the period T = 2π/ω. Likewise, ys will equal zero 

at every point x whenever ωt is an odd integer multiple of π/2 because cos(ωt) = 0 at these values. 

Therefore, any two points x1 and x2 will always have either in-phase synchrony or anti-phase 

synchrony in a standing wave, depending of whether the signs of sin(kx1) and sin(kx2) are equal or 

opposite, respectively. A standing wave is therefore said to be globally synchronized (where we 

understand that any two points can be relatively in-phase or anti-phase with respect to each other 

depending on the distance between them).  

 Next let us define the term phase continuity. We consider signals distributed over a spatial 

region of many points and assume that every signal in this region is frequency or harmonically 

locked with every other signal. Between any three linearly contiguous points in space we can 

define relative phases. Let φ12 be the relative phase between signals at x1 and x2 and let φ23 be the 

relative phase between x2 and x3. Let θj be the phase argument of the signal at xj so that φ12 = θ1 –  

θ2, etc. The rate of change in phase with respect to spatial position is then defined to be 
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and similarly for all other pairs of contiguous points. In the limit where we take ∆x to go to zero 

(the ‘continuum limit’), this expression becomes a derivative with respect to x. When we 

generalize our situation to two spatial dimensions, it is known as a ‘directional derivative’ and in 

the direction for which ∆φ / ∆x takes on its largest magnitude, it is known as the phase gradient. 

Our distributed set of signals is said to have phase continuity if the phase gradient is constant. 

This means that in the gradient direction the rate of change, ∆φ / ∆x, does not change value.  

 All these definitions arise from classical signal theory, and they all depend on the signals 

under consideration being periodic. This raises special problems and issues when this theory is to 

be applied to neural systems because in many cases the activity of any particular neuron is usually 

not periodic. Consider the case where a class IB-type 1 neuron fires as shown in figure 13. There 

are two important factors at work in this neuronal firing pattern. First, the neuron fires only over a 

short interval of time. If it does not repeat this firing pattern at regular intervals, its signal is not 

periodic. Even within the firing activity shown in the figure, the neuron is not in the most strict 

sense firing periodically because the intervals between its pulses are not constant. The 

instantaneous firing rate of the neuron, defined to be the reciprocal of the time between pulses, 

is not constant. Even though the last five pulses in the figure have settled into a more-or-less 

constant firing rate (short term periodicity), the mathematical definitions given above cannot be 

directly applied without modification to define a phase between this and another similar signal. 
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Figure 13: An IB neuron firing an aperiodic short burst of action potentials due to a dc current injection. 
 

 Consequently, it is often the case where either the classical definitions presented above must 

be modified or else the signals being compared must be somehow redefined so that the previous 

definitions can be applied. Unfortunately, there is no one universally-agreed-up definition for 

handling such cases and different researchers often do not clearly state which of the many 

possible ‘operational’ definitions of ‘phase’ they are using in their papers. Often these operational 

definitions must be made in the context of the measurement technique being used by the 

experimenter. These techniques can be broadly divided into time domain methods, frequency 

domain methods, and hybrid methods (involving both time and frequency). Because the root of 

the binding code hypothesis involves the notion of cooperative action among different assemblies 

of neurons in different locations in the neocortex, many researchers abandon the notion of phase 

altogether in favor of correlation methods, a more abstract notion of describing cooperative 

relationships (or the lack thereof) among different signals. We will next take a look at one very 

interesting recent example. 

 

V.B. Eckhorn’s envelope-to-amplitude method.  

Experiments reveal that population activity in a local assembly of neurons is accompanied by 

changes in membrane potential across a broad spectrum of frequencies. Figure 14 illustrates 

measured high and low frequency variations in the membrane potential of a cell in the cat visual 

cortex [56]. In addition to the high frequency and spiking activity, we can note the low frequency 
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Figure 14: Experimentally recorded membrane potential of a neuron in the visual cortex of an 

anesthetized cat [56]. The data was recorded intracellularly using electrodes. The neuron type was not 
identified. The average resting potential, measured over 15 cells, was –67.3 ± 2.59 mV. For this cell the 

mean resting level was –79 mV. Mean resting potential is defined as the average membrane voltage 
averaged across all stimuli and all repetitions as well as over the 100 msec prior to stimulus presentation. 

A. Response of the cell to a moving grating presented monocularly to the dominant eye. B. Expanded scale 
from an epoch in A with measured deviation from mean resting potential and measured number of action 

potential spikes. 
 

variations observed in the membrane potential brought about by stimulation of the cat’s visual 

system. Volgushev et al. reported that both low frequency depolarization, as illustrated in the 

figure, and low frequency hyperpolarization could be produced by using different stimuli. They 

further reported that spike generation was more likely to occur when the cells exhibited high 

frequency oscillation in the gamma band than when such oscillations were not present. They also 

found that gamma band oscillations were stronger when the stimulus presented was one for which 

the cell appeared to be ‘tuned’ to respond to than they were for stimulus presentations that were 

‘non-optimum’ for the particular cell. From their data analysis they concluded that the presence 

of gamma band oscillations in a cell corresponded to visual stimuli assumed to stimulate firing 

activity in the receptive field of the cell. It has elsewhere been reported that large (> 10 mV) low 

frequency fluctuations, lasting from 50 msec to more than 1 second, can be observed in cells in 

the cat visual cortex prior to and following stimulus onset [57]. The physiological cause of these 

bistable fluctuations was not ascertained in [57]. 

22 



 
 

Figure 15: Gamma-envelope-to-low-frequency-correlation method proposed by Eckhorn et al. Spiking 
activity in a source population of neurons (lower left) gives rise to measurable gamma band oscillations 

picked up by EEG or subdural extracellular sensors (upper left). They propose that the amplitude of gamma 
band oscillations correlates to cell spiking probability while the phase of the oscillations (relative to a 

reference time and determined from measured phase delay) correlates to the average spike timing. During 
conduction of the action potentials to other regions of the cortex, variations in conduction velocity leads to 
dispersion of the arrival times of the spikes. This destroys correlation between gamma band signals at the 

source and gamma band oscillations at the destination (lower right). However, low frequency signals at the 
destination reflect average levels of cell firing and low frequency variations in regional membrane potential 

due to the received spike ensemble. They therefore propose that correlation measurements between low 
frequency signals at the destination and the envelope of the gamma band oscillations at the source is an 

indicator of region-to-region signaling in the cortex. The figure is taken from [58]. 
 

 Based on these and other findings, Eckhorn et al. proposed a novel method for determining 

when different regions (different collections of functional columns in diverse places within the 

neocortex) are coupled. Their hypothesis is illustrated in figure 15 [58]. Their general argument 

goes as follows. Feature representation in an upstream source population of neurons is reflected 

in synchronized firing of action potential bursts in neurons within this assembly (figure 15, lower 

left). This synchronized firing activity can be detected extracellularly by EEG or intracranially by 

subdural electrode grids [48] and, in particular, is revealed as gamma band oscillations (figure 15, 

upper left). The amplitude of these gamma band oscillations is correlated to spiking probability 

within the source population, and the envelope of the gamma band oscillations changes as the 

average firing rate intensity varies within the source population. 

 Due to variations in conduction velocities along various pathways, these initially synchronized 

pulses become dispersed in time and arrive at a destination population more or less de-

synchronized (figure 15, lower right). This dispersion destroys the phase coherence and gamma 

23 



envelope correlation between the source and destination populations [48]. However, the 

destination population still exhibits low frequency variations in the average membrane potential 

in the destination region (figure 15, upper right), and these low frequency variations can be 

correlated with the gamma band envelope at the source region. Consequently, they propose, 

gamma band envelope to low frequency signal correlation is an indicator of signal coupling 

between different regions of the neocortex [58]. The physical picture presented by this hypothesis 

is one that can be regarded as multi-path traveling wave propagation from the source population 

to the destination population. However, owing to the non-linear character of how arriving signals 

are recombined at the destination neurons, this multi-path traveling wave is not subject to the 

same type of wave-cancellation phenomenon seen in mechanical or electromagnetic multi-path 

signaling.  

 Bruns and Eckhorn have measured various types of correlations intracranially in human visual 

cortex using a subdural electrode grid [48]. The experimental subject was a female 18-year-old 

epilepsy patient undergoing pre-surgical evaluation and the experiment was conducted in the 

patient’s hospital room with the patient awake and seated upright in bed. Figure 16 illustrates the 

locations of the electrodes in the grid, measured baseline time-frequency plots from two 

electrodes (B), and gamma-envelope correlations (C). We can note that the baseline cross 

correlations are quite low, although it is clear that there is more cross correlation within area A 

(see figure caption) than within area B or between the areas. We can effectively regard baseline 

area B as completely uncorrelated and likewise the inter-areal couplings are uncorrelated.  

 The measurements reported in [48] required quite sophisticated signal processing of the data, 

fully described in their paper. No assumption was made by this analysis as to the propagation 

modes for the signals, and in particular no wave-mechanical assumptions were employed. Bruns 

and Eckhorn measured several quantities, including statistical coherence, phase consistency 

(essentially a measure of synchrony), envelope-to-envelope correlation by frequency band 

(essentially the cross-correlation between envelopes in different locations in the same frequency 

band), and envelope-to-low-frequency correlation (the measure depicted in figure 15). 

Measurements were made for the alpha-, beta-, and gamma-frequency bands.  

 Bruns and Eckhorn found that coherence, phase consistency, and envelope-to-envelope 

correlations were maximal at zero time lag. (Zero time lag implicates temporal synchrony). 

Envelope-to-low-frequency-signal correlation (ELFS), on the other hand, was largely negligible 

at zero time lag and was maximum for area A to area B coupling at a time lag of 40 msec. ELFS 

correlation was the only measure that showed a correspondence to task- and event-related inter-

areal activity. 
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Figure 16: Electrode grid placement and baseline measurements of visual cortical activity [48]. Two 

visual cortical areas were examined (top of figure). Area ‘A’ is in the primary visual cortex, area ‘B’ was 
identified as the visual association cortex. Figure 16B shows relative spectral amplitudes and time-

frequency plots for one grid in area A and another in area B. Figure 16C shows overall baseline correlation 
coefficients of gamma-band envelopes for the overall grid (top of figure) and cross-correlation coefficients 
between pairs of 16 different electrodes. Electrodes 1 – 8 are in area A; 9 – 16 are in area B. Dotted lines in 
the lower right figure mark the inter-areal border. The four quadrants represent inter-areal coupling from A 

to A (lower left), B to B (upper right), A to B (upper left), and B to A (lower right). Note that the cross 
correlation coefficients at baseline are generally quite low (except along the diagonal), but are higher 

within area A than within area B or for intra-areal couplings. The electrode numbering corresponds more or 
less with the order in which electrodes are encountered in moving from the most posterior/superior to the 

most anterior/inferior location. Electrodes had a contact diameter of 2.4 mm and were arranged in a 
rectangular grid with nearest-neighbor center-to-center spacing of 10 mm. The measurements therefore 

reflect a spatial summation over an area comprised of many functional columns. 
 

