
Graph-Theoretic Structure Identification in Dynamic Link Neural Architectures 

Richard B. Wells 

Nov. 24 2003 

 

Abstract. A new graph-theoretic approach to neural structure identification with implications 

for information-theoretic optimization is proposed for dynamic link architecture neural networks. 

The method addresses the organization and interconnection of feature-representing multicellular 

units (MCUs) at the network architecture level. It incorporates indices for the identification of 

both dynamic and static data pathway and binding code links between neurons within an MCU 

and between different MCUs. It also proposes a new objective function for optimization of a 

measure of conditional entropies and mutual information properties of the system. The method is 

based on an extension of a method of graph-theoretic information flow analysis recently proposed 

by Akuzawa and Ohnishi, here called Akuzawa-Ohnishi Analysis (AOA).   

 

Background. Damasio [1]-[2] has proposed a general theoretical framework for understanding 

the neural basis of memory and consciousness at the systems level. His model proposes that time-

locked multiregional retroactivation of feature-representing networks in sensory and motor 

cortices, coordinated by binding codes from convergence zone cell assemblies, constitutes a 

fundamental neural substrate for higher cognitive functions in the central nervous system (CNS). 

In this model objects (entities and events) are put together from representational fragments of 

activities, and no one feature-representing network gives the whole representation of an object. 

Object representations are constructed via binding code signals that feed back and coordinate a 

multiplicity of specific feature-representing networks. These representations consist of 

synchronized, time-locked sequences of firing patterns in multiple subnetworks, each of which 

presents a fragment of the object representation. However, Damasio’s system-level model is non-

specific with regard to synaptic-level connections and must assume the prior existence of the 

feature-representing networks acted upon by convergence zone assemblies. This raises the 

questions of how such feature-representing networks come to be in the first place and how they 

are organized.  

 It is well known that sensory-path neurons at almost all levels display various forms of 

stimulus selectivity in mature animals, including Homo sapiens. Furthermore, there is strong 

supporting evidence for the hypothesis that this selectivity depends on sensory activity during a 

transient critical period in early postnatal life [3]-[5]. Young neural networks tend to display very 

coarse connectivity structures which become increasingly fine-tuned during the critical period in 
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response to patterns of neural activity. Axons participating in the activity pattern tend to form 

more and stronger synaptic connections, while those not participating in the activity tend to 

retract. Synchronous firing of afferents within the activity pattern appears to be necessary for the 

tuning of the network, and the time-order, and frequency of occurrence and repetition of the 

afferent patterns determines which pattern or patterns will be learned by a specific network. 

 One hypothesis for explaining this effect is that postsynaptic cells during the critical period of 

development secrete neurotrophic factors when NMDA channels are opened by synchronous 

firing patterns converging on that neuron. It is not strictly necessary for the postsynaptic cell to 

respond to stimulus with an action potential. All that would be required is for the membrane 

potential in the vicinity of the synapses to depolarize sufficiently to open the NMDA gates. It is 

also known that the neurotransmitter phenotype developed in a presynaptic cell, and indeed the 

survival of that cell, may to some degree be dependent upon that cell’s targets [6]. These findings 

suggest activity-dependent secretion of neurotrophic factors induced at other than glutaminergic 

synapses. There may be other activity-dependent mechanisms as well. The well-known 

Bienenstock-Cooper-Munro (BCM) model of synaptic plasticity [7] is a mathematical model of 

development inspired by these hypotheses.  

 The BCM model regards the neuron as performing spatial integration but synaptic 

modification as temporal competition between input patterns. It addresses the evolution of plastic 

synaptic weight changes at the level of the synapse. The BCM theory employs several 

assumptions regarding the probability distribution of synaptic inputs converging on the target cell 

as well as assumptions regarding the degree of statistical linear independence among these input 

signals. It constitutes a temporal competition model at the synaptic level for individual 

postsynaptic target cells, but it does not address the issue of how this competition affects the 

formation of whole cell assemblies, the specifics of neural network structure that may emerge 

from this temporal competition, nor how pre-conditions on initial coarse network connectivity 

might affect the final connectivity structure as feature networks are formed. These are questions 

that speak to the problem of identifying suitable structures for feature-representing networks.  

 

  The method used in establishing the initial configuration of a neural network prior to any 

adaptation, i.e. its base structure, has always been something of an art in artificial neural network 

theory. Options have ranged from specific topological arrangements (e.g. the generic 

connectionist feedforward network, Hopfield networks, etc.) to probabilistic initial interconnects, 

e.g. [8]. Studies of pulse-coded neural networks and spiking-neuron-model networks have usually 

employed specific topologies, as in the case of Malsburg and Schneider [9] or Eckhorn et al. [10].  
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Figure 1: Example network. The specific starting configuration of the network and its subsequent 

evolution can be represented as a graph or as a connection matrix. Neuron X illustrates the generic scheme 
of connection. Other neurons may be assumed to employ the same or similar connectivity in the initial 
state. Filled circles denote synaptic connections, and each circle denotes more than one synapse. Lines 
issuing from the right-middle portion of the neuron (without a filled circle) represent extruded axons. 

 

In this work we propose a high-level method for establishing a topological schema based on the 

idea of information flow within the network. The method is applicable to recurrent networks, 

such as the network illustrated by figure 1, and aims at developing finely-structured sub-networks 

(called multicellular units or MCUs) from an initial coarse structure. We assume a structure with 

m inputs projecting into a network of n neurons. Neurons are allowed to make feed-forward 

projections to “downstream” layers, lateral projections to neurons in the same layer, and feed-

back projections to “upstream” neurons. The general problem to be addressed is identification of 

the synaptic connections that evolve under experience-dependent input afferents as well as 

identification of where those connections require “dynamic” processing, i.e. modulated responses 

from the target neuron on a short-term basis. Such dynamic connections are here called “elastic” 

synapses and imply rapid, reversible synaptic plasticity [19]. The method makes no a priori 

assumptions on the model neurons in the network, and so is applicable to a variety of neural 

network models, including pulse-coded neural networks (PCNNs).  

 

General Considerations in Synapse Modeling.  In the generic connectionist neural network 

(GCNN) model, as well as in the majority of other models, inputs to the neural network are 

usually regarded as connecting to every neuron in a first layer of the network. The synaptic 

connections they represent are those of ionotropic “data path” channels [11]. The initial synaptic 
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weights are often set to small random starting values. The adaptation algorithm then establishes 

which connections are excitatory and which are inhibitory. In addition the adaptation algorithm 

“prunes” some of the connections by evolving their corresponding weights to near-zero values 

such that inputs have little or no significant effect on the postsynaptic neuron. While this 

approach is probably as good as any in the absence of more specific a priori information about 

the network and its function, it is unsatisfying from a biological perspective. First, biological 

synapses are specifically excitatory or inhibitory, and in some cases may be both ionotropic and 

metabotropic, depending on the types of receptors expressed in the juxtaposed membrane of the 

postsynaptic cell [11]. Excitatory synapses are generally made on dendrites whereas most (about 

two-thirds) inhibitory synapses occur on the cell body with the remaining inhibitory synapses 

being made on dendrites. Dendrites are widely regarded as fairly sophisticated computing 

elements in their own right, and are treated as such in higher-order neuron models such as the 

sigma-pi, clusteron, and cluster models [12], as well as in the Eckhorn model [10].  

 This biological arrangement seems to be at odds with network learning approaches based on 

the traditional adaptation schemes, e.g. Perceptron rule, Widrow-Hoff rule, backpropagation, and 

others. These learning rules make no a priori assumptions as to whether or not a particular 

synapse is excitatory or inhibitory, although they do implicitly take them to be ionotropic 

channels. The algorithms merely aim to optimize some objective function without regard to the 

“sign” of the synaptic weights. In biological neural networks there is good reason to think that 

excitatory and inhibitory ionotropic channels may employ different adaptation schemes. 

 Excitatory ionotropic synapses, particularly glutaminergic synapses, fit well with the 

neurotrophic factors hypothesis discussed earlier. It is presently thought that all glutaminergic 

channels express NMDA receptors and are therefore capable of supporting the sort of 

metabotropic second messenger cascade reactions [11] believed necessary for secretion of 

neurotrophic factors involved in early sensory network formulation. The BCM algorithm in 

particular is aimed at excitatory synapses that support a mechanism of this sort, although BCM 

makes no explicit assumptions regarding the details of the physiological mechanisms other than 

the reasonable supposition that synaptic weight modification takes place over a time scale slower 

than that of the firing rate of the activity patterns. Although it is common practice in BCM 

modeling to use the firing rate of the postsynaptic neuron as a measure of its activity, the theory 

itself allows for other measures of postsynaptic activity, e.g. a measure of membrane 

depolarization in response to local excitatory inputs. BCM is therefore applicable to other 

Hebbian models such as the calcium-control model [13]. 
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 Inhibitory synapses, on the other hand, cannot call upon the same biophysical mechanism for 

synaptic modification because their effect on the postsynaptic cell is hyperpolarizing and does not 

involve synapses where NMDA receptors are expressed. Theories for treating inhibitory synapse 

adaptation are problematical at this time. Many researchers believe that inhibitory channels 

probably play a necessary role in critical-period fine tuning of feature networks [7], [9]. However, 

it is not presently clear what role this would be (other than preventing weight saturation) nor if 

the inhibitory synapses are themselves subject to long-term (“plastic”) adaptive modification. 

