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Abstract 

 This white paper describes the general objectives and organization for foundational research in 

computer architecture derived from models of the dynamical organization of cortical and non-cortical 

bio-circuits in the central nervous system (CNS). Our principal General Objectives are: 1) to 

understand how this dynamical organization in brain structure can be viewed in a computational 

context; 2) to discover what implications dynamical organization holds for information processing; 

and 3) to develop a new class of computing devices organized and designed to take advantage of these 

findings. Within the framework of these General Objectives there are Discipline Objectives in support 

of these General Objectives. This research will be carried out by an interdisciplinary team composed 

of researchers drawn from the disciplines of microelectronics, computer engineering, computer 

science, neurobiology, and computational neuroscience. The discoveries and findings from this 

research are expected to make fundamental contributions to the art and science of computing 

technology as well as to our basic knowledge of brain organization and the biological substrates of 

intelligence. It is expected that the experimental and theoretical findings of this research will 

profoundly affect the future course of computer design and computer science, and will establish a new 

break-through paradigm leading to more truly intelligent and robust computing devices. It is not 

improbable that the foundations laid by this research will lead to an entirely new industry of 

biomimetic neurocomputer systems based on dynamic link architectures.  

 

I. Introduction 

 Whatever one’s philosophical position may be on the degree to which the brain can or should be 

regarded as some type of computer, there is no reasonable doubt that the brain and the computer can 

both be regarded as information processing systems. The modern digital computer can trace its origins 

back to the pioneering work of McCulloch and Pitts in 19431, and its development is largely credited 

to the work of John von Neumann, in whose hands the McCulloch-Pitts neuron model became the 

basic logic circuits used today in all digital computers2. In its most common forms, the digital 

computer is a device that carries out sequential logical and arithmetic operations on data operands. The 
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sequential nature of its operations limits the speed with which results can be obtained and is the 

mathematically fundamental limiting factor in its performance.  

 Numerous computer architectures have been proposed over the years with the aim of overcoming 

the fundamental speed limitations imposed by sequential processing, and for overcoming the 

fundamental limitations on machine reliability imposed by this same sequential information 

processing architecture. These architectures are generically called parallel computer architectures and 

fall into three general classes: single-instruction/multiple data (SIMD) architectures; multiple-

instruction/multiple data (MIMD) architectures; and parallel associative arrays (PAA). Classic 

examples of these different classes include ILLIAC-IV (SIMD)3, the Burroughs D825 (MIMD)4, and 

the Goodyear Aerospace STARAN (PAA)5. There have been many decades of work carried out on the 

issues, factors, and problems associated with parallel computing6, and this work is still on-going today. 

 From their beginning in the late 1950s and early 1960s, neural networks have been regarded as one 

possible approach to uncovering fundamental principles of parallel computing and to realizing more of 

the potential that has long been believed to lie within the framework of parallel computing. But even 

today it is argued by many that there are theoretical questions concerning the mathematical 

foundations of parallel computing still unanswered7, and it is strongly argued by some that the current 

literature on neural networks and neurocomputing contains a wealth of experimental results but few 

theoretical results regarding the main mathematical issues of concern to parallel computing8. Artificial 

neural networks (ANNs) have long demonstrated the capacity to solve certain classes of problems that 

prove to be difficult to solve by ordinary computer methods. They have likewise long demonstrated an 

impressive degree of fault tolerance. This includes both being able to deal with problems similar to yet 

different than those for which they have been trained, and being able to tolerate damage to the ANN 

system itself. In addition, ANNs possess the remarkable capacity for self-optimization, a capacity that 

can be loosely characterized as “the ability to program themselves.”  

 On the other hand, critics of artificial neural networks point out that these capacities have been 

demonstrated only at the level of relatively small-scale problems, and that there is significant evidence 

in support of the contention that the small-scale problems where neural networks have proven 

successful do not translate up to fit large-scale problems. Some of these concerns have been shown 

experimentally to be misplaced, but others remain unresolved. One of the most critical issues here is 

the question of whether or not the number of bits of accuracy required of neuronal weights rises 

linearly with the size of the support set of the problem to be solved. This is potentially a formidable 

problem because it implies a geometrically increasing computing precision is required as the scale of 

the problem increases. This “bit explosion” phenomenon was proven as a theorem (the Minsky-Papert 

stratification theorem) for one particular class of neural network8, and it was conjectured that the same 
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result will be obtained for other classes of connectionist ANNs. Findings from recent research 

conducted at the University of Idaho have demonstrated that the computational precision required as 

the problem scales up depends on the topology of the network9. Although these findings do not 

necessarily refute the main result of the Minsky-Papert stratification theorem, they do indicate that 

computational precision requirements are affected by the structure of the neural network system, and 

that significant improvements in the required precision occur with relatively innocent-looking changes 

in network topology.  