 The coupling patterns reported by Bruns and Eckhorn are shown in figure 17 for zero time lag 

for baseline activity. Bruns and Eckhorn reported that coherence, phase consistency and envelope 
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Figure 17: Various correlation measures among electrodes at zero time lag for different frequency bands. 
The figure is taken from [48]. The measurements were taken during baseline periods. Bruns and Eckhorn 
reported that measures A-C showed no prominent event- or task-related variations, while D (gamma band 
envelope to low frequency signal correlation, ELFS) did exhibit event- and task-related changes. Alpha 

band is 7-14 Hz. Beta band is 14-28 Hz. Gamma band is 28-70 Hz. 
 

to envelope correlation did not show any prominent change in the results during event- or task-

related activity. Maximum correlations for all three occurred at zero time lag, which is indicative 

of the degree of synchrony among signals at the various electrodes. Coherence and phase 

consistency averaged a cross-measure correlation of 0.98, indicating that these two measures are 

equivalent insofar as being indicators of synchrony or phase locking. Cross-measure correlation 

between coherence and envelope-to-envelope correlation was 0.88, and it was 0.83 between 

phase consistency and envelope-to-envelope correlation. None of these measures showed very 

high cross-measure correlation with envelope-to-low-frequency-signal (ELFS) correlation. 

Coupling patterns were most clearly structured with envelope-to-envelope correlation. They 

report that the only noteworthy event-related coupling changes were transient increases (about 

500 msec in duration) within area B (see figure 16) in the alpha-band range after stimulus onsets, 
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and decreases within area A in the gamma-band range after stimulus changes (onsets and offsets). 

The measurements reported here are consistent with other findings that coupling within the 

gamma band of envelope-to-envelope correlation is restricted to a spatial range of only a few 

millimeters [47], [59]-[61]. Examination of the figure above appears to indicate that synchrony 

among nearby regions of the neocortex is exhibited principally in the alpha- and beta-bands, but 

not in the gamma-band outside of area A.  

 We now come to the main findings of [48]. Figure 18 shows the absolute value of ELFS 

correlation in the three frequency bands during experimental activities/stimulation. ELFS 

correlation was the only measure that exhibited prominent event- and task-related changes during 

the experiment. The maximum correlation occurred at a time lag of 40 msec. Looking at the 

second column in figure 18, inter-regional coupling between A and B was observed in the 

gamma- and beta-band frequencies. The coupling was highly asymmetric in the gamma band; 

there was significant A-to-B coupling between the envelope and the low frequency signal, but 

there was not a corresponding significant coupling from the envelope in the B region to the low 

frequency signal in the A region. Some B-envelope-to-A-signal coupling occurred in beta band. 

 

 
Figure 18: Absolute values of envelope-to-low-frequency-signal (ELFS) cross-correlations at 40 msec 

time lag during experimental activity. The figure is taken from [48]. Only the ELFS measurement showed 
significant event-and task-related variations. 

27 



 The results shown in figure 18 are the principal evidence in support of Eckhorn’s model of 

figure 15. Bruns and Eckhorn reported that the envelope always led the low-frequency signal, 

which seems to imply a causality relationship, i.e. that the low frequency signal was an effect of 

the high frequency envelope. The couplings shown in the figure started approximately 0.5 

seconds after the onset of the first stimulus, reached a plateau after 1 to 2 seconds, and vanished 

within 150 msec afterwards. It is to be noted that the 40 msec correlation lag was the lag that 

maximized area A to area B coupling. Brun and Eckhorn did not report for what lag area B to 

area A correlation was maximized nor what the corresponding data looked like at this lag.  

 Several comments, not discussed in [48], are in order. First, distances between coupled regions 

in figure 18, based on the electrode placement shown in figure 16, are on the order of 40 to 80 

mm. If we assume a mean axon diameter of 1 micron in the white matter [62]-[63] and accepted 

values for the speed of action potential propagation in axonal fibers [64], then the average time to 

directly propagate a signal over these distances is on the order of about 7 to 14 msec. From figure 

14, the transient time required to establish a low-frequency change in membrane potential appears 

to be on the order of about 5 to 10 msec. Therefore the 40 msec lag reported in [48] has on the 

order of more than 10 msec of delay unaccounted for by these effects. It may, of course, be the 

case that the axonal route in the white matter is significantly longer than the direct distance 

between electrodes and that this extra distance is responsible for the unaccounted-for delay. 

However, it is also possible that the excess delay is indicative of polysynaptic connection 

between the regions, i.e. that the signal pathway is not a direct-coupled pathway. Allowing an 

average of about 1 msec for synaptic delay (action potential to evoked firing response), the 

number of intervening synapses most likely cannot exceed 10 to at most 28 synapses and it is 

probable that the actual number is below this range. This will have bearing when we discuss 

coupled oscillator models.  

 Second, although the data in figure 18 does show some correlation, one should not lose sight 

of the fact that most of these correlations are in a very low range. Bruns and Eckhorn did show 

that the changes in correlation were significant, but it is at the same time clear that other factors 

are intervening in the low-frequency-signal response beyond what is suggested by figure 15. It is 

not possible to infer from the results provided by [48] what these other factors may be. 

 Third, what is the implication of these results for Damasio’s hypothesis (figure 11)? The 

presence of gamma-band ELFS correlation from region A to region B with the accompanying 

absence of such correlations from region B to region A could be interpreted as implying the 

absence of retroactive feedback from B to A. This would tend to contradict the convergence zone 

hypothesis. However, there are other possible interpretations that cannot be ruled out. It might be 
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that region B contains no convergence zones but that such convergence zones exist elsewhere, 

perhaps intermediate to regions A and B and acting retroactively on A while feeding forward to 

B. Bruns and Eckhorn noted with some surprise that area A showed no spectral amplitude 

responses to visual stimulation whereas area B did show them. This was surprising because area 

A was identified as early visual cortex, whereas area B was identified as belonging to the visual 

association area. Because area A was not unresponsive to visual stimuli, this can be interpreted to 

mean that gamma-band activity in area A is not stimulus-locked. This would imply either a strong 

local dynamic within functional columns of A, such that gamma-band firing activity is stimulated 

by but not locked to sensory afferents, or that gamma-band activity in area A is driven by 

retroactive feedback from some downstream convergence zone and the local firing activity is 

locked to this retroactive feedback. Neither possibility is ruled out by the data in [48]. It might 

also be the case that retroactive feedback from a convergence zone is not gamma- but rather beta-

band signaling. Figure 18 and its time lag were chosen on the basis of maximizing the cross-

correlation in area A to area B ELFS coupling. It was noted in [48] that the strong asymmetry 

between A-to-B coupling vs. B-to-A coupling applied only to the gamma frequency band. 

Perhaps the main B-to-A coupling is to be found at a different correlation lag and/or in a different 

frequency band. This, too, cannot be ruled out by the findings as reported in [48].  

 Finally, the data presented in [48] does not speak to whether or not any wave structure is 

implicated by the correlated couplings. The presence of a time lag in the ELFS correlation and 

more particularly the long persistence of the dwell in correlation (150 msec) after the ELFS 

correlation reaches a plateau suggests some form of signal propagation within the neocortex. 

Eckhorn et al. report that gamma wave propagation in the monkey visual cortex is very slow, on 

the average about 0.25 m/sec [58] vs. the 6 m/sec axonal propagation velocity we used earlier. 

Thus “gamma wave velocity” would be reflective of neuronal assembly dynamics rather than 

spike propagation via axonal transmission. We can note that a similar velocity, were it present in 

the neocortex of the experimental subject of [48], would implicate an ELFS lag of more than 160 

msec, rather than the 40 msec found experimentally, if the change in the low frequency signal 

coincided with the onset or cessation of gamma-band oscillations at the destination.  

 

VI. Oscillator Models of Synchrony, and Wave Propagation  

VI A. Mathematical analysis of the preceding results. To put the results of the previous section 

into perspective with the various mathematical models that have been put forth, we need to take a 

look at mathematical correlation. Because any periodic signal can be expressed as a sum of 

sinusoids (Fourier’s theorem), it will suffice to consider two sinusoidal signals 
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The cross-correlation function between x and y is defined as 
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If ωx ≠ ωy it is easily shown that Rxy = 0 for all values of τ. Thus, sinusoids at different 

frequencies are uncorrelated. If ωx = ωy =ωo , (1) becomes 
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The correlation coefficient ρxy is the cross-correlation normalized by the geometric mean of the 

signal powers, i.e., 

   ( ) ( )θτωτρ −= oxy cos                   (3) 

and has a maximum value of ± 1 at lags 

   
o

k
ω
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=  

where k is any integer. ρxy = +1 when k is even and –1 when k is odd. When x and y are composed 

of harmonic sums of sinusoids ρxy in general will have a maximum magnitude less than or equal 

to 1. An analytic expression for the lags at which the extrema of ρxy occur is unattainable in 

general. An exception occurs for the special case when y(t) = x(t – TD), in which case the 

maximum value of ρxy is equal to 1 and occurs at τ = TD .  

 We are now in a position to better understand the low correlation values reported in [48]. The 

lag used in the plots in figure 18 was selected to maximize the overall A-to-B ELFS correlations 

according to a complicated statistical sampling process described in [48]. Therefore the data in 

figure 18 does not correspond to a classical normalized cross-correlation function (which would 

have netted a zero value because the signals being correlated were in different frequency bands). 

Furthermore, the lag times evaluated in this process were sampled, i.e. trial values were reported 

as τ = 0, ± 10, ± 20, . . ., ± 100 msec. In addition, the bandwidths for the alpha-, beta-, and 

gamma-bands were relatively wide. It is therefore not surprising that low correlation values for 

envelope-to-envelope comparisons resulted; it is not statistically likely that the trial lag values 

would be such to maximize ρxy even if the time dispersion effect assumed in figure 15 were 

absent. Also, the test range for lag is less than what is necessary to detect slow gamma waves. 

 For example, suppose we have two signals 

   ( ) ( ) ( ) ( ) ( ) ( )tttytttx oooo ωωθωθω 2coscos,2coscos +=+++=  .      (4) 
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Figure 19: Plot of correlation coefficient for x and y functions of (4) with θ = 0.75 rad. The parametric axis 

is ωoτ  running from 0 to 2π  radians. 
 

The correlation coefficient ρxy(τ) is plotted for θ = 0.75 as a function of ωoτ in figure 19. At a 

frequency of 25 Hz (edge of the gamma band), this plot corresponds to a 40 msec period, thus it 

is very unlikely that lags quantized to 10 msec steps would pick up the largest values of 

correlation coefficient. We can note that this function is less than 0.5 in magnitude over most of 

the range. This statement holds true for all values of θ , which primarily effects the magnitudes 

and locations of the extrema in the graph.  