Furthermore, since any given neuron is thought to have either only one neurotransmitter 

phenotype (which may involve one or two ligand neurotransmitters and possibly one or a few 

neuropeptide neuromodulators) or at most one initial phenotype with the capacity for developing 

a different mature phenotype, it is likely that most inhibitory synapses within a feature network 

are mediated by inhibitory interneurons. The approach taken in this work acknowledges the 

following hypothesis: The role of inhibitory pathways within a feature network is network 

segmentation rather than pattern segmentation. This does not mean that there are no inhibitory 

afferents coming into the network, but it does imply that synaptic modification involving 

inhibitory synapses is to be treated differently from that involving excitatory synapses. 

 To put this hypothesis in other words, a distinction is made between the ability to distinguish 

between classes of input activity patterns and the ability to form networks dedicated to 

representing feature fragments. The coarse connectivity structure in young neural networks 

appears to have the benefit of providing the network with a great many “options” for pattern 

discrimination, i.e. it provides the potential a large statistical capacity [49] in the target neural 

system. Network selectivity for feature representation, on the other hand, has for its neurological 

basis the partitioning of the neural system into specialized subnetworks, each of which has a 

reduced statistical capacity for feature discrimination. A feature-discriminating network must, 

under Damasio’s model, produce synchronized and time-locked firing patterns in response to a 

class of input patterns it “recognizes” and represents, and this is what excitatory connections 

sponsor. Differentiation among different classes of inputs, on the other hand, requires 

accommodation of the network structure, i.e. limitations imposed by the formation of distinct cell 

assemblies. This is a task for which inhibitory connections are well-suited, as demonstrated by 

“winner-take-all” topologies such as the MAXNET and Mexican Hat networks. One important 

research question from this point of view is whether or not changes to inhibitory connections 

should be regarded primarily as disinhibition and, if so, whether disinhibition should be regarded 

as a mechanism for setting up binding code pathways rather than sensory data pathways.  
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 As for plastic changes of synaptic weight at inhibitory synapses, it has not been established 

that long-term plastic change acting to increase inhibitory synaptic weight (i.e. long-term 

potentiation) actually exists, although long-term depression (LTD) of inhibitory synaptic weights 

has been demonstrated [14]-[15]. Even so, LTD involving inhibitory synapses seems more 

commonly to be the result of LTD at excitatory inputs to the inhibitory neuron as, e.g., in the case 

of the Purkinje cell [16]. There are, however, a number of non-permanent (“elastic”) modulation 

mechanisms that can temporarily increase or decrease the weight at an ionotropic inhibitory 

synapse, and these involve either presynaptic mechanisms (axo-axonal synapses) or metabotropic 

modulations [17].  

 Putting this all together, excitatory and inhibitory synapses are presumed in this work to play 

different but complementary roles in the initial formation of feature-detecting networks. 

Excitatory synapses are presumed to principally function to discriminate activity patterns and 

produce time-locked firing patterns in response to the selected class of input patterns 

“recognized” by the feature network. Inhibitory synapses are presumed to principally function to 

segment networks, and disinhibition is regarded as an enabling mechanism for the formation of 

binding code patterns within the network. The model of the formation process thus divides 

naturally into: 1) an optimum filtering problem with respect to data signal pathways; and 2) a 

structure identification problem with respect to signals that lead to differentiation of subnetworks.  

 From the point of view of structure identification (as opposed to parameter estimation), what 

matters is not so much whether a particular synapse is excitatory or inhibitory. What matters is 

the number of different ways that a neuron is able to respond to its collective synaptic inputs. We 

regard the neuron as performing a mapping function (cf. eq. (10) below) from a set of input 

activities to an output activity. The greater is the cardinality of possible responses, the greater is 

the information-processing capacity of the neuron. The structure identification problem is 

concerned with determining what this capacity must be for the network as a whole to properly do 

its function. Therefore this work is not directly concerned with weight adaptation but rather with 

identifying the cardinality of each neuron’s input-output relation. This property of the network’s 

neurons implicates, at a lower level of analysis, the type of synaptic weight change behavior a 

specific implementation must be capable of providing. 

 

Information Theoretic Considerations in the Structure of Feature Networks.  The problem 

considered here is one instance of the general problem of “compositionality” in neural networks 

[18]. Furthermore, the development of feature-detecting neural structures is the earliest step in the 

evolution of a dynamic link architecture (DLA) [19], and as such its natural mode of 
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mathematical expression is graph-theoretic. Specifically, the problem is one of graph re-

configuration from an initial coarse structure into multiple, dynamically-linked fine structures 

that: 1) exhibit sufficient selectivity to serve as MCUs representing feature-fragment; and 2) 

contain in their organization sufficient controllability to participate in the representation of 

objects (entities and events) under the application of binding codes fed back from downstream 

convergence zone assemblies. The task at hand is a constrained optimization problem, but one for 

which both the appropriate optimality criteria and the proper constraints are far from clear cut. 

The general principle of optimal structure construction according to modern system theory is 

Bellman’s Principle, i.e., “An optimal policy has the property that no matter what the previous 

decisions have been, the remaining decisions must constitute an optimum policy with regard to 

the state resulting from those previous decisions.” However, for the particular task here at hand it 

is far from obvious what sort of objective function and performance index are appropriate for a 

mathematical formulation of the adaptation problem in the form of a Hamilton-Jacobi-Bellman 

(HJB) equation. Whatever form it takes, the task is the same: to limit the number of potentially 

optimal decisions that must be investigated.  

 In the abstract, MCUs are information-processing structures and here it is useful to quote a 

comment made long ago by Weaver [20]: “This word ‘information’ in communication theory 

relates not so much to what you do say as to what you could say. . . . The concept of information 

applies not to individual messages . . . but rather to the situation as a whole.” There are two 

complementary factors implicit in this description. The first is the idea that an information source 

produces, and an information channel transmits, a “message” taken from a set of possible 

messages. The second is the idea that the measure of information for the system is a measure that 

applies globally to the system as a whole. It is not “message-centric” but rather “capacity 

centric.”  

 Here we have two complementary aspects for describing the development of feature-fragment 

representing networks. A highly-tuned feature sub-network (MCU) represents a restricted set of 

possible “messages” from among the afferent patterns entering the system as a whole. It can 

“say” only a relatively few things. This is necessary if object features are to be made distinct and 

therefore “recognizable.” This means that the appropriate performance measure for tuning an 

MCU is vested in the character of its information loss properties. In mathematical terms, this is 

called the MCU’s equivocation, denoted ( )YXH  where X is the set of inputs and Y is the set of 

outputs. It is related to the input and output entropies, H(X) and H(Y) respectively, by a well-

known theorem (entropy of a function of a random variable) as 
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    ( ) ( ) (YHXHYXH −= ) .                 (1) 

A highly selective feature network will have a relatively high-valued equivocation, implying 

maximization of (1), but the character of its equivocation must at the same time be carefully 

sculpted. To use an analogy, an adder circuit is an example of a carefully-crafted lossy network. 

For the adder to work properly, some set of inputs must map to one output, e.g. 1 + 4 = 5, 2 + 3 = 

5, etc., while others map to a different output, e.g. 1 + 1 ≠ 5. It performs a number of different 

many-to-one mappings and therefore has high equivocation since knowledge of its output is not 

sufficient to determine its inputs. Likewise, an MCU must map a large set of input patterns, X, 

into a much smaller set of output patterns, Y, including “null patterns” that represent cases where 

x ∈ X is not a feature represented by the network. A feature network discriminates. 

 On the other hand, the “network of networks” that develops from the original coarse structure 

must have a large capacity for representing many features in X. Each feature network can “say” 

only a relatively few things, but the network of networks can “say” a great many things. Thus the 

totality of the developed structure constituted by n feature networks is characterized by a 

relatively small equivocation 

 

    ( ) ( ) ( )nn YYYHXHYYYXH ,,,,,, 2121 LL −= .         (2) 

Equation (2) is therefore an objective function for the system-as-a-whole that is to be minimized. 

However, how does this square with the idea that equation (1) is a performance function to be 

maximized? Here some common sense is required because (1) can be maximized in many ways. 

An absolute maximum is achieved by simply turning off the network entirely (Y = null), which is 

an obvious absurdity. (1) can be maximized subject to the constraint H(Y) ≠ 0 by making the 

feature network so selective that it can distinguish only one input pattern x ∈ X while producing a 

null response to all other input patterns. This is a logical contradiction because for the system as a 

whole the quantity of information it can represent is given by its output entropy, 

 

     ,              (3) ( ) (∑
=

≤
n

j
jn YHYYYH

1
21 ,,, L )

and with a finite number of feature networks (limited by the number of neurons contained in the 

structure), maximizing (1) using static feature-representing networks also means minimizing (3), 

which is contrary to minimizing (2).  

 The resolution of this contradiction is where the DLA concept comes to its application to 

feature networks. DLA calls upon two network characteristics not considered in more traditional 

8 



neural network approaches. The first is the capability of individual neurons to exhibit fast-acting 

short-term changes in synaptic weight (called “elastic modulation” here and “reversible synaptic 

plasticity by von der Malsburg [19]). Physiological considerations for modulation channels in 

artificial neuron models has been reviewed in [11] as well as within the references cited in [19]. 

The second characteristic is the capacity for an MCU to cooperate with other MCUs such that the 

connectivity within these MCUs is dynamically altered in response both to X and to binding 

codes feeding back to the MCUs from “downstream” neural structures (“convergence zone 

assemblies”) [19]. Binding codes represent another class of signals, the control class, and they 

perform feature linking. Such feature linking does, however, depend upon the prior formation of 

specialized connectivity patterns among MCUs. Connections running between MCUs at the same 

neurological level can be regarded as carrying representations of what here will be called “context 

states.” The idea of a context state is this: An MCU in a given context state exhibits a constrained 

maximal equivocation, denoted ( SYXH , )  where S is a set of context states. This maximizes (1) 

in any given context state, but by having a multiplicity of “potential” context states the network 

as a whole is able to minimize (2).  