 The point that Minsky and Papert raised with their theorem was not that artificial neural networks 

were incapable of solving complex parallel-processing problems, but rather that a stubborn adherence 

to a “one-size-fits-all” ANN architecture was short-sighted, and that the particular architecture most 

commonly used in connectionist neural networks was vulnerable to the same objections they raised 

against earlier perceptron networks. Our recent findings are not in disagreement with their position on 

this. Furthermore, it has long been known that biological neural networks do not possess the attribute  

 

 
Figure 1: Simulated response of a pyramidal cortical neuron to two similar input stimuli. In case 1 the initial action potential 

volley arriving at t = 100 msec consists of 57 APs. In case 2 the initial volley consists of 55 APs. This is well within the 
typical range of variations in the CNS. The second volley in both cases is 40 APs, which in the absence of the first volley is 

insufficient to trigger a firing response in the neuron. 
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of having high computational precision in the biological mechanisms by which they carry out their 

signal processing and “computational” tasks2. Figure 1 illustrates the variability in the response of a 

typical pyramidal cortical neuron to two cases of stimulation that lie well within the normal range of 

statistical fluctuations observed in the neocortex. Although this figure shows a pronounced difference 

in the response of the neuron to the two cases, it is highly unlikely that these two cases could represent 

any significant difference in the information processing carried out in the cortex. Biological neural 

networks function quite normally in the face of variations such as that illustrated here, which implies 

that they are robust to lack of precision in the operational parameters of the network. Because such 

robustness is not ascribable to the neurons themselves, it must be viewed as a property of the neural 

network topological organization of the neocortex. 

 Another computationally significant issue is found when one considers the problem of learning rate 

in adaptive neural networks. Although no proof yet exists, there is strong reason to believe that Rivest-

Shamir-Adleman public-key functions are trapdoor functions, and if they are then it follows as a 

theorem that training sets for linear-threshold neural networks (a class that describes most existing 

ANNs) are not polynomial-time learnable in terms of any polynomial-time-computable 

representation10. This is a significant and serious problem because it means that conventional ANNs 

that work for small-scale problems cannot simply be scaled up to solve large parallel computing 

problems. Although recently there has been a major advance made in machine learning for ANNs in 

terms of the scale of problems to which they can be applied11, this issue of the “computational cost 

explosion” involved in scaling these networks for application to large problems remains a potentially 

fatal flaw in the connectionist paradigm. Again, however, when we turn to biological neural networks 

in living animals the learning process does not appear to be consistent with what would be expected on 

the basis of this theorem, even though the learning problems posed to living animals fall into the large-

scale-problem category. This again implies that there is something in the topological/structural 

organization of the CNS networks that avoids the learning rate issue facing conventional connectionist 

networks. 

 A third significant issue arising from conventional ANN topologies is that of stability in the firing 

rate patterns of the cortex. Large-scale cortical behavior predicted from statistical models of 

conventional ANNs indicates that neuronal activity in the neocortex is either bistable, with 

spontaneous firing rates of cortical neurons either zero or saturation at a high firing rate, or else it is 

monostable with the network having a stable steady state only at a zero firing rate12,13,14. For bistable 

configurations there is an unstable “ignition point” at relatively low firing rates. Instantaneous firing 

rates below the ignition point decay to zero firing; those above it go to saturation of the network. This 

is illustrated in figure 2. Again the theoretical model appears depart from actual cortical behavior as 
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Figure 2: Expected statistical activity of randomly-connected perceptron networks. The figure illustrates the case for 

networks in which 20% of the neurons are inhibitory, which is approximately the case in the neocortex. The steady state 
behavior of the network is given by the intersections of the blue curves with the steady state line. Curves depict different 

firing threshold levels. At both very low and very high thresholds there is only one stable configuration at the zero firing rate. 
For intermediate levels there are two stable operating points, zero and a level near saturation of the entire cortex. 