 The low correlation coefficients in the envelope-to-envelope correlations in figure 17 therefore 

do not implicate the absence of alpha-, beta-, or gamma-band signals in comparing two regions, 

although they probably do indicate some amount of temporal dispersion is taking place. Most 

particularly, the low correlation coefficients do not unequivocally tell us that phase-locking is 

absent in any of the three bands. However, they do appear tell us that standing wave patterns are 

absent. To see this, we apply the standing wave equation given earlier and set 

   ( ) ( ) ( ) ( ) ( )tkdtyttx oo ωω cossin,cos == . 

where k = 2π / λ and d is a distance from a standing wave node. Applying (1) and normalizing we 

obtain 

   ( ) ( )τωτρ oxy cos= .                    (5) 

Note that this result is independent of d. It is possible to choose sampled values for τ  that 

produce small correlation coefficients even in the case of a standing wave. However, because a 

cosine function exceeds 0.5 in magnitude for 2/3 of its cycle and is maximal at zero lag, the 
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results from [48] are very likely to indicate the absence of stable inter-regional single-frequency 

standing waves in all three frequency bands (figure 17, coherence and phase consistency plots). 

Unstable standing waves (i.e. standing wave behavior established over only a short time period 

and then becoming disestablished) are not ruled out by the data presented in [48] since the authors 

noted that transient event-related coupling changes in areas A and B of about 500 msec duration 

did occur. They did not comment on inter-regional transient coupling, but they did imply that this 

phenomenon was not observed in the experiment. If no such transients occurred (as opposed to 

merely having gone unobserved), the experimental evidence of [48] would appear to rule out 

inter-regional single-frequency standing wave coupling.  

 However, the same argument also rules out the presence of stable inter-regional constant-

velocity traveling waves. If we apply either of the traveling wave expressions given earlier and 

evaluate the correlation coefficient, we again obtain equation (5). When we consider the 

significant body of other experimental findings that conclude in favor of the traveling wave 

interpretation, this is a very strange and inconsistent mathematical finding. If no traveling waves 

are present, it is difficult to see how different cortical regions could synchronously communicate 

with each other at all, nor would a hypothesis that inter-regional binding codes are based on 

stable phase-coherent traveling wavefronts be supported. If traveling waves are merely transiently 

present, this would imply that wave-based binding codes could exist but are likewise transient in 

nature. However, such an interpretation would also imply that inter-regional transients, similar to 

the transient changes in the A and B regions noted by Bruns and Eckhorn in [48], should have 

been present. Traveling waves with non-constant velocity (‘lurching waves’) are not ruled out. 

 The analysis does not rule out yet another possibility. It might be that functional columns or 

hypercolumns (assemblies of linked functional columns) in different regions establish locally 

synchronous firing patterns but do so at different frequencies from one region to another or in 

response to a stimulating input activity characterized by a different frequency (stimulated 

oscillation). In this hypothesis, transient traveling waves might merely stimulate firing activity in 

other remote regions but different regions would be neither phase- nor frequency-locked. 

Something similar to this has been proposed by Eckhorn [37]. 

 This does, of course, immediately raise the question of what physical variable is to be looked 

upon as the representation of a neural code. What can be said at this point is that such a variable 

could be neither a particular single frequency nor a single phase or phase delay measure. It also 

raises the question of what precisely constitutes the “coupling” variable or parameter between 

regions that “holds the object representation together” if neither synchrony nor phaselock nor 

wave coherence nor phase continuity can stand by itself as the mechanism for longer-term 
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binding. It is clear that fast, synchronous local oscillations are characteristic of neuronal activity 

in object representation [37], and it is clear that fast synchronous firing activity is not maintained 

between different spatial regions of the cortex [48].  

 

VI B. Coupled Oscillator Models of Cortical Synchrony. With all this in mind, let us now 

examine the various mathematical models that theorists have put forth in pursuit of cracking the 

neural code. The principal goal of most mathematical theorists in this field of study is not so 

much to attain to an understanding of cortical function as it is to bring to light the characteristic 

properties of various mathematical functions so as to understand what can and cannot be 

explained on the basis of different mathematical models. All the dynamics involved in these kinds 

of systems are highly nonlinear, few have closed-form solutions, and all have dynamical 

properties that are crucially dependent upon modeling parameters. It can be fairly stated that the 

endeavors of the mathematicians are aimed at helping to carry the state of our knowledge from 

the realm of the purely phenomenological closer to the realm of the theoretical. More specifically, 

the work is directed toward understanding the collective behavior of a large assembly of 

interconnected elements (‘cells’). Thus, all the mathematical studies that have been carried out 

are based on greatly simplified systems, typically one- or two-dimensional coupled chains or 

arrays of oscillators or ‘neurons’, based on greatly simplified models of neuronal oscillation. 

 

The Kuramoto Model. An early example of the assembly-of-oscillators approach to modeling is 

the Kuramoto model [65]-[68]. This model was not aimed specifically at modeling the cortex, but 

it has nonetheless stimulated a great deal of modeling work in theoretical neuroscience. We will 

only briefly describe this model and touch upon certain highlights of it. A fuller tutorial on the 

mathematics of the Kuramoto model is provided in [69]. 

 The Kuramoto model considers a fully interconnected assembly of N identical oscillators. 

Each oscillator, n, is described by a phase variable, φn , and a parametric constant ωn called its 

eigenfrequency. The system is described by a set of N coupled first-order differential equations 
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where K is a coupling constant characteristic of the assembly. In the language of system theory, 

the quantity  is called the instantaneous frequency of oscillator n.  nφ&

 It is obvious that a Kuramoto oscillator is not a model of a “neuron” because it is essentially 

merely an oscillator. It does not “spike” (produce action potentials), although if one wished one 

33 



could adopt the convention that a “spike” is represented when φ  takes on values very close to 

zero or π or some other chosen value. But at best it can only be viewed as a highly abstracted 

model of neuronal behavior. It is closer to the spirit of the model to say that each oscillator 

represents the collective behavior of a single functional column or hypercolumn of neurons. Even 

here, however, there is a serious restriction because each oscillator has only a single 

eigenfrequency, whereas we have seen that functional columns in the neocortex exhibit multiple 

co-existing firing rates. Furthermore, each Kuramoto oscillator affects all the others for all values 

of φn , whereas neurons can affect one another only when they spike.  

 If all one wishes to do is to simulate the behavior of the system, one merely runs a numerical 

solution for the system given by (6) from some set of initial conditions. However, this is not what 

the mathematicians are after. Rather, the goal is to understand fundamental properties of systems 

that are described by the set of equations (6). To do so, the system is analyzed by introducing a 

function that system theorists call a Lyapunov function, and which physicists frequently call a 

Hamiltonian. In physics a Hamiltonian is the sum of the kinetic and potential energies of the 

system, and a stable solution is one for which the Hamiltonian function is minimized. Thus, to 

analyze the solution of (6) we must find a Lyapunov function and minimize it with respect to the 

phase variables. This is done by introducing the average eigenfrequency of the system 
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and making a change of variables 

   tnn Ω−= φϕ  . 

With these, the derivation of the Lyapunov function is straightforward and the result is 
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 The details of the derivation and the details of the analysis of the conditions under which (7) is 

minimized are presented in [69] and we will not go into them here. Rather, we will summarize the 

principal findings. The first of these is that a phase-locked state, i.e.  ∀ n, is a minimum of 

H . Furthermore, there is a critical value for coupling, K

φφ && =n

c such that for K > Kc the system phase-

locks. In this state every oscillator oscillates at the same instantaneous frequency. If K < Kc no 

phase-locked solution exists. The critical value depends on the spread between values of the 

eigenfrequency parameters ωn. If K is below the critical value but the spread in eigenfrequencies 

is not too great, there may be partial phase-locking, i.e. some of the oscillators will phase-lock 

with each other but not all of them will do so. The oscillators having values of ωn at the extremes 
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of the distribution will not phase-lock with the rest of the assembly. There is another critical 

value, Kpc < Kc, such that if K < Kpc no partial phase-locking takes place and the entire assembly 

behaves incoherently.  

 As a model of the neocortex, the Kuramoto model has some very obvious flaws. First, every 

oscillator cell is coupled to every other cell with the same coupling coefficient. Second, there are 

no inputs. Third, every cell always oscillates; there is no mechanism for any part of the network 

to ‘go silent.’ These are very serious shortcomings when it comes to using Kuramoto’s system as 

a model of neocortex. 

 

The Schuster-Wagner Model. Some of these issues are overcome by the Schuster-Wagner model 

[70]. In this model a column is defined as a collection of Ne excitatory neurons and Ni inhibitory 

neurons which are globally coupled. Each neuron is described by the firing rate model, i.e. each 

neuron k is characterized by the rate , ek or ik, at which it fires action potentials in response to its 

input pk. Each column is described by the average firing rate E of its excitatory neurons and the 

average firing rate I of its inhibitory neurons. This is a population model because we ignore the 

details of the individual neurons in a column and focus instead only on the average behavior of 

the column. The system is made up of interconnected columns. This is illustrated for the case of a 

two-column system in figure 20 [69].  

 The mathematical details are, naturally, more involved than those of the Kuramoto model. 

However, the analysis shows that for each column there is a range of input firing rates 

   Pcl < P < Pch 

such that for reasonable parametric values the column solution is oscillatory. Outside this range 

we have fixed-point (i.e., non-oscillatory) solutions. With N coupled columns (e.g. figure 20b) the 

 

 
Figure 20: Schuster-Wagner population model. Each column is composed of an excitatory intra-column E 

and an inhibitor intra-column I (a). Intra-columns are interconnected as shown in (b). Inputs are applied 
only to the excitatory intra-columns. Excitatory couplings are marked with a +; inhibitory couplings are 

marked with a – . Each column n is characterized by a phase variable φn.  
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system dynamics are described approximately by a set of N coupled equations 
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where ( ) nnP ωω = , an eigenfrequency, if column n is active and zero otherwise. Jnj = K if both 

columns n and j are active and zero otherwise. This of course is nothing other than a Kuramoto 

model insofar as the active columns are concerned. For the inactive columns = 0. A column is 

active if its input P

nφ&

n > Pcl. The phases φn in this model, because they represent some kind of 

average population behavior in a column, are fictitious in the sense that they cannot be interpreted 

as individual neuron behaviors. There are other interpretational difficulties with this model and 

the many derivatives of it. Some of these details are described in [69].  