 Proof of this assertion is as follows. With the addition of context states the quantity to be 

maximized in place of (1) becomes 

 

    ( ) ( ) ( )SYHSXHSYXH −=,              (4) 

where in the derivation of (4) we have used the equality 

 

    ( ) 0, =SXYH . 

The first term on the right-hand side of (4) is the equivocation of the input with respect to context 

states, and the second is the equivocation of the output with respect to context states. Two 

conditions are required to maximize (4). First, the set of possible outputs for any given context 

state must be small compared to X . Second, it must be computationally intractable to determine 

x ∈ X given only the knowledge of a context state. The structure of an MCU must promote the 

property of a large equivocation ( )SXH . This is possible if the network maps a large number of 

inputs into the same context state, such that there are relatively few context states in an MCU, and 

for each context state the neuron produces distinct outputs Y as a function of only those inputs X 

that constitute data path inputs and not control path (S-establishing) inputs. 

 Given this, the next requirement is to minimize the total network equivocation 
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    ( )nn SYSYSYXH ,,,,,, 2211 L . 

To simplify our notation, let ζ i denote the ordered pair ii SY , . (2) then becomes 

 

    ( ) ( ) ( )nn HXHXH ζζζζζζ ,,,,,, 2121 LL −=          (5) 

and this equation is to be minimized. By the chain rule for entropies, 

 

    ( ) ( ) ( ) ( )∑∑
==

− ≤+=
n

i
i

n

i
iin HHHH

12
1111 ,,,, ζζζζζζζ LL       (6) 

with equality in the right-most term if and only if each ζ i is statistically independent of the other 

terms ζ j . This is equivalent to saying that the rules by which context states and their associated 

output set are determined for any one MCU are independent of the rules by which these are 

determined in other MCUs. As independence for the setting of individual context states in 

different MCUs is approached, (6) approaches a maximum, upper bounded by H(X), and (5) is 

minimized. This is where cooperation between MCUs in a DLA comes into play, but in a peculiar 

manner. MCU-to-MCU interactions must decorrelate the determination of context states during 

the formation of MCUs so as to maximize (6) in the totality of the mature DLA structure. 

 Equations (4)-(6) constitute three objective functions to be optimized in the network structure. 

Of these, (4) and (6) are to be maximized while (5) is minimized. Maximizing (4) for each feature 

network maximizes the selectivity of the individual MCUs. Because each MCU has a 

corresponding objective function (4), the optimization problem requires all equations (4) in the 

system plus (6) plus (5) to be optimized in regard to an overall objective function 

 

    ( ) ( ) ( ) ( )[ ]nnn HXHXHXHJ ζζζζζζ ,,,,,,,, 111 LLL  . 

 

Note that initially n = 1 if no MCU subnetworks initially exist. Furthermore, the context states Si 

develop during the course of structuring the network. Therefore the objective function J will itself 

undergo significant changes as the structuring process progresses. A general algorithm for 

optimizing J has not been presented.  

 

Algorithmic Constraints and Assumptions.  Algorithms derived from information-theoretic 

arguments have been slowly gaining in popularity for several years now. Entropy arguments have 

been used to produce a variety of algorithms for unsupervised learning based on global objective 

functions that these arguments provide [21]. The most popular of these approaches appear at this 
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time to be Independent Component Analysis (ICA) [22]-[23], the Infomax Principle (IP) [24]-

[26], and algorithms based on points of intersection between ICA and IP [27], [22]. These 

approaches have in common the objective of maximizing the mutual information, I(X;Y), between 

the network input and its output. A related approach, minimum redundancy encoding [28], has 

also been proposed which minimizes the sum of feature entropies. Another approach is the Imax 

learning procedure [29], which works to maximize the mutual information between outputs of 

different neural modules that receive inputs from different sensory modalities. ICA and IP share 

some points of similarity, especially when combined with maximum likelihood (ML) methods 

[22], [30]. Algorithms of this class can be called Infomax-ICA algorithms. A number of other 

variations also exist [31]. IP-based algorithms also, in particular cases, exhibit significant 

similarities to the BCM algorithm [26]. Relatively simple algorithms for implementing IP-ICA in 

networks using connectionist neuron models are known [22] although the application to pulse-

coded neural networks is more complex [26].  

 The approaches and algorithms just cited all commonly make some sort of assumption 

regarding the probability distribution of X and on noise properties of neurons. It has been a 

popular practice to assume that biological neurons are intrinsically “noisy” elements in their 

firing characteristics. In terms of neurotransmitter release and postsynaptic membrane response 

there is experimental evidence that supports a stochastic neuron model in regard to synaptic 

behavior. On the other hand, when one considers that synchronized firing patterns seem to be the 

rule rather than the exception in sensory pathways, there is reason to doubt that noisy behavior at 

the synaptic level translates into noisy behavior at the neuronal output level. What might appear 

to be random behavior in the laboratory setting could just as well be due to our lack of 

understanding of the “neural code” as it could to “real” noisy behavior [32]. In any event, models 

of neural networks are deterministic functions and so it is common practice (and not biologically 

implausible) to assume ( XYH ) = 0; this assumption is employed in this paper.  

 At the same time, there is ample reason to regard the sensory input signals probabilistically in 

the analysis of neural systems. The most commonly made assumptions here include Gaussian 

distribution of input patterns, multi-modal Gaussian distribution of input patterns, Poisson 

distributions, or uniform distributions. There is little experimental basis for any of these 

assumptions, however. What data there is tends to suggest distributions with higher kurtosis and 

longer tails than are given by the Gaussian distribution [22]. These distributions have been termed 

“super-Gaussian” distributions. It is well known that non-Gaussian distributions are not 

completely characterized by first- and second-order statistics alone. A number of the algorithms 

cited above rely on or make arguments based on Gaussian assumptions, and that they succeed as 
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well as they do is attributed to the robustness conjecture [22]. In the case of pulse-coded neuron 

models and PCNNs, the assumption of a Poisson process for firing activity is normally invoked. 

This typically turns out to be too difficult to handle analytically, but it is possible to argue the 

conjecture that the Poisson distribution is adequately accounted for by assuming a Brownian 

diffusion process [26]. Even so, treatment of this case becomes substantially more complicated 

than is the case for non-spiking neuron models.  

 Most information-theoretic approaches have considered only a single network from an input-

output basis. None have specifically been cast in terms of a DLA model, which means that the 

effect of context states and rules linking emerging MCU feature networks is as yet unexplored. 

The objective functions used in these earlier works are therefore significantly simpler than the J 

stated earlier, and the cost of this simplicity is inability to gain insight into the early development 

of the feature-representing MCUs and their interactions.  

 Another factor that must be kept in mind for Damasio’s system structure is temporal 

sequencing. The term “object” refers to both entities and events. Entities at the first level of 

representation can be treated in an effectively “static” fashion merely by choice of the time 

interval T over which the averaging of afferent signal information is regarded as taking place. 

This is, for instance, an assumption invoked in the BCM model and implicit in the majority of 

previous information-theoretic treatments as well as in (1)-(6) above. In Damasio’s model entities 

are put together from “type I” binding codes produced by convergence zones in the sensory 

association cortices [1]. Events, on the other hand, cannot be treated in this fashion. In Damasio’s 

model events are formed by “type II” binding codes from convergence zones in motor-related 

cortices, and these binding codes aim to reproduce temporal sequences. The impact of this on 

early upstream feature networks is perhaps small because temporal sequences are themselves 

made up of successive entity fragments, but the issue cannot be ignored farther downstream 

(where convergence zones must form that generate type II binding codes) nor for the 

development of motor learning. Work has barely begun on compiling a comprehensive theory for 

temporal sequencing, although a few early steps have been made [33]. 

 The issue of temporal sequencing has profound consequences for information-theoretic 

treatment of event representation. First, all the entropies employed in the objective function must 

now become entropy rates [34]. This is a significant complication. Moreover, there is utterly no 

reason to think that the weight-changing mechanisms of neurons have in any way the sort of 

statistical record-keeping mechanisms that would be required to estimate “on line” any direct 

measure of entropy rates. Thus, despite the mathematical attractions of “global” objective 

functions [33], any optimization scheme based on an information-theoretic J must be such that 
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the factors controlling adaptation must be locally measurable within some finite time frame. This 

is, of course, obvious.  

 Furthermore, the problem addressed in this work has the additional dynamic element that new 

MCUs and their context states are being constructed as the structure identification progresses. 

There are two primary considerations here. First, the objective function itself is therefore time-

varying, which means that stationary-statistics arguments may not be invoked. All previous 

information-theoretic treatments implicitly invoke such arguments when they estimate entropies 

through time averages.  Second, the fine-tuning process of sensory networks is contingent upon 

sensory experience, and this has implications for the strategy to be employed in accordance with 

Bellman’s Principle.  

 It is generally accepted that Bellman’s Principle implicates a strategy of optimization working 

“backwards” from goal to present situation. What, however, can constitute such a “goal”? In 

unsupervised learning the system has no “training exemplar” (object as entity) upon with to base 

an error-signaling process.  The system must therefore build its own model (i.e. form objective 

feature-fragment representations) upon the basis of some other measure of the “quality” of its 

representations [21]. In the ideal this measure is given by the entropy functions (4)-(6), but in the 

presence of contingency in the evolution of the network structure these entropies are not 

practically observable. It follows from this that J should be a function based not upon the 

entropies themselves but rather on properties of entropy that are necessary for the possibility of a 

minimum in (5) and a maximum in (4) and (6). In addition, J must be based upon observables that 

can be plausibly connected with both the aforementioned properties and with the available 

neuronal mechanisms of synaptic plasticity. The proposal presented here is that the appropriate 

observables are related to possible information flow within the system.  

 

Graphical Analysis of Neural Network Information Flow. A new type of metric for the 

evaluation of information flow within decentralized systems that must adapt their structure to 

accommodate environmental conditions was recently represented by Akuzawa and Ohnishi [35]. 

The central idea is that information concentration and distribution within a network can be 

evaluated by eigenvector analysis of the network graph. This “design indices” method was 

developed for application to decentralized robotic systems rather than for the neural network 

problem. One shortcoming of the method as it was presented is that it is applicable only to 

systems that can be represented by strongly-connected graphs [36]. The issue here is that nodes 

representing system inputs to a neural network cannot themselves be reached from neural nodes 

within the graph and therefore the system graph is not strongly connected. The second 
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shortcoming is that the analysis does not account for differences in the entropies of different input 

pathways or for possible redundancies contained in the set of inputs. The first shortcoming is 

easily overcome; overcoming the second requires an extension of the idea of the connection 

matrix of a graph. 

 

A. Forcing Connectedness by Virtual Feedback. First it is shown that by a simple extension the 

Akuzawa-Ohnishi analysis (AOA) becomes applicable to the problem of structure identification 

of MCUs. Let V be a set of m+n+1 vertices where m is the number of system inputs and n is the 

number of neurons in the network. Let A be a set of arcs connecting the vertices and let A be 

described by a connection function φ. Let  be a set of vertices vVVM ⊂

V

i, i = 1, 2, ..., m 

designating the input vertices, and let V  be a set of vertices vN ⊂ j,  j = m + 1, ..., m+n, 

designating the neurons in the network. Let vm+n+1 ∈ V be a special vertex called the virtual 

feedback vertex. Let [ ]φ,, AV=G  denote a directed multigraph that describes the system. Let T 

denote the connection matrix of the system with ti,j ∈ T denoting the connection (or its absence) 

from donator vertex j to receptor vertex i. Let B  be an n × m submatrix of T denoting the 

connections from VM to VN . Let C  be an n × n submatrix of T denoting connections from VN  to 

VN . B and C are called the input distribution and network distribution matrices, respectively. Let 

F  be an m × 1 vector denoting connections from vm+n+1 to VM . F is called the virtual feedback 

vector. We further assume there are no arcs connecting from VN  to VM , i.e. that the inputs do not 

receive direct feedback from the neural network, and that no input directly connects to any other 

input. Finally, let every vj ∈ VN connect unidirectionally to vertex vm+n+1 and assume the virtual 

feedback vertex has no loop. The connection matrix is then given by  
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 Without loss of generality every column of B contains at least one non-zero element 

(otherwise the corresponding input connects to nothing). Likewise, every row of C contains at 

least one non-zero element (otherwise the corresponding neuron is not part of the network). T is a 
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non-negative matrix, and if every element of F is non-zero the graph is easily shown to be 

strongly connected. In this case T has a unique, real, and positive largest eigenvalue, λ , with 

corresponding positive normal eigenvector R by the Perron-Frobenius Theorem [35]. Akuzawa 

and Ohnishi demonstrated that under these conditions λ is a measure of the degree of information 

concentration in the system and the elements of R describe how this information is distributed 

within the system. Generally, the more input paths a vertex has, the larger will be its 

corresponding element of R with respect to the other vertices in the graph. Thus, its element, rk, is 

a relative index of how much information is concentrated at that particular vertex.  

 As presented, AOA is non-rigorous with regard to the concept of “information” in the system. 

The assumptions implicit in the interpretation of λ and R just cited are discussed below. Before 

discussing them the concept of virtual feedback in the network must be discussed. Let F be a non-

zero vector with one zero element fi in row i. For any eigenvalue of T and its corresponding 

eigenvector we have 

 

    T RR λ= .                    (8) 

 

For the ith row direct multiplication gives us inmii rrfr ⋅=⋅+⋅ ++ λ10 , and for fi = 0, ri = 0. 

Therefore, any input vertex not receiving feedback from virtual feedback vertex vm+n+1 will have 

zero for its corresponding eigenvector element and that input’s corresponding column in B makes 

no contribution to R in (8). G is no longer strongly connected in this case, but a strongly 

connected reduced graph G’ is easily obtained by striking out the row and column for each input 

vertex for which fi = 0 in F. For G’ the conditions of the Perron-Frobenius Theorem again apply 

provided that F is not an all-zero vector, and a unique maximum positive eigenvalue and 

corresponding eigenvector are obtained. If we now augment this eigenvector by adding new rows 

corresponding to the previously-eliminated inputs and inserting zeroes into those rows, (8) is still 

satisfied and we retain unique values for λ and for R. But since the solution of (8) is unique (up to 

an arbitrary multiplicative constant for R), the eigenvalue and eigenvector obtained through this 

augmentation are the same as would have been obtained by direct solution to (8). All this is 

summarized in the following theorem. 

 

 Theorem 1: For connection matrix T as given in (7), the results of Akuzawa-Ohnishi analysis 

are unchanged if and only if F contains at least one non-zero element. Furthermore, G has a 

unique homomorphic image in some lower-order, irreducible, and strongly-connected graph G’. 
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B. Information Analysis Extension of AOA. The AOA terms “information concentration” and 

“information distribution” are not terms sanctioned by formal definitions in information theory. 

Consequently a direct connection between AOA and entropy measures is not established by [35]. 

For AOA to be justified for information-theoretic optimization neural network structure, this 

situation must be clarified. For normalized eigenvector R = [r1 r2 . . . rm+n+1]T , AOA defines the 

“index of  the degree of information concentration in the system” as  
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and the “index of degree of information concentration in the kth element of the graph” as qk = rk . 

Neither of these terms specify quantity of information; quantity of information is measured by 

entropy and these indices are not entropies. AOA index qk provides a measure of what we might 

term the “information potential” of a vertex, that is, an indication of the fraction of the total 

information capacity in the system that is potentially available at vertex vk merely by virtue of the 

nature of connectivity of the graph. It takes into account no measure of source entropy, no 

measure of information loss in passing through a vertex, and no measure of redundancy among 

the data scattered throughout the vertices of the system. Formally, 
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which can be regarded as the fraction of Q distributable from vk in accordance with the 

connection function φ  of the graph.  

 As for Q, an understanding of what this index implies is based on appreciating that AOA 

indices are defined on strongly-connected graphs regarded as closed systems. Such a system has 

no “input.” The vertices of the graph represent subsystems within a distributed system, and these 

subsystems are regarded not only as information processors but also as information sources with 

memory. Because the output of a vertex depends as much on the internal state of the processor it 

represents as it does on information it receives from other vertices, the network is not merely an 

information relay network. The information in an output message from a donator vertex also 

conveys state information to the other processors (the “receptors”) to which that vertex is 

connected. This state information may (or may not) alter the internal state of the receptor 
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processors, depending on what their internal states may be, what “rules” they follow for 

processing signals from their connected donators, and what other information they are receiving 

from elsewhere in the system.  

 This AOA idea of “information flow within the system” is a generalization of the same idea 

that underlies the graph-theoretic treatment of block data translation codes, which is a well-

known application of information theory in communications [34], [37]. Block codes are regarded 

by information theory as noiseless channels, and by a well-known theorem [34] the capacity in 

bits of such a “channel” is known to be log2(λ), where λ is the largest positive eigenvalue of the 

connection matrix that describes permitted code sequences. Now, AOA networks are not data 

translation codes, but the AOA index Q = λ is a measure that is in this same sense monotonically 

related to the information capacity of the network. From this it follows that the indices qk are in 

the same sense relative measures of how this capacity is distributed within the network. 

 This interpretation of what the AOA indices convey leads to the following formal extension of 

the AOA approach for its application to neural networks. Define a rule as any assertion made 

under a set of conditions. Define a decision as the asserting of a rule. The synaptic input signals to 

a neuron constitute a condition, and the response of the neuron to this condition constitutes an 

assertion. Thus, a neuron can be formally regarded as a processor for rule evaluation and decision 

making. A neuron P with t synaptic inputs, each carrying signal σi , i = 1, ..., t, is presented with 

the condition (σ1, σ2, . . ., σt) and asserts a rule as an output signal σo. Using formal notation, 

( otP ) σσσσ aL,,, 21 . If we let Σ denote the set of possible neuronal signals then the rule 

structure of a neuron can be regarded as a mapping 

 

    .                 (10) Σ→Σ×Σ×Σ
−
43421 L

tuplet

P :

 

In general, every neuron is capable of producing more than one output response, and every 

neuron providing it with inputs is capable of providing more than one σi . (10) is merely an input-

output mapping, and P will depend upon the internal state of the neuron. It is possible for the 

output entropy of P to be greater than the entropy of its input signals because the output can be 

said to contain information about the internal state of P. (This is not an unusual situation in 

information theory; the property of dependence on internal state in the entropy of an output is 

what makes cipher systems work [34]). Conversely, it is also possible for the output entropy to be 

less than the entropy of the input set, and this can happen whenever P maps many input sets to the 

same output.  
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 In [35] the elements in T were constrained to be either 0 or 1. Doing this leads to an under-

estimation of Q in the system because it fails to account for different possible signals σo available 

from each neuron as well as for the significance that a particular output presents to another 

neuron as part of that neuron’s Σ . This limitation can be overcome by introducing parallel arcs 

into the graph structure. In the conceptually simplest case if there are χ set-distinguishable signals 

that a donator j can transmit to a receptor i, this can be represented by setting ti,j = χ in T. This 

formal mathematical trick is analogous to introducing parallel trellis paths in describing trellis-

coded modulation systems [38]. Two outputs, σ1 and σ2, are set-distinguishable if the response of 

the receptor neuron can be different depending on which signal it receives. In this sense, a 

receptor neuron can be regarded as a “set-distinguishing receiver” or SDR [39]. Because χ is 

always non-negative, the conditions of the Perron-Frobenius Theorem are still met by T, only 

now log2(λ) is a truer measure of the information capacity of the network at any particular time. 