 

Wang’s Model. Wang’s model [71] is in some ways similar to the Schuster-Wagner model, but it 

takes its starting point from an earlier model by Wilson and Cowan [72]. The basic unit is an 

oscillator made up of one excitatory and one inhibitory ‘neuron.’ The signal quantities in the 

model are ‘activities,’ which represent mean firing rates [72], [6, pp. 103-112]. For the ith 

oscillator xi represents the activity of the excitatory ‘neuron’ and yi denotes the activity of the 

inhibitory ‘neuron.’ The excitatory ‘neuron’ is allowed to receive external stimuli Ii , which is 

interpreted as the mean firing rate of external inputs, and is allowed to receive inputs Si from 

other excitatory ‘neurons.’ There are various possible functions for representing Si [6], the most 

commonly encountered of which is a weighted sum Si = Wi
TX where Wi is a vector of 

interconnection weights and X is a vector of activities for all the excitatory neurons in the system. 

Each excitatory neuron is also presumed to be semi-stochastic inasmuch as it is given an internal 

Gaussian ‘noise’ term of mean amplitude ρ. Each Wang oscillator is described by the set of 

equations 
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Here α and β are positive coupling terms, γ  is a positive decay term, θr (r = either x or y) is a 

threshold constant, and T is a parameter that controls the firing rate in response to the argument of 

the sigmoid function Gr . The Wang oscillator and an example of a one-dimensional oscillator 

chain is shown in figure 21.  
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Figure 21: Basic Wang oscillator (a) and an example of a one-dimensional chain of oscillators (b). 
 

 The oscillator model belongs to that class of systems said to be ‘mean field approximations’ of 

neural network activity. Wang presented simulation results but no detailed mathematical analysis 

in [71]. He did, however, point out two characteristics of systems such as that of figure 21b that 

are interesting and of wide application. First, weak coupling (e.g., small values in the W vectors) 

does not disrupt the oscillatory behavior of individual oscillator cells. He did not quantify ‘weak.’ 

Second, he proposed that so long as the sum of the weights of all connections converging on 

every oscillator from all other active oscillators is kept constant, phase-locking occurs among 

these oscillators. Wang calls this the equal weight condition. Because oscillators are not 

necessarily active, dynamical changes in the network must be accompanied by dynamical 

changes in the weights of the connections among ‘neurons’ if synchrony and phase-locking is to 

be achieved. This requires rapid modulation of connection weight values, an idea which was first 

proposed by von der Malsburg in [22]. Neural network models based on such fast elastic weight 

modulation have since come to be known as dynamic link architectures (DLAs) [73]-[75].  

 Another important contribution of the Wang model is that it was demonstrated to be capable 

of producing synchrony using only local connections (whereas the Kuramoto-type models 

required the network to be globally connected in order to achieve synchrony). This is important 

because globally connected networks cannot segment themselves, which is an important 

computational ability for neural networks since segmentation of inputs is a key requirement for 

discriminating among different perceptual objects. Although Wang was primarily interested in 

networks that could achieve synchrony (phase-locking with zero phase difference), he also 

reported that some arrangements of interconnection weights produced phase shifts in activity 

across the oscillator chain.  

 

Other Oscillator-Network Models. We have so far looked at network models based on phase-

model oscillators (Kuramoto model and its derivatives) and firing-rate models. A criticism 
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sometimes leveled against these models is that they are too phenomenological. Why should we 

think that the properties of such models have anything to do with the property of biological neural 

networks? Would we not be on firmer ground if our oscillators were derived from known 

properties of biological neurons? This brings us to oscillator network models whose oscillators 

are patterned after biological dynamics.  

 The starting point for “biologically realistic” oscillator models is usually grounded in the work 

of Hodgkin and Huxley in 1952 [76]. The Hodgkin-Huxley (H-H) model of the physiology of 

action potential generation in the giant axon of the squid (for which they won the Nobel prize) 

consists of a set of coupled nonlinear first order differential equations. Hodgkin-Huxley style 

models extended to the neuron as a whole, e.g. [77]-[78], or to its dendrites and soma 

compartmentally, e.g. [79], have been the foundation of physiological neurodynamics ever since. 

Unfortunately, the computational complexity of H-H models usually limits them to neural 

networks involving only a few neurons. With biologically reasonable parameter values it is often 

possible to approximate H-H dynamics using a reduced set of simplified equations. Probably the 

first such model was the FitzHugh-Nagumo (F-N) model [80], [81, pp. 71+]. Another such model 

due to Morris and Lecar (M-L model) has also been popular among theoreticians [20], [6, 

pp.153+]. The Wilson models shown earlier [4] are yet another such example.  

 However, even these models are too computationally expensive to use in small neural 

networks comprised of a few hundred neurons. For this reason network theoreticians make 

additional simplifications to these equations. The Terman-Wang oscillator (T-W) model [82] is a 

derivative of the M-L model. Campbell et al. have shown the T-W model can be used to describe 

a variety of four different types of relaxation oscillators, including sinusoidal, square-wave, 

spiking, and a class they call ‘singular limit’ oscillators [83]. The T-W oscillator is described in 

terms of two state variables 
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where the various terms in the equations are constants that determine the dynamical properties of 

the oscillator. Coupled oscillator networks are formed by adding terms to the equation for the 

derivative of x. These terms are functions of the x terms of the other oscillators, usually in the 

form of a sigmoid function [83], e.g. Gr in the Wang model equations above. 

 Campbell et al. presented numerical results for various types of oscillator chains in [83]. From 

these they empirically characterized synchronization rates. Although they present no formal 

proofs or results, they did present some interesting qualitative findings. First, the solutions they 
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obtained were always synchronous solutions rather than solutions with relative phase delays 

(when any such solution existed). Not surprisingly, they found that the form of the interaction 

between oscillators was an important factor in determining the synchronization rate. Like many 

other investigators, they found that the system dynamics exhibited both a fast-time-scale and a 

slow-time-scale mode. In chains of relaxation oscillators (a class that includes F-N oscillator 

models) the coupling strength between oscillators must be above some critical threshold or else 

initial-condition-dependent non-synchronous as well as initial-condition-dependent synchronous 

solutions are possible. In general they found that chains of relaxation oscillators achieved 

synchrony at a faster rate than spike oscillator chains. They claimed that chains of relaxation 

oscillators can form “clusters” of synchronous oscillators, a finding that extends a previous 

finding they had made on chains on spike oscillators [84]. Perhaps most interesting, they make 

the conjecture that in a one-dimensional chain of identical relaxation oscillators traveling wave 

solutions are not possible unless the chain forms a ring and then only under very particular 

topological conditions [85]. Similarly, they reported that traveling wave solutions in two-

dimensional arrays could occur under periodic boundary conditions (the two-dimensional 

counterpart of the one-dimensional ring of oscillators), and that rotating wave solutions were also 

possible. In both cases, however, the production of a traveling or a rotating wave was initial-

condition dependent. While their conjecture is not proven, it is widely acknowledged by many 

experts as likely being true. 

 The findings presented by Campbell et al. in [83] are empirical. Medvedev and Kopell have 

presented us with some formal mathematical findings on the properties of coupled relaxation 

oscillators of the FitzHugh-Nagumo class [86]. They studied chains of F-N oscillators in the limit 

of strong coupling with a gradient in the eigenfrequencies of the successive oscillators. In general 

the relaxation oscillator is described by a pair of state variables, here denoted as v and u. One of 

these (v) is regarded as analogous to neuron membrane potential and the other (u) is regarded as 

analogous to some internal dynamical variable. In the case of [86] u was regarded as analogous to 

intracellular concentration of Ca2+, which affects membrane potential through the mechanism of 

Ca2+-dependant potassium ion channels in the neuron. (K+ channels generally provide for 

hyperpolarization of the neuron). The relaxation oscillator equations are 
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where ε  and κ are some (usually small) positive constants and f(v) is a qualitatively cubic-like 
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function, e.g. f(v) = v(1 – v2) or some other piece-wise continuous function that has the same 

general shape (f(0) = 0, one negative minima, one positive maxima). Medvedev and Kopell set κ 

= 0 and studied strongly coupled FitzHugh-Nagumo oscillator chains of the form 
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where d >> 1 is the coupling constant. They noted that their main results generalize to the case 

where the coupling constants are different between nearest-neighbor pairs in the chain provided 

the constraint on d is still met. Their analysis assumed ω 1 < ω 2 < . . . < ω N.  

 The system described by the above set of equations is describable by a 2N-dimensional phase 

space. By means of an elegant perturbation analysis using a Lyapunov function, they achieved the 

following main results. In the large coupling limit the phase space contains an N – 1 dimensional 

cylinder. Phase trajectories rapidly approach this cylinder (a ‘fast’ time scale) and then slowly 

drift along it toward a unique limit cycle oscillation. The transient time required to reach the 

stable limit cycle is inversely proportional to d; therefore transients are longer for stronger 

coupling. They demonstrated that a synchronous solution exists and that, to an approximation of 

zeroth order, the synchronous oscillation frequency is the mean-value of the eigenfrequencies of 

the system. They further showed that the coupled variables vi quickly become practically 

indistinguishable but that the internal variables ui differ from cell to cell, although in all cases ui 

remains synchronous with vi. The slow transient shows up most markedly in the ui variables. 

They also made the surprising finding that the conclusions of the paper do not necessarily hold if 

κ is made non-zero, even if it is small. In particular, the dynamics of ui are very sensitive to the 

value of κ. For magnitudes of κ less than 1/(2d) the system still asymptotically approaches a limit 

cycle at a rate inversely proportional to d, but for positive κ magnitudes above this value the rate 

of convergence becomes faster and dependent on the value of κ. For negative κ with magnitude 

greater than the critical value periodic solutions vanish. Because d is large, the critical value is 

very small. This result is surprising because it has often been assumed that coupled F-N systems 

would not be very sensitive to small values of κ.  

 

General Synopsis of Coupled Oscillator Models. We have briefly looked at two extreme cases of 
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coupled-oscillator networks. We can summarize the general properties as follows [87]. Because 

the details of the neural networks that form oscillators are often not known, the aim of the 

mathematical analysis of coupled oscillator systems is to find the consequences of what is known 

about such systems and to generate well-defined questions for the experimenter to answer. When 

the system is weakly coupled it is possible to obtain a well-defined phase for each oscillator and 

then the coupling between oscillators only depends upon phase differences. The general form for 

such a system can be written as  

   (∑ −+=
k

jkjkj
j H

dt
d

θθω )θ
                 (8) 

where Hjk is some function that describes how much oscillator j speeds up or slows down as a 

consequence of interaction with other oscillators k. This function is obtained by averaging the 

effects of coupling terms from an original, and more biologically fundamental, model of the 

neural system, the average being taken over one cycle. H will depend upon the properties of the 

biological oscillators as well as on the nature of the inter-neural coupling between oscillators. 

When it is possible to find a coupling function H by means of averaging methods (which is not 

always possible and appears to always require weak coupling), the resulting model is called a 

phase model. 

 If the coupling in a phase model is too weak, neither synchrony nor wave solutions result. 