Note, however, that as the network adapts, the mappings P change and therefore the elements of 

T will in general also change. Thus, Q and the qk of the network evolve in time along with the 

structure of the neural network itself.  

 

Virtual Feedback Connections. The virtual feedback vector F and the virtual node vm+n+1 in 

(7) are mathematical artifacts by which the inputs to the neural network are brought under the 

required conditions for analysis by AOA. How these components of the graph are to be 

interpreted is next examined.  

 The first interpretation to be made is what is represented by the eigenvector component rm+n+1. 

Vertex vm+n+1 is not a neuron, yet rm+n+1 affects the other ri terms in the normalized eigenvector R. 

If the terms in R are to be interpreted as a measure of the distribution of information capacity in 

the system yet vm+n+1 represents neither a neuron nor an input, it is clearly incorrect to regard the 

term rm+n+1 in the same way as the other eigenvector components are regarded. Now, 

 

    ∑
+

+=
++ =

nm

mk
knm rr

1
1

1
λ

.                  (11a) 

 

Furthermore, for k = 1, ..., m we have 
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Substituting these expressions in (9a) gives  
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The first term on the right-hand side of (11c) is the total contribution to Q made by the neurons. 

The second term contains the contributions made by the combination of vm+n+1 and the input 

signal pathways. Vertex vm+n+1 in one sense “buffers” the input vertices from the neuron vertices 

in the graph inasmuch as the feedback to the input vertices is funneled through it. In terms of λ 

this is a kind of “bottlenecking” of information in the graph. It is interesting to note that (7) is not 

equivalent to a connection matrix of the form 
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even though it might seem at first glance that (12) provides exactly the same feedback 

connectivity as (7). In general the maximum eigenvalue  of λ~ T~  will be larger than λ, and Q~  for 

(12) will be larger than Q. The situation here is analogous to the effect of the minimum run length 

constraint on the capacity of run-length-limited codes where increasing the minimum run length 

decreases the capacity of the code by restricting the number of possible code sequences in a block 

[34], [40]. Nodes in the code graph that enforce the minimum run length constraint restrict the 

branching that is possible within the graph, and vm+n+1 plays a similar role here. The AOA 

capacity index for (12) is larger than for (7), and since (12) is indistinguishable from a multi-layer 

recurrent network with output layer feedback to the input layer, we learn from this comparison 

that information capacity in a recurrent network is decreased by “bottleneck neurons” forming a 

connection matrix of the form of (7) ceteris paribus.  

 Next we note that for the special case where F is an all-zero vector (12) is homomorphic to a 

connection matrix  whereas (7) is homomorphic to CH =~
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What is interesting here is that although they are quite different in terms of their eigenvectors, H~  

and H have identical maximum positive eigenvalues and therefore the same AOA capacity index. 

This is easily seen from  
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Vertex vm+n+1 is not strongly connected in H (the other vertices cannot be reached from vm+n+1) 

and therefore it does not make an independent contribution to the AOA capacity index in H. This 

provides us with a clue for how to interpret qm+n+1 = rm+n+1 in the system described by (7). First, 

its lack of contribution to the AOA capacity index in the homomorphic image H suggests that its 

contribution λ⋅ (rm+n+1)2 to Q in (11c) is to be regarded as a network average rather than an input 

pathway contribution. This part of its character is given emphasis by re-writing (11c) as 

 

    ( ) ( )
2

11

2
3

2

1
2

1

2 11






⋅








⋅+


















⋅+⋅= ∑∑∑∑

+

+==

+

+=

+

+=

nm

mk
k

m

j
j

nm

mk
k

nm

mk
k rfrr

λλ
λQ .    (13) 

 

Second, if we regard the vertex indices as being abstract representatives of information flow in a 

system stimulated by stochastic inputs, the form of vm+n+1’s contribution to Q in (13) has more of 

the character of being related to a squared-mean rather than a mean-squared, whereas the leftmost 

term in the first bracketed term in (13) suggests more of the character of being related to a mean-

squared (i.e., related to a covariance). This favors the idea of interpreting vm+n+1 as being 

representative of correlated behavior in the network whereas the terms (rk)2 would be more 

representative of the independent actions of individual neurons in their mapping functions P. 

Because vm+n+1 directly drives the input vertices of the graph, its interpretation in terms of 

squared-mean network activity implies that it is more closely related to (5) compared to the other 

terms in (13). This interpretation is favored by the observation that as the connectivity in C is 

reduced rm+n+1 tends to increase relative to the other rk terms for a given B and non-zero F. This 
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increase is accompanied by a reduction in λ, which denotes a general decrease in the information 

capacity of the network. Both these effects would be expected in networks that were more 

selective in their responses to inputs.  

 Now consider the virtual feedback terms, represented by the right-most term on the right-hand 

side of (13). Referring again to (7), the terms in F distribute the information flow from vm+n+1 to 

the input vertices and B distributes from these to the neuronal vertices. The roles of F and B are 

not generally interchangeable in this distribution just as T and T~  were not generally 

interchangeable earlier. B represents the distribution of input signals into the neural network 

while F merely assigns some fraction fk of the network activity measured by rm+n+1 to each input 

vertex according to (11b). Because vm+n+1 makes no discrimination among the neurons in the 

network, this virtual feedback is non-specific with regard to individual neurons and therefore the 

differences among the qi = ri , i = 1, ..., m, can be regarded as indices of differences in the relative 

information rates of the m inputs. F thus serves as an abstracted input activity pattern. 

 Typically the virtual feedback contribution to Q is smaller than the network contribution at 

lower values of the fk terms in F. Multiplicative increases in F tend to raise the value of λ, 

although the increase is proportionally less than the increase in the terms of F, and increases the ri 

input indices, principally at the expense of rm+n+1 which decreases significantly in value. The 

neuron indices rk, k = m + 1, ..., m + n, tend to decrease as well, although not so dramatically as 

rm+n+1, and the distribution among these values tends to become more uniform, although they 

maintain their relative ranking as F is uniformly increased. As the modulus of F increases a point 

is reached where the input indices exceed the neuron vertex indices, a situation that can be 

interpreted as saturation of the neural network’s information-handling capability. This behavior is 

consistent with what is expected to occur as the rate of incoming information exceeds the 

information capacity of the network.  

 

Information Weights and Entropy Index. The cardinality of the variety of responses a neuron 

can have to its various inputs is a measure of its information capacity, and its index qk is a relative 

measure of its distinctive contribution to the overall network’s information capacity. This index is 

given by (9b), and the tk,j terms in (9b) give the “connection weight” of the input pathways in the 

sense that each tk,j is a measure of the number of significant signals affecting neuron k from 

source vertex j. For neuron k we re-write (10) as 
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and consider the Σk,j terms in this expression. Each term represents a significant input message σk,j 

and so Pk(σk,1, σk,2, ..., σk,m+n) σ ∈ Σa k is the simplest general expression for the mapping 

performed by neuron k on its input messages. More generally, however, neuron k is also 

characterized by some internal state, uk ∈ Uk , where Uk denotes a set of possible neuron states. 

(Such would be the case, e.g., in an integrate-and-fire neuron model, a BCM model or an Eckhorn 

neuron model). Therefore, the general model extends (10) to the coupled set of dynamical 

functions 
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where Zk is the mapping function for neuron k’s state transition function. The specific functions in 

(14) depend on the properties of the neuron model being used, and what concerns us at the more 

abstract level of AOA analysis is the cardinality of each of the sets Σk,j in (14).  

 An input σk,j can be significant in any of three ways: 1) it can affect the neuron’s output σ; 2) 

it can affect the neuron’s internal state uk; or 3) it can affect both. Furthermore, whether or not a 

particular σk,j is significant at any given time can depend on the other coincident input signals and 

the neuron’s state at that time. Adding to this complication is the presence of recurrent 

connections in the network since feedback from neurons for which neuron k is a donator will 

generally set up a transient response in the network as a whole, which makes a crisp definition of 

a signal σk,j at any particular moment in time somewhat problematic. A formal method is needed 

in order to resolve this ambiguity and permit evaluation of (14) and determination of the 

cardinalities of its various sets. 

 In establishing such a formal method the following definitions are useful.  

 

Def. 1: A closed cycle of activity is any periodic activity pattern.  

Def. 2: An innovation is any change from a closed cycle of activity to any other activity 

pattern. 

Def. 3: A neuron is in equilibrium if its output activity is a closed cycle of activity. 

Def. 4: An assembly is any defined set of neurons whose connectivity is described by a 

strongly-connected graph that does not include any vertices not corresponding to the 

members of the defined set of neurons. 
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Def. 5: An assembly is in equilibrium if all its member neurons are in equilibrium.  

 

The utility of these definitions is owed to the following property of entropy rates. Let at be a 

symbol that describes a neuron’s firing activity over some interval of time characterized by index 

t. For example, at might represent the elapsed time between an action potential and the neuron’s 

previous action potential. Let the output activity of the neuron be represented by the sequence of 

symbols a0, a1, ..., at-1. The entropy rate of this sequence is defined as 
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and by the chain rule for entropy this expression evaluates as 
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Now suppose that beyond some index t = tr the symbol sequence establishes a closed cycle. From 

this point on, the conditional entropies in the expression for h are zero and the numerator is finite. 

Therefore  for any activity pattern that eventually forms a closed cycle of activity. From 

this we have the following lemma. 