Under some conditions a coupled phase model is capable of producing waves. The simplest case 

is that of nearest-neighbor coupling, in which case (8) can be re-expressed as  

   ( ) ( jjDjjAj
j HH

dt
d

θθθθω )θ
−+−+= −+ 11              (9) 

where HA is the coupling function in the ascending (caudal to rostral) direction of the chain and 

HD is the coupling function in the descending (rostral to caudal) direction in the chain. There are 

at least three mechanisms in such a system for producing traveling waves.  

 1. Eigenfrequency gradient: When the eigenfrequencies ωi are unequal and change 

monotonically in one direction, e.g. ω 1 < ω 2 < . . . < ω N or vice versa, a traveling wave 

propagating from the higher to the lower eigenfrequency is produced. However, the phase lags 

are not constant (i.e. are position-dependent) and so here we do not have a classical traveling 

wave of the form u(β x – ω t) [88]. Rather, the wave velocity is non-constant. 

 2. One-way coupling: When the coupling in (9) is one-way (e.g. HD = 0) and the 

eigenfrequencies are equal the oscillators will lock with a non-zero constant phase difference for 

some choices of HA. For example the coupling function 

   ( ) ( ) ( ) 0,cossin ≠+= βϕβϕαϕAH  
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has been shown to support traveling waves of this sort.  

 3. Gradient in coupling strength: Traveling waves can also be produced if there is a gradient in 

coupling strength, i.e.,  

   ( ) ( jjDjjjAjj
j HsHs

dt
d

θθθθω )θ
−+−+= −+ 11  

where sj varies monotonically with j.  

 In all cases, if the eigenfrequencies are unequal the wave speed is not constant along the chain. 

One very interesting finding that has been made is that if the chain described by (9) is very long 

but still finite, these two-way-coupled oscillators behave like a chain with only one-way coupling 

provided that the two-way coupling is asymmetric (HA ≠ HD). The reason is because in these 

cases one of the directions dominates the other. The non-dominant coupling affects only the 

phase lag near one end of the chain. Here a ‘boundary layer’ is established in which the phase 

lags differ from the rest of the chain. However, this only happens in long chains because for short 

chains the boundary layer may take up most of the length of the chain.  

 When we extend (9) to the case of coupling among non-nearest neighbors, but still restrict the 

coupling distance to be a small fraction of the length of the entire chain, many of these same 

results are still obtained. However, the mathematics shows that the phase lags are decreased [89]. 

There has not been a great deal of study involving long-range coupling. It has been demonstrated 

that when there is long-range coupling from the ends to an interior region of a chain and when 

this coupling is anti-phase (opposite phase) between the oscillators that are directly coupled then 

both traveling waves or standing waves can be produced [90].  

 

 When we turn to the case where we have strong coupling or when the H function cannot be 

obtained through the averaging approach mentioned earlier, the situation is very different. With 

stronger coupling we generally cannot identify a local phase for each oscillator, and likewise 

when the coupling function cannot be expressed as in (8) then even if we have a locally-definable 

phase the coupling interaction is not described in terms of simple phase differences. This is the 

regime where relaxation oscillator models are usually employed. In general it is very difficult to 

obtain traveling wave solutions in this regime, and if the Medvedev-Kopell conjecture is true it is 

impossible. The usual outcome is synchrony with phase lags very close to zero among the 

oscillators. Long chains of relaxation oscillators can lock to each other within a few cycles, 

although they may take a long time to reach a steady-state limit cycle of oscillation. Chains 

described by (8), on the other hand, can take a long time to lock with each other when the 

coupling strength is large enough to produce synchrony rather than traveling wave solutions. As 
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we saw in the case of the Wang oscillator network, it appears to be the case that synchrony 

requires something like the equal-weight condition (that is, there has to be short-term dynamic 

link modulations). Furthermore, dynamic link modulation appears to be necessary if the oscillator 

network is to be able to support segmentation of different input patterns because otherwise the 

entire network phase-locks in synchrony (which prevents us from being able to distinguish 

different object patterns from one another). 

 

VII. Spiking Models of Wave Propagation  

Although synchrony is experimentally observed in cortical systems, it has also been found that 

such synchrony does not extend past more than just a few millimeters of cortex. It is therefore 

evident that cortical organization cannot consist of nothing but chains of strongly-coupled 

oscillators. We have likewise argued that the experimental findings from [48] suggest that even 

constant-velocity traveling or standing waves are unlikely. Consequently, a pure phase-oscillator 

model of region-to-region coupling appears to be inadequate for describing real cortical systems. 

Let us therefore turn our attention to models in which the local cells are not inherently oscillatory. 

For this we turn to spiking neuron models and the behavior of networks comprised of them.  

 

VIIA: LIF and Theta Networks 

 Neuron models intended for use in large network simulations must as a practical matter be 

simple. There are several such simple models derived as limiting cases of more biologically 

realistic models. The oldest and simplest of these is the leaky integrate-and-fire model (LIF) [81, 

pp. 94-97]. Another simple canonical model is the “theta” model introduced by Ermentrout and 

Kopell [91], [92, pp. 118-123]. The LIF and theta models, despite some prominent underlying 

differences in their mathematical formulation and in the interpretation of their state variables, 

give more or less similar performance in neural network models. The most prominent difference 

is that the theta model requires more computer time to run than does the LIF model [92].  

 Traveling waves have been demonstrated in both LIF networks [93]-[94] and theta-neuron 

networks [95]. Because the theta model incorporates more of the main qualitative features of the 

majority of mammalian neurons (i.e. distinct subthreshold and superthreshold regions, an all-or-

nothing spike output, a steady-state resting point and a relative refractory period) we will review 

the theta neuron network results reported by Osan et al. [95]. They studied wave propagation in a 

one-dimensional chain of theta neurons in the absence of external inputs. Network activity was 

induced by setting one of the neurons to an initial condition above its firing threshold in order to 

start the wave. Their formal analysis was taken in the continuum limit with neurons coupled 
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through a symmetric coupling function J(x) having the properties: 1) J(x) = J( – x); 2) J(x) ≥ 0; 

and 3) dJ/dx < 0 for x > 0 where x is the distance between neurons in the chain. The specific form 

for J(x) employed in their explanation of method was 

   ( ) xa
syn egxJ −=  

where gsyn is the maximum coupling value and a is a space constant. The spike function employed 

was a simple decaying exponential. 

 The principal findings of [95] are the following. First, there is a lower bound on gsyn, below 

which traveling waves will not propagate in the network. (A similar result has elsewhere been 

found for LIF networks as well). Osan et al. give an expression for the lower bound. Second, in 

networks where wave propagation is possible, they proved that every neuron participating in the 

wave will spike more than once. Their analysis method did not allow them to determine the 

number of times a neuron would spike.  

 Figure 22 illustrates a simulation example of wave propagation in their network. The finding 

that multiple spikes are elicited from each neuron is conjectured to be a consequence of the 

absence of inhibition in the network. We can note the occurrence of multiple spikes from each 

neuron. Close examination of the figure in the upper right-hand corner shows that at roughly 130 

msec the network begins to back-propagate as well as to forward-propagate waves. This is shown 

by the development of a C-shaped curvature in the space-time plot. Osan et al. did not comment 

on whether the wave behavior eventually died out or if the network continued to propagate waves  

 

 
Figure 22: Simulated wave propagation in an excitatory one-dimensional chain of theta neurons [95]. The 

gray scale gives the value of the state variable of the theta neurons. Spiking occurs when the color of the 
cell is white. There were 150 neurons in the chain. Vertical position corresponds to the neuron locations. 
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once this behavior was initiated.  

 This last question is an important one. We might think that the one-dimensional chain is a 

rather arbitrary configuration, and we would naturally be inclined to ask if more complex 

networks might not show entirely different behavior. Here some insight can be gained from 

studies of randomly-connected networks in which small ‘netlets’ of neurons are directly coupled. 

One of the earliest of such studies was carried out by Annimos et al. in 1970 [96]. They studied 

networks based upon the simplest of all spiking neuron models, the McCulloch-Pitts or ‘point’ 

neuron [18, pp. 152-153]. Anninos et al. developed a probability expression for the expected 

percentage of neurons that would fire at the next time step in a large randomly-connected network 

given the percentage that were firing at the current time step and the number of excitatory inputs 

required to fire a neuron. Figure 23 illustrates their results for a family of curves based on the 

number of excitatory inputs required to fire a point neuron.  

 In figure 23 steady-state solutions are marked by the intersects between the curves and the line 

y = x. The zero firing state is one such intersect. In this figure, thresholds 4 – 7 have only this 

intersect. For threshold = 1 there are two stable solutions, zero and a high-rate firing point located 

 

 
 

Figure 23: Fraction of active neurons at the next time step vs. number active at the present time step and 
number of excitatory inputs required to fire a neuron in a randomly-connected McCulloch-Pitts network. 
Firing thresholds are given above and to the left of each curve. The netlets consisted of 10 neurons each. 

The points where the curves intersect the y = x line going up and to the right is either a steady-state solution 
or an unstable ‘ignition point’. 
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at approximately the 50% of the population. Thus for threshold T = 1 the only solutions are either 

the quiescent state or a state in which half the population is firing at any time step. For the T = 2 

and T = 3 curves there are three intersects, corresponding to the zero point, an unstable ‘ignition 

point’ and a high firing population point. Therefore, these curves also have only the quiescent and 

high firing population points as steady-state solutions. Furthermore, it is known that adding 

inhibitory synapses merely shifts the family of curves and does not change this qualitative picture 

[18]. Note that for the thresholds T = 4 – 7 in figure 23 the population of firing neurons decreases 

monotonically to zero from whatever initial firing population condition is imposed. It has further 

been shown that a low but non-zero firing population in the steady-state in such a network is only 

obtained when the network is driven by an external input that forces a small but non-zero fraction 

of the population to fire [18].  

 High population activity percentages are not observed in the neocortex. Rather, only a small 

fraction of the neural population is firing at any particular moment in time, and a zero percent 

condition is never observed in a living organism. In general it appears to be quite difficult to 

obtain low but non-zero firing populations in randomly connected neural networks populated by 

non-oscillatory ‘neuron’ cells. This problem has also been studied by Pantiliat [97] and by 

Nelkon [98]-[99]. The source of the difficulty appears to be the extrasynaptic delay involved in 

firing inhibitory neurons in the network. For this reason it has been conjectured that in neocortex 

the delay in propagating a signal to excitatory neurons in other regions of the cortex must be 

greater than the delay in propagating signals to the inhibitory neurons. This conjecture is 

consistent with the cortical organization of functional columns, where the delay to local inhibitory 

interneurons is small compared to the delay in propagating signals via the white matter to remote 

cortical regions.  