0→h

 

 Lemma 1: The entropy rate of any neuron in equilibrium and any assembly in equilibrium is  

 zero. 

 

 We may now define a time-limited message as any neuronal firing activity whose entropy rate 

is zero. Likewise, a time-limited input message set is any set {σk,1, σk,2, ..., σk,m+n} whose joint 

entropy rate is zero. The donator set of a neuron can therefore be defined as a subset 

 

    nmkkkkD +Σ××Σ×Σ⊆ ,2,1, L                 (15) 

 

such that every element of  is a time-limited input message set whose members are significant 

time-limited messages. Let χ

kD

k,j represented the number of set-distinguishable signals that donator 
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j can transmit to neuron k. An upper bound on the cardinality of (15) is achieved if every set-

distinguishable signal is also a time-limited input message, and therefore 
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provided that neuron k has at least one donator. Otherwise 0=kD  and cannot belong to any 

assembly. 

 The entropy H(Xk) of the inputs to neuron k is upper bounded by 
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with equality if and only if every element of Σk is equally probable. Applying (16) to this 

expression gives 
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For each vertex rj is a normalized index of information distributable from vertex vj. It is therefore 

reasonable to assume that χk,j is proportional to the product of rj and tk,j. Let α  a the constant of 

proportionality so that jjkjk rt ⋅⋅= ,, αχ . Let dk be the number of donator arcs terminating on 

neuron k such that t and let {d0≠jr, ⋅jk k} denote the set of these arcs. Then 
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where wk,j = α ⋅ tk,j will be called the information weight of arc (k, j).  

 Since the input entropy can never be negative but all rj terms lie in the range 0 ≤ rj ≤ 1, (17) 

restricts the permissible values of the wk,j terms to those for which the sum of the logarithms in 

(17) is non-negative. (17) is therefore a constraint on the structure of the graph. Furthermore, 

since α  has the interpretation given above, its value is constrained by the requirement that (17) 

must be satisfied at every vk, k ∈ [m+1, m+n+1], in the graph. Furthermore, since tm+n+1,j = 1 for 
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all j ∈ [m+1, m+n], α ≥ 1/rj for at least some subset of j in this range such that the constraint on 

the sum of logarithms in (17) is satisfied at k = m+n+1 as well. One consequence of these 

constraints is that any adaptation algorithm operating on the graph G will automatically be able to 

produce a minimum bound on α  because these constraints must be satisfied at every step in the 

adaptation. It is therefore possible to establish a link, albeit only in terms of bounds, between the 

AOA indices and the entropies in the system. For this reason, α  can be regarded as an entropy 

index for the system.  

 

Neuron Equivocation. We can also examine the consequences of (14) for the equivocation 

properties of a neuron. Since the output set Σk of neuron k is a function of its input set and state 

space, represented as the ordered pair of sets kk UD , , it is meaningful to look at the mutual 

information  
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Because mutual information is always non-negative, the upper bound on neuron k’s equivocation 

is therefore 

 

    ( ) ( ) ( ) ( )kkkkkkkk DUHDUHDHDH Σ−+≤Σ , .        (18) 

 

H(Dk) = H(Xk) and is upper-bounded by (17). The remaining two terms on the right-hand side of 

(18) depend on the properties of neuron k.  

 In system theory, a system is said to be observable if the state of the system, Uk, can be 

determined from observations of its inputs and outputs. Otherwise the system is said to be 

unobservable [41]. From this definition we have 

 

Lemma 2: Neuron k is observable if and only if ( ) 0, =Σkkk DUH . 

 

Complete observability means that every state variable making up the system’s state can be 

uniquely determined from observation of the system’s inputs and outputs. Unobservability does 

not necessarily mean that nothing can be known of the state variables of the system; it merely 

implies that all the individual state variables cannot be determined. There can therefore be 

degrees of unobservability according to what fraction of the state variables within the system 
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state are unobservable. ( kkk DUH Σ, ) measures the degree of unobservability. In system 

engineering, and particularly in control system engineering, it is often the case that “observers” 

form part of the controlling mechanism of the system. This raises the interesting speculation that 

some neurons in a neural network might constitute an observer function within the network, 

particularly if the function of that network is served by maximizing the equivocation (18).  

 In system theory a system is said to be controllable if the state of the system can be set 

through the application of particular input signals [41]. Otherwise it is said to be uncontrollable. 

The term ( kk DUH )  is a measure of the uncertainty in state Uk given inputs Dk. ( )kk DUH  = 0 

implies that the neuron’s state is completely and uniquely determinable by the inputs regardless 

of the initial state of the neuron. From this we have 

 

Lemma 3: Neuron k is controllable if and only if ( )kk DUH  = 0. 

 

Complete controllability means that every state variable in the system state can be uniquely set 

independently of the other state variables. Here, too, uncontrollability is a matter of degree. If two 

or more state variables cannot be set independently of each other, while others can be so set, the 

system is only partially uncontrollable. ( )kk DUH  is therefore a measure of uncontrollability for 

neuron k. In system engineering, and particularly in control system engineering, a “controller” 

forms part of the mechanism of the system, and again we have the interesting speculation that 

some neurons in a network might constitute a controller function.  

 The equivocation for neuron k, given a fixed set of inputs, is maximized by maximizing the 

difference ( ) ( kkkkk DUHDUH Σ− , ). If neuron k is part of a cell assembly, (18) is easily 

extended to describe the cell assembly merely by defining the state of the assembly in terms of 

the states of all its member neurons and restricting the assembly’s donator set to only those inputs 

coming into the assembly from without. If that cell assembly is a feature-representing network (a 

feature MCU), its selectivity is maximized by maximizing the assembly’s equivocation, as 

discussed earlier. Formally, let assembly A be a set of neurons denoted by the set K of vertex 

numbers. Let UA denote the state of the assembly, 
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Let DA denote the assembly’s inputs 
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and let ΣA denote the assembly’s outputs 
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The equivocation of the assembly is then given from (18) as  

 

    ( ) ( ) ( ) ( )AAAAAAAA DUHDUHDHDH Σ−+≤Σ , .        (19) 

 

The task of any adaptation algorithm for producing a feature-detecting assembly is the 

maximization of (19) through restrictions on DA and ΣA and formation of an intra-assembly 

connectivity (i.e. a graph GA). It follows from what was said above that this process quite 

probably involves the specialization of some neurons in the assembly to “controller” and 

“observer” tasks within the assembly. Furthermore, it can be expected that some elements of DA, 

entering the assembly from other assemblies, will constitute a representation of context states S as 

discussed previously.  

 Seen in this way, e.g. as the problem of maximizing (19) for each assembly, this description of 

the adaptation task suggests an approach for dealing with one obvious computational issue that 

attends applying AOA to the DLA structure identification problem. That issue is the 

computational complexity of evaluating the eigenvalues and eigenvectors of a large graph G. But 

because AOA indices are always relative rather than absolute indices of information, the task 

represented by (19) suggests that a large neural network graph can be regarded at a higher level of 

abstraction in terms of an equivalent assembly graph in which the vertices represent cell 

assemblies and input tracts rather than individual neurons and data inputs. The first phase of 

adaptation then involves establishing inter-assembly connectivities and tract routing, to be 

followed in the next phase by treatment of individual large assemblies in terms of their 

constitutive smaller assemblies. The basic idea here is one of top-down decomposition of the 

overall problem, and is made possible by the relative nature of AOA indices. To realize this 

ability, the adaptation algorithm used must produce results in lower-level network graphs that 

provide for inter-assembly connectivity at the next higher level of analysis. 
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Adaptation of the Connection Matrix. By introducing the idea that elements ti,j in B and C are 

an abstract representation of the number of donator messages that are significant to the receptor, 

we are no longer bound to regard the ti,j as integers (although they must remain non-negative). In 

the original AOA concept, the design indices λ and rk were to be used to design dynamic soft re-

linking of decentralized systems. However, how this is to be done was not yet established in [35]. 

 In the context of feature-detecting network formation there are two properties of the AOA 

indices that reflect whether an adaptation of the B and C submatrices of T is serving the objective 

functions stated earlier. First, because Q = λ is a global measure of network capacity (for a given 

F vector), adaptation should maintain or increase Q. Increasing Q corresponds to increasing the 

information capacity of the network by elimination of information-lossy interconnects. Second, 

the adaptation should decrease rm+n+1 (again for a fixed F). This is because this index represents 

redundancy within the network, and therefore decreasing it while increasing Q implies that 

regions of the network are becoming specialized in their response to input patterns F. Preliminary 

numerical experiments indicate that both these properties, as well as the production of inter-

assembly context links, are satisfied by the adaptation method presented in this section.  

 The squared eigenvector element (rk)2 is the fraction of the total information index Q 

concentrated at vertex k for a given input pattern defined by F. The virtual term (rm+n+1)2 is a non-

specific global index describing the network as a whole, and we have 
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Therefore the relative local information contribution to the network distribution by vertex k, k < 

m+n+1, can be described as 
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The square root of the denominator of this term fills the role of a normalizing factor during 

changes to the network connectivity or changes in the input distribution F.  

 Now, regardless of how many messages a donator can emit that might be significant for a 

particular receptor, a particular input path or neuron output emits one firing pattern at a time. 

Network adaptation must consider how the information carried in this signal is distributed 

through the network. Define the direct distribution matrix as the n × m+n matrix 
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The elements of D are AOA indices of how donator information is distributed among that 

donator’s receptors. The columns of D correspond to the individual donators; the rows of D 

correspond to the individual receptors. Columns 1 through m correspond to input donators, and 

the remaining columns correspond to neurons in the network. These indices are abstract measures 

of the distribution of donator information among the receptors. Matrix [ ]CB  is, of course, the 

submatrix of T consisting of its rows m+1 to m+n and columns 1 to m+n.  

 Under Hebb’s hypothesis, adaptation of synapses depends on the product of input activity and 

the responding activity of the postsynaptic cell. Similarly, AOA indices are defined by the matrix 
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Additionally, Hebbian-like adaptation requires some threshold function that determines if the 

connectivity will be increased or decreased. In our present context, this threshold corresponds to a 

determination of the degree to which a donator can be said to be “participating” in the responses 

of its receptors. We make the hypothesis that a donator j is “participating” with receptor i when 

its distribution element δi,j in (20b) exceeds a weighted row average taken over some subset of 

donators, the weighting being a function of the corresponding elements ti,j in a subset 

{ }fz jjj ,,0 L∈  of row i. We define sub-row averages for each such partition of row i as 
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where z is called the “zone number.” Θ(x) = 1 for x > 0 and 0 otherwise. The set of indices jz 

defines a “competitive zone.” This concept is discussed below. Each receptor has at least one 

competitive zone, and the union of all a receptor’s competitive zones covers all its donators.  

From the competitive zone definitions we obtain from the set of (20c) a threshold matrix 
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Each zi,j in (20d) specifies a particular competitive zone of the sub-row average. Competitive 

zones are defined row-by-row for each individual receptor and (20c) is computed for each zone. 

 The connection update within each competitive zone is provided by some function, called the 

adaptation rule, g,  

 

    ( ) nmjnigt jijijmi +==−=∆ + ,,1;,,1,,,, LLδδ  .        (21a) 

 

The corresponding new element in T becomes  

 

    ( )jmijmijmi ttt ,,, ,0max +++ ∆⋅+← η               (21b) 

 

where η is an adaptation rate constant.  

 The adaptation rule is governed by the following considerations: 1) if jiji ,, δδ >>  this implies 

that donator vj is providing relatively high message traffic to receptor vi in comparison to its other 

donators. However, one information tract within a neural network is typically not sufficient by 

itself to provide a level of excitation to the receptor consistent with firing responses or the 

induction of plastic changes in the synaptic connections. Therefore, the number of messages that 

actually are in participation with messages from other donators is going to be merely a fraction of 

the traffic from vj. Accordingly, ∆t should be kept relatively small; 2) if jiji ,, δδ <<  this implies 

that vj is either not very active or that most of its messages are not participating at receptor vi. Its 

connection weight should therefore be reduced (under Hebb’s hypothesis). However, if a large ∆t 

is permitted, this is tantamount to assuming that either vj makes many synaptic connections to vi 
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or that it is providing many significant messages to the receptor. Neither of these suppositions is 

consistent with the condition jiji ,, δδ << . Therefore, ∆t should again be kept relatively small; 3) 

if jiji ,, δδ = , on the average vj will be a participant half the time and a non-participant the other 

half. Its gains and losses in connection weight will therefore tend to cancel out, implying ∆t = 0; 

4) finally, considerations 1 – 3 above imply there is some region jiji ,, δδ −  in which t∆  is 

maximal. A function that satisfies all four of these criteria is 

 

    ( ) [ xxxg ⋅−⋅= σexp ]                (22) 

 

where σ is a constant controlling the rate of change in ∆t. In the more general case, σ should be 

made dependent on the sign of x, producing a faster exponential decay for x < 0 to account for the 

fact that ti,j is lower-bounded by zero.  

 Adaptation under equations (21) results in non-integer values in the connection matrix. These 

are interpreted as indices of the relative participation of the various interconnection pathways in 

the activity of the network. η is selected such that changes in the connection weights vary by no 

more than a small amount during any one adaptation cycle.  

 

Competitive Zones. The hypothesis that synaptic plasticity involves competition among 

synapses at the target cell is a commonly employed modeling assumption in a number of 

important adaptation rules [42] and is an assumption employed in the correlation theory of brain 

function [43]. Most adaptation rules employing this hypothesis, either explicitly or implicitly, 

treat synaptic competition at the receptor cell in terms of cell-wide (i.e. single compartment 

model) competition. However, the biological plausibility of treating synaptic competition on a the 

whole-cell level is somewhat strained for at least those neurons having extensive dendritic arbors. 

There is evidence favoring the hypothesis that axons may have preferences for specific portions 

of a target cell’s surface [44]. Such a preference, combined with the localization of properties 

often exhibited by dendritic compartments in multi-compartment neuron models, suggests that at 

least some synaptic competition may be “regionalized” to specific portions of the receptor cell. 

Furthermore, at a higher level of modeling where one vertex represents a cell ensemble, there is 

even more justification for making the assumption that competition among inputs may be 

localized. A region of localized competition is what is meant here by “competitive zone.” 
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Def. 6: A set of connections { } { }nmiiijijizi ttttt
f +⊂T = ,2,1,,,, ,,,,,

0
LL , [ ]nmmi ++∈ ,1 , is a 

competitive zone in receptor i iff all ti,j ∈ Ti,z are adapted using the same threshold ( )zi,δ  

defined by equation (20c).  

 

 Different sets Ti,z defined on receptor i are disjoint, and the union of all such sets defined on 

receptor i constitutes row BiCi within T. At higher levels of model abstraction, the simplest 

partitioning for competitive zones is to partition zones between B and C in T. This can be an 

appropriate partitioning when one vertex represents a cell ensemble since the number of input 

fibers in the input tract is typically much smaller than the number of neurons in the receiving 

network, most of which are interneurons [45]. Functionally it is reasonable to suppose that 

competition between inputs in this case is effectively compartmentalized by both interactions 

among “input layer neurons” and the distribution of synaptic connections made by different 

neurons in the local circuit [46]-[47].  

 At a lower level of abstraction the determination of competitive zone partitions bears some 

resemblance to the specification of clusters in neural networks based on higher-order neuron 

models [12]. Although cluster-learning algorithms that make no a priori assumptions about 

specific cluster internal structure have been reported, clustering models must nonetheless specify 

the number of clusters themselves, i.e. must specify the gross structure (how many clusters are 

present, what their input sources are, etc.). AOA analysis offers a possible approach to this initial 

structural definition. In our preliminary experiments so far conducted, it has been observed that 

the final graph structure obtained from applying the adaptation method above tends to eliminate 

connections from donator vertices having the smallest eigenvector component in the initial 

configuration of the network. This is a consequence of using row-averages ji,δ  in (21a). 

Averaging is an inherently information-lossy process, and (21a) can be regarded as analogous to 

using a binary threshold quantizer in a communication receiver. It should be recognized that this 

information loss mechanism is one that the modeling introduces into the network structure, much 

as the introduction of the quantization characteristics of an analog-to-digital converter introduces 

information loss in a receiver [48]. In order to reduce the degree of this modeling loss, 

competitive zones can be introduced into a receptor based on grouping donators with like-valued 

eigenvector elements into the same competitive zone. This tends to prevent vertices with initially 

high eigenvector elements in the starting configuration from unduly dominating those with lower 

values during the crucial initial direction taken by the adaptation of the structure. Note that each 
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receptor can have its own competitive zone definition, which allows for overlapping the 

competition of specific donators at different receptors.  

 

Synopsis of Preliminary Results. The AOA approach was publicly introduced outside of Japan 

in the first week of November, 2003. In the time that has elapsed since then the method has been 

extended to apply to the neural network structure problem in our laboratory with the following 

initial findings. These findings are based on relatively small graphs with varying initial 

configurations, and so represent preliminary results.  

 1) Stability. The adaptation algorithm (20)-(22) converges to stable final configurations for 

input patterns F consisting of both constant inputs and small sets of different input patterns, {F} 

applied sequentially. For simple competitive zone partitioning BC, submatrix C typically 

converges first to a steady-state solution. With repetitive patterns, submatrix B usually exhibits a 

small, bounded limit cycle behavior as the input connections ti,j are slightly modulated by F. 

Within this limit cycle the B matrix ti,j do converge to steady-state values for each particular input 

pattern. “Stability” of the B submatrix is here bounded-input bounded-output (BIBO) stability in 

the Lyapunov sense. Depending on the number of patterns and the size of the network, 

convergence to steady-state typically occurs for small networks within 40 to 100 iterations, one 

iteration per input pattern application. The C submatrix also converges to a fixed steady-state 

configuration under zero-input conditions (F = 0) as well. 

 2) Capacity Index. The AOA index Q = λ increases from its initial value to its final value, 

adjusted for variations due to different input patterns. For almost all steps in the iteration λ 

increases at each step. In a small number cases, typically one or two iterations out of the total, λ 

may decrease momentarily when a donator column in C goes to all-zero values, which means that 

this vertex no longer feeds back into the network, i.e. the vertex has been relegated to the role of 

being merely a “relay neuron.” (Note that no vertex is ever allowed to lose its connection to the 

virtual feedback vertex vm+n+1). This transient decrease in Q appears to be due to discretization 

effects related to the adaptation rate η since the system recovers a higher Q value at the next step. 

Hence, this appears to be merely a numerical artifact rather than being indicative of a violation of 

Bellman’s Principle.  

 When simple BC competitive zone partitioning is used, no vertex has been observed to lose all 

of its donator connections. The virtual feedback index rm+n+1 likewise decreases at almost every 

step, adjusted for variations due to different input patterns, indicating more specific information 

concentration at vertices within the network, i.e. improved input pattern selectivity. Among the 

other eigenvector indices rk, k = m+1, ..., m+n, the largest final values tend to be found at vertices 
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that have been configured as “output” (i.e. “relay”) vertices driven by vertices that remained 

strongly connected in the final configuration. Furthermore, these “output vertices” have 

eigenvector indices that respond strongly to the input pattern F, which indicates selective routing 

of the input information and good separation of input patterns.  