 The significance of these findings for the model presented in [95] is the following. Although 

their network is not a ‘random’ network, and although it does not consist of McCulloch-Pitts 

neurons, it is a purely excitatory network. The existence of a minimum coupling constant as 

necessary for wave propagation to be produced from the firing of a single neuron implies that this 

network does possess the function equivalent to an ‘ignition point’. The fact that figure 22 

appears to approach a condition in which a sizable fraction, approaching one-half, of the neurons 

are firing is strongly similar to the T = 2 and 3 curves in figure 23. If it is true as conjectured here 

that the wave activity will not die out spontaneously, then combining the Anninos analysis with 

the findings of [95] implies that the network of [95] cannot be a realistic model of neocortical 

organization. Furthermore, the mere addition of inhibitory connections seems unlikely to produce 

wave behavior and a low percentage firing population in the same network, contrary to a 
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conjecture made in [95].  

 

VIIB. The ‘T-current’ Network and Lurching Waves. Some excitatory neurons have the 

interesting property that they fire a pulse following the cessation of inhibitory inputs. This is 

indeed a relatively common phenomenon and it is sometimes called post-inhibitory rebound or 

PIR. PIR is conjectured to be the mechanism for some forms of central pattern generators (CPGs) 

in the spinal cord and the cerebral hemispheres. One physiological mechanism for PIR is the 

existence in some neurons of an inactivating voltage-dependent sodium current or a class of 

calcium currents known as T-currents [77]. At the normal resting potential these channels are 

inactivated. A hyperpolarization of the cell membrane removes the inactivation and, upon release 

from the hyperpolarizing input, the T-channel opens and can produce one or more action potential 

spikes before again inactivating. Rhythmic networks based on T-current dynamics have been 

found in the thalamus. Network models based on FitzHugh-Nagumo-like coupling and 

constructed to mimic the PIR dynamics have been reported by Rinzel et al. [100] and by Terman 

et al. [101]. The main difference between these chains of neurons and those of [95] is that signal 

propagation along the chain passes first through the equivalent of an inhibitory cell before 

reaching the equivalent of an excitatory cell, and that stimulation of the excitatory response is by 

PIR. Thus the problem confronting Anninos-like networks – i.e. the need for having shorter 

delays to inhibitory responses than to excitatory ones – is automatically satisfied in this model. 

 Terman et al. studied one-dimensional chains of the form 
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where H is the Heaviside step function, f is any function having a cubic-shaped nullcline, and 
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These latter two equations are sigmoid expressions for nonlinear membrane dynamics that 

produce the PIR effect. The synaptic weighting function Wij was taken to be some function of the 

distance between neurons, i.e. Wij = W(i – j). This function is called the ‘synaptic footprint’ and 

two types were considered. If W is maximal at W(0) the footprint is called ON-CENTER. If W(0) 

is small or zero and the maximal coupling takes place for some non-zero i – j the footprint is 

called OFF-CENTER. The neuron output signal is si and vi and hi are state variables of the 
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neuron. The other terms above are various constants provided in [101].  

 The principal findings of [101] are as follows. Two classes of traveling wave solution are 

found. The first, illustrated in figure 24, is the usual traveling wave with constant wave velocity, 

which they refer to as a smooth wave. The second, illustrated in figure 25, is a wave with non-

constant propagation velocity. This wave, named a ‘lurching wave’ by Rinzel [100], ‘jumps’ from 

neuron to neuron with various time delays, somewhat resembling saltatory conduction of action 

potentials found in myelinated axons.  

 For smooth waves single-pulse, multiple-pulse, and periodic solutions were all found. 

Multiple bursting pulse solutions were among the multiple-pulse solutions. Their analysis showed 

that smooth wave solutions were not possible for ON-CENTER synaptic footprints without gaps. 

The production of smooth waves required an OFF-CENTER synaptic footprint. They provided an 

 

 
 

Figure 24: Smooth wave solutions found through simulation in [101]. Single-pulse, double-pulse, and 
periodic smooth wave solutions were found. (a) single-pulse solution; (b) double-pulse solution; (c) a 

multiple-pulse wave solution. The x-axis is spatial position; the y-axis is time with t = 0 at the top. 
 
 

 
 

Figure 25: Lurching wave solutions found by simulation in [101]. Single- and multiple-pulse lurching 
wave solutions were found. In both cases the network returns to rest in the wake of the pulse. Sustained 

oscillation solutions were also found. These could be either synchronous oscillations or complex ‘cluster’ 
oscillations. (a) single-pulse solution; (b) multiple-pulse solution; (c) sustained cluster oscillation solution. 

The x-axis is spatial position; the y-axis is time with t = 0 at the top. 
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analytic estimation procedure for computing the expected velocity of smooth waves and the 

required size of the gap in the OFF-CENTER footprint required for smooth wave solutions.  

 Lurching wave solutions result from ON-CENTER synaptic footprints, although their analysis 

does not rule out the possibility that lurching waves might also be producible from OFF-

CENTER footprints. Lurching waves involve clustered groups of neuronal activity, and their 

character is highly dependent upon the “wake” left behind the lurching wave. It was conjectured 

that each neuron in a cluster group fires synchronously with the others, and Terman et al. 

assumed that each neuron in a cluster group received the same amount of local inhibition. They 

provided conditions on the neural parameters required to ensure solitary wave (one-pulse) 

solutions. One condition found is that lurching waves cannot arise if the coupling constant gsyn is 

too small. They also obtained a result that lurching waves cannot arise in purely inhibitory 

networks. It should be noted that we do not at this time know whether or not lurching waves exist 

in the neocortex or elsewhere in biological systems. 

 The dynamics of this network are determined by the slow dynamics of the neurons and 

synaptic connections. This is in contrast to the usual situation in Fitzhugh-Nagumo-like dynamics 

where wave properties are determined by rapid processes. Also, in contrast to integrate-and-fire 

models and other models of excitation-driven waves, the slow-wave rather than the fast-wave 

solution is the stable one. (All the systems we have discussed have both slow-wave and fast-wave 

dynamics). [101] made no findings on the wave behavior of two-dimensional arrays of cells.  

 

VIIC. Comparison of These Networks to Oscillator Networks. The networks just discussed have 

neuron-to-neuron couplings that are large enough to preclude using a phase-model approach, and 

the dynamics of the network coupling resembles FitzHugh-Nagumo coupling. Therefore the 

question arises as to why these networks do not seem to be bound to Wang’s synchrony 

conjecture from section VI. The explanation here is simple. In contrast to section VI, where all 

the ‘neurons’ were oscillators with a characteristic eigenfrequency, the ‘neurons’ in section VII 

are not oscillators, do not have a characteristic eigenfrequency, and can fire at a number of 

different rates, including zero. As we have just observed above, periodic and even synchronous 

solutions can arise in these networks, but these solutions arise as a consequence of the large-scale 

network connectivity parameters and not because the ‘neurons’ themselves are oscillators.  

 The results reported in [101] underscore the importance of a role for local inhibition in a 

‘cluster netlet’ of neurons. Although the Anninos model allowed for inhibitory connections, in 

that model these connections, like the excitatory ones, were made randomly. In sharp contrast, 

inhibitory connections in the neocortex are mostly local and however ‘random’ they may appear 
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within a local cluster, globally there is a great deal of non-random structure to inhibitory 

connections. This is something the Anninos model could not take into account. In the past several 

years it has come to be widely recognized that synchrony in spiking neuron networks can be – 

and biologically most likely is – greatly facilitated by the presence of local and lateral inhibitory 

connections among cells [102]-[104].  

 

VIID. The Eckhorn Model. Of the network models we have so far examined, the one which 

seems to hold the most promise for explaining the experimental results reviewed earlier is the 

Terman et al. model of [102]. Unfortunately, however, signal propagation by post inhibitory 

rebound is not the main signaling mechanism in the neocortex. The success of these findings can 

at best be nothing more than a limited form of biological reality. In addition, the model of [102] is 

computationally somewhat expensive, and it is clear that a less expensive model is desirable. 

Over the years there have been a steady number of extensions and refinements starting from the 

simple LIF model. Gerstner and Kistler have developed a general class of neuron models that can 

be regarded as LIF generalizations; the family is called the spike response model (SRM) [81]. 

However, the arguably most popular present day model (after the LIF model) is one developed by 

Eckhorn et al., which we will here call the Eckhorn neuron [25].  

 The structure of the basic Eckhorn neuron and its schematic symbol is illustrated in figure 26.  

 

 
Figure 26: Basic Eckhorn neuron structure and its schematic symbol. It is a multicompartment model 
consisting of one pulse generator, called a neuromime, and one or more dendrites. Synaptic inputs are 

applied to the dendrite(s) and are of two types: feeding field inputs and linking field inputs. 
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The neuron is a multicompartment model consisting of a pulse-generating spike encoder (“soma”) 

and one or more “dendrites.” The spike encoder is often called a “neuromime.” All synaptic 

inputs to the neuron are applied to the dendrite and are divided into two classes. Feeding field 

inputs are direct signal pathways and correspond to the classical excitatory or inhibitory 

ionotropic synaptic inputs (AMPA or GABAA receptors). No output pulse (action potential) can 

be stimulated from the neuron in the absence of feeding field inputs. Each input is weighted and 

integrated by a leaky integrator (LI) function. In principle both the weighting and the time 

constant of integration can differ for each feeding field input. In practice, most models assume the 

same time constant for each fielding field LI, which permits the neuron to be simplified by taking 

the integrators across the summing node shown in the figure and consolidating them all into a 

single LI at the output of the summing node. Letting Yf represent the vector of feeding field input 

pulses and Wf denote the vector of feeding field synaptic weights (both vectors being column 

vectors), the summation of the feeding field inputs is sf = W  and the feeding field response is 

given by a scalar state variable x

f
T
f Y

f(t) according to the equation 

   ( ) ( )tstx
dt
xd

ff
f
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where τf is the time constant of the feeding field LI. 

 The linking field inputs are the novel feature of the Eckhorn neuron. Like the feeding field 

inputs, each linking field input pulse is weighted and applied to a LI. Again, in practice the time 

constants of the linking field LIs are usually equal and so we can again use a single LI at the 

output of the summing node to process all the weighted linking field pulse inputs. Letting Yl and 

Wl denote the vectors of the linking field inputs and synaptic weights, respectively, the summed 

linking field input is sl = W  and the linking field response is represented by a scalar state 

variable x

l
T

l Y

l according to 

   ( ) ( )tstx
dt
xd

ll
l

l +−=τ                    (11) 

where τl is the time constant of the linking field LI. Unlike the feeding field inputs, it is less clear 

what the linking field synapses correspond to in the biological neuron. The role of the linking 

field is to modulate the overall gain of the dendrite such that the dendrite output is 

    .                 (12) ( ) ( ) ( )[ txtxts lfd +⋅= 1 ]

In the absence of linking field inputs the dendrite output is given merely by its feeding field state 

variable. Note that the linking field cannot by itself produce an output sd in the absence of feeding 

field excitation. If τl were much larger than τf the linking field synapses might be regarded as 
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metabotropic synapses [16], [17]. However, in practice τl is typically about an order of magnitude 

smaller than τf , which means the linking field dynamic response is very fast compared to the 

feeding field pathway. This is contrary to the character of metabotropic synaptic responses, which 

are typically an order of magnitude or more slower than ionotropic synaptic responses.  

 The Eckhorn soma models the summation and trigger response of a neuron’s cell body. Unlike 

a biological neuron, where the soma typically has a large number of primarily inhibitory synaptic 

inputs, the Eckhorn soma has no synaptic inputs (although such inputs could be modeled by 

adding a separate ‘inhibitory dendrite’ either with or without linking field inputs). Its principal 

task is to implement a threshold-triggered AP response and to implement a refractory period after 

the firing of an AP. This is done through the use of a time-varying firing threshold θ (t). Let d(t) 

denote the summation of all the dendritic outputs converging on the soma (left summing node in 

the spike encoder of figure 26). If at t = 0 we have d(t) ≥ θ (t), the Eckhorn soma produces an 

output pulse 
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where τo is the width of the action potential. The state of the soma is represented by a scalar state 

variable xn(t). Suppose the neuron generates its most recent action potential starting at time t =t’. 
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where τn is the time constant of the neuromime and θ1 is a positive constant. Then 

   ( ) ( )txt no += θθ                     (15) 

where θo is a positive constant that determines the minimum firing threshold of the neuromime. 

The neuron will not fire again until θ (t) decays back to equal d(t). If d > θo is held constant, the 

next firing time for the neuron is given by 
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The interval between pulses for constant d is ( ) ttdT ′−′′=∆ , and so the firing rate for a constant 

input to the soma is 
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VIIE. Eckhorn Neural Networks. The Eckhorn neuron model was originally developed as a 

model for synchronous firing activity observed in cat visual cortex [23]. Most Eckhorn networks 
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that have been studied and reported have been either one- or two-layer networks. A number of 

such networks are described in [37]. Figure 27 illustrates the most basic one-layer Eckhorn 

network. For clarity, connections between neurons are shown only for the cross-hatched neuron. 

All other neurons make topologically identical connections. Note that all these connections are 

applied to linking field inputs. The linking field vector Wl gives the synaptic ‘footprint’ for the 

coupling of the network. The receptive feeding field is defined by weight vector Wf . In some 

applications, only a scalar (one weight) feeding field input is applied to each neuron. When this is 

done it is often necessary to apply a small random ‘noise’ signal to the neuromime input (see 

figure 26). The ‘noise’ signal for each neuron should be statistically independent of the others. 

This is done so that the feeding field weight can be made small enough to avoid having the 

network display too much of a ‘hair trigger’ reaction to random feeding field inputs. The main 

purpose of the network configuration is to produce a synchronized vector of output pulses from 

some subset of neurons that ‘encodes’ the input feeding field pattern. Linking field weights are 

chosen so that the network as a whole ‘filters out’ the noise and produces an input-pattern-

dependent response. When a stochastic ‘noise’ is not made part of the network, a scalar feeding 

field input usually has a synaptic weight set such that a high frequency burst of input pulses is 

required in order to trigger the neuron and a single random feeding field pulse cannot. 

 Two-layer Eckhorn networks are commonly encountered in applications related to image 

processing. They are capable of more complex input segmentation tasks. The generic two-layer 

Eckhorn network is illustrated in figure 28. Each individual layer is organized in the same way as 

in the one-layer network of figure 27. However, each layer-2 neuron typically receives feeding 

field inputs from several layer-1 neurons, and each layer-2 neuron provides linking field feedback 

 

 
Figure 27: Basic one-layer Eckhorn network. Network coupling is by linking field connections only. The 
feeding field inputs may either be single input per neuron or vector inputs per neuron. Note that in the case 
of a single feeding field input either the synaptic weight of the feeding field must be large enough to trigger 
the neuron in response to a tetanus, but not a single pulse, or else some random ‘noise’ (not shown), must 
be added to each neuron. The feeding field weights for a single-input per neuron layers must be set so that 

the network is not too excitable or little useful signal processing results. 
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Figure 28: Typical two-layer Eckhorn neural network. Connections are shown only for the cross-hatched 

neurons. Each layer is similar to the single-layer configuration of figure 27 except that linking field 
connections feed back from each neuron in layer 2 to the neurons in layer 1 that provide feeding field 
inputs to that layer-2 neuron. The feeding field weight vector Wf  of each layer-2 neuron defines its 

receptive field. 
 

 
Figure 29: Contrast-enhancing Eckhorn network. The basic connections shown are the same as in figure 

28. However, each layer-2 neuron also provides inhibitory feedback to the feeding field inputs to the layer-
1 neurons in the shaded area. (The figure does not explicitly show this feedback). The inhibitory feedback 
footprint is an ON-CENTER footprint with a Gaussian decay in synaptic weights as the connection moves 

laterally away from the feedback center. The feeding field time constant for the inhibitory feedback is 
larger than the time constants for the feed-forward feeding field inputs. This implements a ‘slow’ feedback 
inhibition process that tends to suppress firing by neurons that are less synchronized, typically those at the 

edges of the cell group. 
 

to each layer-1 neuron from which it receives a feeding field input. Traveling wave behavior 

across layer-2 outputs have been reported in image processing applications [105], although no 

formal theory has yet been presented to describe or explain this traveling wave activity. 

 Figure-background segmentation is an important capability in neural networks because such 

segmentation is regarded as necessary in order to permit multiple-object representation. 

Experiments in the visual cortex of the monkey suggest that encoding of segmentation takes place 

through temporal decorrelation due to different firing rates by different cell assemblies. (There is 
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no evidence that segmentation encoding takes place through phase shifts). The typical two-layer 

Eckhorn network of figure 28 produces synchronized firing by all participating layer-2 neurons. 

By adding inhibitory feeding field feedback from layer 2 to layer 1, it has been shown [37] that 

frequency-encoded figure-background contrast can be achieved. This is illustrated in figure 29. 

The inhibitory feedback employs a larger feeding field time constant than the feed-forward 

pathway into the feeding fields and therefore requires a separate LI for the inhibitory feeding 

field. This can be provided by adding an inhibitory ‘dendrite’, either with or without linking field.  

 Finally, Eckhorn networks that employ a common local inhibitory feedback to the linking 

field inputs can be used to ‘chop up’ synchronized firing patterns. The inhibitory feedback might 

also be applied to layer-1 feeding field inputs in some cases. This process is called rate-density 

modulation and it produces what Eckhorn has termed ‘population spike packages.’ This is 

illustrated in figure 30. The ‘rate chopping’ performed by this network is used to help partially 

synchronize firing patterns sent to downstream neurons and reduce transient activations in the 

local network.  

 

VIII. Discussion 

No formal methods for determining the various weights and time constants in Eckhorn networks 

have been reported, although some qualitative guidelines have been suggested [106]. It is also the 

 

 
Figure 30: Rate-density modulation through local inhibitory feedback. Small local groups of layer-1 

neurons provide excitatory feeding field inputs to a common inhibitory neuron in layer 2. Feedback from 
this neuron is commonly applied to the layer-1 neurons that feed it. The feedback may be to either the 

linking field inputs or to the layer-1 feeding field. The purpose of this configuration is to produced grouped 
‘packages’ of layer-1 firing bursts as shown in the right-hand part of the figure. The left-hand graph 

denotes the density of incoming pulses, with higher density implying faster spiking rate. Note that the input 
spike density differs for the various layer-1 neurons. Layer-1 firing is suppressed by burst firing from the 
inhibitory interneuron. This generally requires a slow feeding field time constant for the inhibitory neuron 
in order to produce burst firing at its output. Lateral layer-1 connections are made as in figure 27 and are 

not shown in this figure. 

55 



case that Eckhorn networks have not received the sort of theoretical attention that has been 

provided by the mathematicians for coupled oscillator models or the network reported in [101]. 

No nullcline analysis has been made nor Lyapunov function developed for Eckhorn networks. 

Insight appears to have been the main design tool for coming up with network topologies, and 

one suspects trial-and-error has been the main tool for determining synaptic footprints and 

weights.  

 A criticism is sometimes leveled against LIF, Eckhorn, and the other neural network models 

we have reviewed. The criticism is that these networks are not composed of ‘neurons’ that 

produce the diversity of responses exhibited by real neurons (e.g. figures 4 – 9 and 13). It is 

argued that trustworthy theories of large-scale neural network behavior must look to Hodgkin-

Huxley-like neuron models if the conclusions are to be held relevant to actual neurodynamics. 

The problem with network models based on Hodgkin-Huxley-like dynamics is one of 

computational complexity. The computational cost of simulating these networks is very high, and 

most researchers have therefore settled for less accurate but practically computable network 

models. 

 Recently there has been a breakthrough in large-scale Hodgkin-Huxley-like neural network 

modeling. Rulkov et al. introduced a phenomenological model, called the map-based model, 

that has been demonstrated to be capable of producing very Hodgkin-Huxley-like neurodynamics 

at a very low computational cost [107]. The first version of this model was reported by Rulkov in 

2002 [108]. In this paper Rulkov provided a detailed phase-plane analysis describing how the 

different response modes of the model neuron come about and how the model parameters 

determine these in spiking and bursting modes. A follow up paper extended this analysis to a 

chaotic response region of the model [109]. The first application of this approach in a neural 

network was reported in [110]. The model was further extended in [107].  

 Although it is phenomenological, the model neurons are very low-cost-to-compute, having 

only two state variables (compared to three necessary for the Eckhorn neuron). Rulkov et al. 

reported simulating networks with more than 3⋅105 neurons (one of the largest simulations ever 

reported). They reported that a simulation with 6000 time-step iterations (roughly the equivalent 

of 3 seconds of neural activity) in a chain of 131,072 cells took just under 19 minutes on a 

workstation using a 1.4 GHz AMD Athlon processor with 512 Mbytes of memory running in 

Fortran 4.0 under a Windows 2000 operating system. Computation time was reported to scale 

linearly with network size. This is approximately 3 orders of magnitude faster than conventional 

Hodgkin-Huxley-like calculations. It was demonstrated in [107] that the Rulkov model did a 

credible job of producing RS-, FS-, and IB-like neural responses to stimuli, comparable to the 
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Wilson model results in this paper. The Rulkov model therefore definitely merits additional 

investigation and seems likely to become ‘the’ standard neuron model of the future.  