 3) Reduction of Network Pathways. When exposed to a small suite of input patterns, the final 

network configuration tends to produce a final configuration in which the strongly-connected 

final subnetwork contains many fewer vertices than the initial configuration. Define a recurrent 

multi-layer network as a network in which some of the vertices in the initial configuration are not 

given direct paths from the input vertices but do have recurrent feedback to vertices that do have 

such connections. (Such vertices will here be called “strict interneurons”). The adaptation tends to 

reduce the number of layers in such a network in the final configuration in the sense that it tends 

to abolish the recurrent connections of strict interneurons back into the remaining strongly-

connected subnetwork whenever possible. Thus, these vertices tend to be relegated to the role of 

“secondary relay neurons” and their eigenvector indices tend to be smaller than average in 

response to “familiar” input patterns. Provisionally, it may be the case that these secondary relay 

vertices may be well-suited to function as “observer vertices” reporting on the degree of 

“recognition” of the input pattern F since they do tend to have strong connections ti,j to some, but 

not all, donators in the strongly-connected subnetwork. In our preliminary studies, the network 

configuration seems to prefer lateral connections to multi-layer feedback connections, although 

not enough cases have been tested yet to allow us to form any firm hypothesis in this regard. In 

summary, the system shows a high degree of partitioning of the network in response to a small 

suite of correlated input patterns F.  

 4) Time Course of Network Connections. Although in many cases the ti,j tend to 

monotonically increase or decrease from their initial value, this is not true of every connection. In 

some cases, particularly those involving donators to vertices destined to become relay vertices, ti,j 

values may initially rise, only to fall later. This has an interesting possible and unanticipated 

implication for the structure of the network. Increasing the value of a ti,j is interpreted as 

indicative of the establishment of “messages” that are “significant” to the receptor. Biologically, 

there is a strong temptation to regard this as indicative of “stabilizing” synaptic connections. If, 

therefore, such a ti,j is later greatly reduced or driven to zero, the proper interpretation is not so 

much that a previously established synaptic connection has become disestablished; rather, it 

seems more likely that “significant messages” are being blocked by inhibitory actions.  

 If this provisional interpretation holds up under additional testing and research, the implication 

is that changes in direction in the time-course of the ti,j can be used to construct a second graph to 
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be overlaid upon the first. This second graph would represent inhibitory connections within the 

network, such inhibitory connections serving to optimize the objective function in a neuron-level 

model of the structure defined by T. Each vertex in this inhibitory graph, S, is interpreted as 

representing an inhibitory interneuron or an ensemble of interneurons with inhibitory outputs. 

Excitatory donator connections from graph T to graph S are easy to identify from the δi,j in (21a), 

and inhibitory output connections would extend to the receptors vi undergoing a direction change 

in one or more of their ti,j. If some but not all these ti,j values change direction, this tends to imply 

presynaptic inhibition of these pathways. If all these ti,j undergoing changes in direction, this 

tends to imply inhibition applied to vi itself. Linkage between T and S can in principle be effected 

as an inhibitory modulation  

 

    ( ) jikjiji tt ,,max,, ρ⋅=                  (23) 

 

where jik ,,ρ  is the connection strength of the inhibition running from vertex k in S to arc ti,j in T. 

Parameter (ti,j)max represents the peak value attained by ti,j during the adaptation prior to its later 

reduction.  

 5) Dynamic Links. We have observed that competitive zone partitions confined to within the 

C submatrix tend to converge to stable configurations before those involving the B submatrix. 

Furthermore, the B submatrix tends to exhibit BIBO limit cycle responses to periodically-applied 

input pattern suites {F}. This of course means that the ti,j connections running to “neuron” 

vertices vk, , have input-dependent optimum values. Convergence of the C 

submatrix is an optimization over the input suite, and once C has converged it undergoes no more 

changes provided that it contains no competitive zones overlapping into B. This property can be 

exploited to obtain input-dependent dynamic links in the input pathway.  

[ nmmk ++∈ ,1 ]

 This can be achieved as follows. Let the input suite consist of L input patterns 

 

    F = {F1, F2, . . ., FL}. 

 

Following convergence of the C submatrix, continued application of each pattern  drives the B 

submatrix to convergence to input-dependent steady-state values associated with each . The 

limit cycle behavior of B is a consequence of changing input patterns. The resulting  for each 

element of F represents an optimal value conditioned on a pattern-by-pattern basis. Because the 

lF

lF

lB
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adaptation produces a maximal pattern-dependent value of λ for each separate case, this gives us 

a pattern-dependent optimal set 

 

    B = {B1, B2, . . ., BL). 

 

For an arbitrary input pattern F compute 

 

    [ ]LFFFFM L21′=  

 

where prime denotes transpose. The maximum element in row vector M identifies the element of 

F that F most closely matches. The corresponding element of B then corresponds to the best 

match of connections ti,j for this input in submatrix B. Obviously this simple scheme can be 

refined, and the possibility is open that better and more sophisticated methods of dynamic link 

modulation of connections await discovery. What must be borne in mind is that the AOA 

information indices ti,j do not themselves directly represent synaptic strength. Their application to 

lower-level, more physiologically-based neural network models calls for examination of the 

signal modulation properties of the neurons. The ti,j should not merely be regarded as synaptic 

weights.  

 

Damasio Networks. Extension of the graph network (7) to general structures in the form of 

Damasio’s multi-level network architecture [2] is straightforward. It involves merely a 

partitioning of the F vector, B matrix, and C matrix in (7). Suppose we have a three-MCU system 

composed of two feature-representing networks at the first level projecting to a single 

convergence zone network at the second level. Further assume that the convergence zone network 

receives no direct sensory input but only outputs from the first-level networks. Let F(1) and B(1) be 

the pattern vector and input distribution matrix for feature network 1, and let F(2) and B(2) be the 

pattern vector and input distribution matrix for feature network 2. The total number of inputs to 

the system is m = m1 + m2 and the total number of neurons is n = n1 + n2 + n3. F(1) is m1×1, F(2) is 

m2×1, and the input matrices are n1×m1 and n2×m2, respectively.  

 The C matrix is partitioned into local network submatrices, C (i,i), and cross-connection sub-

matrices, C (i,j). Each C (i,i) is ni×ni, and each C (i,j) is ni×nj. (7) then becomes 
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As before, the system contains a single virtual feedback node, vm+n+1 that monitors all the “neuron 

vertices” in the system and supplies excitation to the pattern vector F. T is (m+n+1) × (m+n+1). 

Generalization of the form of T to any number of levels and any number of MCUs is straight-

forward.  

 The adaptation behavior of (24) will be determined in significant part by the definitions of 

competitive zones in each of rows m + 1 to m + n. Preliminary results to date indicate that for at 

least some competitive zone definitions different sub-graphs within C will converge to a steady-

state configuration prior to other sub-graphs within C. For example, this is expected if 

competitive zone boundaries align going down the columns of C. This raises one experimental 

research question and also one implication for dynamic link architectures. 

 The research question is: What is the correct determination of competitive zone definitions for 

models of actual neurological networks? This is a difficult question because the cellular-level 

dynamics of synaptic competition are not presently completely understood. For example, do 

synapses made on distal dendrites undergo competition with those made on proximal dendrites? 

Do they do so in some cell types but not in others? These and many other questions have no clear 

cut answers at the present state of knowledge. In this arena, the model proposed here has value 

for helping to identify and design experiments. Definitions chosen for the competitive zones 

based on morphological studies of real neural networks will affect the final structure of the 

system, and at a sufficiently low level of abstraction will make imputations about the nature of 

synaptic competition in biological neurons. It follows that in those cases where a particular 

competitive zone definition produces structures at odds with experimental findings, it is unlikely 

that synaptic competition in the biological system has the competitive domain established by the 

competitive zone definition of the model. On the other hand, if experimental findings agree with 

the structural characteristics produced by the model, this lends support to the hypothesis that the 
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mechanics of synaptic competition in the experimental case follow the competitive domain 

structure assumed in the model. 

 The implication for dynamic link architectures is a generalization of the approach to modeling 

dynamic links discussed in the previous section. Subgraphs in C that stabilize before the system 

as a whole due to their competitive zone definitions are unaffected by subsequent variations in the 

rest of the system under the application of a suite of input patterns F. On the other hand, cross-

linking terms C (i,j) are physically more likely to have competitive zones that overlap either with 

inputs or with competitive zones C (k,k) in the target network. Likewise, within any particular 

MCU C (k,k) a given donator vj may compete with different sets of donators on different receptors 

vi. BIBO limit cycles are more likely to occur for these types of competitive zone definitions. 

Consequently, by including all subgraphs in (24) exhibiting BIBO limit cycles in the method 

proposed earlier, the dynamic link mapping can be made to include these terms, thus defining 

pattern-dependent optimal sets C (i,j) to accompany those in B described previously. As was the 

case in the discussion above, further research can be expected to lead to additional refinements in 

this simple scheme. 

 

Summary. This paper has presented a new approach to the problem of neural network structure 

identification. It is based on an extension of the recently introduced AOA method. It has been 

established that AOA indices are related to information-theoretic measures of optimization, and 

that consequently AOA indices can serve as a basis for an objective function for optimization of 

information-theoretic properties in the structure of a network. A simple algorithm has been found 

that produces a number of preliminary results consistent with what one would expect from 

optimization of an information-theoretic objective function. The algorithm does not require direct 

measurements of entropies or probability distributions, which is advantageous because such direct 

measures are notoriously difficult to obtain in practice. AOA treats the network at an abstract 

level and is suitable for a hierarchical approach to large neural network systems. Preliminary 

work has evidenced significant promise for this approach, but the research is still in its early 

stages and clearly much work remains to be carried out. 
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