 Nonetheless, there is still a caution we must apply so as not to become over-enthusiastic about 

these exciting findings. Although the number of neurons that can be simulated with the Rulkov 

model is very large, it is still worthy of note that a functional column in the neocortex is 

comprised of tens of thousands of neurons with an average of 40,000 synaptic connections each 

[111]. The neural networks of Rulkov et al. did not contain anywhere near this number of 

synaptic connections. The number of presynaptic neurons converging on each RS-type cell in 

their network was on the order of 200. Therefore their two-dimensional network models are not to 

be regarded as actual models of the functional column organization of the neocortex. Models such 

as the Eckhorn network models, therefore, are not necessarily inferior to Rulkov models if we 

regard one- and two-layer Eckhorn networks as approximations of a functional column. The 

extensive local lateral connections in the Eckhorn network model are consistent with the cortical 

organization of figures 1 – 3 above, although the absence of lateral inhibition in the one-layer 

network is not. Still, it might be the case that an appropriately-configured two-layer Eckhorn 

neuron might be an adequate model for a functional column. One way to test this conjecture is to 

employ a very large number of Rulkov neurons connected up as suggested by the cortical circuit 

rules given earlier, and to then see if the cooperative behavior of a ‘Rulkov column’ and that of 

an appropriately-designed Eckhorn ‘netlet’ can be made similar. If a large Rulkov column can be 

adequately mimicked by a much smaller Eckhorn network, then a multi-scale approach to cortical 

modeling in which smaller Eckhorn netlets (or, for that matter, Rulkov netlets) can approximate a 

column defined by the properties of a larger Rulkov column mimic. This is a wide-open research 

question. Whether one would prefer ‘Eckhorn columns’ to a small-scale Rulkov ‘column netlet’ 

would ultimately depend on the relative network complexity of each, as measured in required 

computation time, and upon the following consideration. 

 One downside to functional column modeling using Eckhorn neurons is this. Eckhorn 

networks reported to date tend to fire synchronously at a single firing rate. This is not surprising 

because this is precisely the behavior Eckhorn et al. wanted to produce with this model. But, as 

we have seen, real neural networks display multi-frequency firing patterns (alpha- and beta- and 

gamma-band firing patterns). It is not presently known whether or not Eckhorn networks are 

capable of multi-synchronous multi-frequency firing pattern modes. Nor has it been reported if 

Eckhorn networks exhibit low-frequency ‘membrane’ fluctuations (d in the Eckhorn model) as 

shown above in figure 14. Equally, it has not been shown whether or not Rulkov netlets have this 

capability.  
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 Neither necessary nor sufficient conditions for the production of either smooth waves or 

lurching waves in a large network of interconnected Eckhorn layers have been reported. This is 

probably owing to the absence of a formal mathematical treatment of Eckhorn neurodynamics 

and a natural consequence of researchers focusing their attention on gamma waves. It is known 

that wave behavior is observable in Eckhorn networks [105], but these waves have not been 

classified as either smooth or lurching waves. Self-propagating wave patterns have been 

demonstrated in large Rulkov networks [107]. Rulkov et al. have demonstrated that linear chains 

of Rulkov netlets can produce constant-velocity (smooth) waves. They have also discovered a 

mode of non-constant-velocity wave propagation under certain parametric conditions and have 

duplicated this in Hodgkin-Huxley networks. However, at present it seems to be the case that 

these non-constant-velocity waves are probably not lurching waves as reported in [101]. If the 

rough analysis stands up, these Rulkov waves will constitute yet a third class of wave propagation 

behavior in large-scale neural networks. Rulkov et al. have demonstrated that the qualitative 

character of propagating waves in a moderately large network changes as the size of the network 

is increased. Self-sustaining bifurcating spiral waves were found in a 128 × 128 Rulkov network. 

This bifurcating wave phenomenon was absent in an 80 × 80 network, which also did not self-

sustain the wave activity. They reported that the critical size of the network needed to produce 

these self-sustaining waves depended on the footprint size of the synaptic connections. We 

therefore are faced with an interesting emergent property when the neural network size surpasses 

some critical point.  

 Yet another issue is that of understanding the wave mechanics of a complex neural network. It 

is one thing to obtain a network that displays interesting wave propagation properties. It is 

another to understand what sort of network is required to produce a desired wave property. It is 

only for the unrealistically simple phase and relaxation oscillator models discussed earlier where 

theoretical results that can be applied to the synthesis of a network have yet been obtained. 

Recently Hayon et al. have proposed an interesting approach to this issue in the case of synfire 

networks.  

 The basic ideas of a synfire chain and of coupled parallel synfire chains are illustrated in 

figure 31. Neurons are arranged in a column, called a pool. Each pool contains n neurons. Each 

neuron in a pool projects to m ≤ n neurons in the next pool in the chain. These are the intra-chain 

projections. In coupled synfire chains, each neuron makes j << m projections to neurons in the 

parallel chain. All coupling is feedforward in the chain. A pool may contain inhibitory as well as 

excitatory neurons. With appropriate coupling, synfire chains can propagate synchronous activity 

waves. Here an activity wave is defined as a propagating pulse packet. 
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A                B 

Figure 31: Synfire chain model. (A) Neuron pool. Each pool of neurons in a synfire chain contains n 
neurons, each of which makes m ≤ n projections to neurons in the next pool of the chain. (B) Linked 

parallel synfire chains. Each P column is a pool, and each pool projects to m neurons in the next link of its 
chain and also makes a much smaller number of projections to the adjacent parallel chains.  

 

 Abeles et al. have demonstrated that systems of interconnected synfire chains can synchronize 

their waves, and have studied various wave properties including velocity, time to synchronize, 

range of synchronization, bounds on the binding mechanisms between neurons in the same chain 

and between chains [112]. They also discussed mechanisms for getting systems of coupled 

synfire chains to segregate complex multi-object input stimuli through competition.  

 While these results were empirical rather than theoretical, their study of the behavior of these 

waves led to a follow-up work in which was presented a simpler approximate model of the 

observed wave mechanics [113]. In [112] it was found that even a relatively simple segregation-

and-compositional binding problem required a very large number of neurons, on the order of 

50⋅103 neurons, in the synfire network. However, in studying the observed wave behaviors they 

suggest that the wave action itself can be described using only wave position and velocity as the 

relevant variables. They obtained simple approximate expressions for various wave 

synchronization, creation, and extinction properties [113]. Inasmuch as there are rather obvious 

similarities between the synfire chain architecture and that of cascaded Eckhorn networks, it is a 

reasonable guess that their expressions, perhaps in some modified form, should apply to Eckhorn 

networks as well. 

 One weakness of the synfire model is its absence of local feedback connections. Such 

connections do exist within the functional columns of the neocortex (figures 1 through 3). Indeed, 

if a functional netlet is to be capable of generating multi-frequency waves, such local feedback 

connections would seem to be necessary. It follows from this observation that something like the 

Hayon ‘wave mechanics’ phenomenology could be extended to take in the case where the ‘pools’ 
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have such local feedback. In this, the earlier findings of Eckhorn et al. would be highly relevant. 

Extending the Eckhorn findings to the case of neurons with a richer degree of neurodynamics, i.e. 

Eckhorn-like networks implemented with Rulkov neurons, is likewise a natural follow up. 

Furthermore, there is circumstantial experimental evidence that might point to the existence of 

parallel chain structures in the primary visual cortex. Bosking et al. have used optical techniques 

to study spatial coding of retinal position and stimulus orientation [114]. They found that the 

visual cortex possesses extraordinarily fine structure in the location of responding neurons 

coupled with a surprisingly consistent size to the responding areas. In looking at their images, it is 

not difficult to envision neuronal ‘chains’ comprised of ‘pools’ of interacting neurons.  

 One thing that is largely missing from most theoretical investigations such as those we have 

just cited is retroactive feedback, i.e. convergence zones. It seems clear from the simulations 

reported by Rulkov, Eckhorn, Abeles, and many others that activity waves do not necessarily 

propagate at the conduction velocity of the axons. It was mentioned earlier that gamma-band 

propagation at the very slow rate of 0.25 m/sec has been observed in monkey visual cortex. This 

has particular relevance for the Bruns-Eckhorn data [48] reviewed earlier. As mentioned before, 

the distance from electrodes in area A to electrodes in area B in this experiment was 40 to 80 mm. 

Assume for a moment that the gamma wave propagation was 0.25 m/sec, and further assume that 

retroactive feedback from area B to area A was in fact present, as illustrated in figure 32. At 40 

mm distance, such a slow activity wave would require 160 msec to travel from A to B. 

Retroactive signaling would likewise require another 160 msec to return. The measured 

correlation lag in [48] was 40 msec, which as noted earlier appears to implicate polysynaptic 

coupling. If ELFS is an artifact of slow-wave coupling, it would seem possible that the 

correlation  lag  between  stimulating  a firing event (in B) and a responding low frequency signal 

 

Area
A

Area
B

160 msec

160 msec

 
 

Figure 32: Hypothetical retroactive coupling at slow wave propagation velocities in the Bruns-Eckhorn 
experiment [48]. 
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(in A) could require a lag time determined by the round trip time through the loop. A period of 

320 msec corresponds to a frequency of 3.125 Hz, which places it within the low frequency range 

of [48]. The measurement data from [48] did not test beyond a ± 100 msec lag. We can further 

note that the dwell time for the measured correlations after activity plateau was 150 msec, a 

figure suspiciously in this ballpark. The bottom line of these observations is simply this: There 

might have been retroactive correlation (not necessarily in the gamma band) that simply went 

unobserved because it fell outside of the correlation measurement interval.  

 The study cited earlier tells us that in the case of asymmetric directional coupling the 

phenomenon of direction dominance in coupled chains must be recognized. However, this study 

involved only a single frequency. Does directional dominance exist when the coupling is 

asymmetric not only in coupling strength but in frequency as well? This is yet another open 

research question. 

 

IX. Summary  

In this paper we have reviewed various findings reported by both experimental and theoretical 

researchers. Our focus has been on contrasting and evaluating these findings in the context of 

known characteristics of the neocortex. Probably the most important question today in 

neuroscience is: How does the brain represent objects and events? The findings we have looked at 

are those which appear to be the most relevant for the hypothesis that the brain accomplishes its 

representation tasks through the mechanism of synchronized and/or correlated activity wave 

patterns. This is known as the correlation hypothesis of brain theory. However, in order to test 

this hypothesis it is necessary that we first understand the “wave mechanics” of neural network 

models that qualitatively resemble the measurable properties of activity waves observable in 

biological networks. Because it is a practical impossibility for us to construct neural network 

models that match biological networks neuron-for-neuron (owing to the incredible number of 

biological neurons in the central nervous system), we must settle for so-called “population 

models” that try to produce similar activity using far fewer neurons. However, even these models 

involve a great many “artificial neurons” or other more abstract “cells,” a fact that makes it 

difficult and challenging to understand even our constructed artificial networks. 

 There is strong evidence of size-dependent emerging properties in the wave mechanics of 

large neural networks. This is yet another reason why network models involving large numbers of 

neuron models are necessary. So far these interesting emergent properties have only been seen in 

models based on Hodgkin-Huxley-like neuron models and in Rulkov neuron models. This tends 

to suggest that the rich dynamics of neural firing patterns might be necessary for the production 
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of these large-scale neurodynamics. So it is that developing a better understanding of the wave 

mechanics of these networks, both empirically and mathematically, is perhaps the fundamental 

research issue in present-day computational neuroscience. 
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