 

measured by PET or MRI scans. This is because firing thresholds in cortical neurons appear to be 

consistent with model conditions under which bistable operation should be expected, whereas in actual 

brain activity stable near-saturation firing levels are not observed. Neural network topology is again 

implicated here, since the theoretical results obtained from the topological model do not appear to be 

consistent with experimentally observed behavior. 

 

II. Dynamic Link Architecture  

 ANNs are commonly said to be “biologically inspired,” but it is usually the case that the accent has 

been on the “inspired” rather than on the “biologically”. The basis of connectionist ANN models is 

drawn from what is known as the firing rate model of neuronal coding15. While it does appear that 

peripheral nerves do in fact encode information in the form of firing rate, the situation is different in 

the neocortex. Here the evidence, both theoretical13,16 and empirical17,18,19, is consistent with the 

hypothesis that information is encoded as synchronized firing by groups of cells.  

 The organization of the neocortex is consistent with this hypothesis. It has long been the prevailing 

view in neuroscience that the neocortex is organized along the lines of specialized “functional 

columns” dedicated to specific response processes. While the existence of functional columns appears 
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to be well established, mapping studies have also brought to light the interesting fact that in at least 

parts of the cortex, such as the visual cortex, there appear to be more functional columns than the 

cortex has space20,21. One hypothesis set down to explain this apparent paradox is to assume that 

functional columns are transitory, i.e. that the interconnects among neurons in a given region allows 

for dynamic re-organization of the cell group in response to stimuli and what can be termed “control 

signals” originating in other regions of the brain. It is known that some regions of the nervous system, 

e.g. the pyloric network in the stomatogastric ganglion which controls stomach muscles, are in fact 

capable of dynamically re-organizing their network connections22.  

 In part to explain the apparent transitory nature of functional columns and in part to provide a 

theoretical foundation for dynamical laws of cortical phenomena, von der Malsburg has proposed the 

Dynamic Link Architecture (DLA) model23. DLA is an outgrowth of the correlation theory of brain 

function24. Mathematically the brain’s data structure is regarded as having the form of a graph, and 

these graphs are dynamic, i.e. both the nodes and links depict activity variables and change on a rapid 

functional time scale. Mental objects are formed by binding together different nodes representing the 

different parts of the object. This interpretation of data structure is consistent with Damasio’s model of 

how objects and events are represented in the brain18,19.  

 In von der Malsburg’s theory, synaptic weights are capable of relatively rapid elastic fluctuations 

relative to a long-term average value. A number of physiological mechanisms are known to exist that 

can provide the biological substrate for these modulatory actions25. It is known that the neocortex is 

extensively innervated by metabotropic afferents employing as neurotransmitters (NTXs) 

norepinephrine (NA), dopamine (DA), serotonin (5-HT) and acetylcholine (ACh). In addition, some 

inhibitory neurons in the neocortex colocalize various neuropeptides (CCK, NPY, VIP, SP, or 

somatostatin) with the inhibitory NTX GABA26. NA, DA, 5-HT, ACh, and the neuropeptides are all 

known to stimulate modulatory second-messenger metabotropic reactions capable of modulating the 

activity and/or sensitivity of neurons to their ionotropic inputs. From their known physiological effects 

in the pyloric network, it is clear that these modulators are capable of the type of dynamical “re-

wiring” of neural connections necessary to account for the transitory functional column hypothesis.  

 What emerges from this theory is a picture of the cortex as a “network of networks”. At the level of 

organization immediately above that of the individual neuron are dynamically-reconfigurable 

functional units (often referred to in the literature as “barrels”, “columns”, “bands”, “slabs”, and, less 

frequently, “blobs”) of usually vertically-oriented groups of cell assemblies. The assemblies are 

dynamically reconfigurable by means of control signals within a limited range of overlapping cell 

groups. Local stability of functional cell assemblies is mediated through interconnections from local  
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Figure 3: Summary illustration of synaptic connections in the neocortex that have been conclusively demonstrated in 

anatomical studies. Triangular-shaped symbols represent pyramidal neurons. SpS = spiny stellate cell. The cross-hatched cell 
is a non-spiny bipolar cell. LP=local plexus cells of unidentified types. Excitatory neurons are shown as solid black symbols, 

inhibitory interneurons are shown with unfilled (white) symbols. Roman numerals indicate the layer in the neocortex in 
which these cells are found. In the neocortex excitatory cells outnumber inhibitory ones by about 4:1. 

 

inhibitory interneurons, whereas most excitatory stimulus to the assembly arrives via the white matter 

from other assemblies13.  

 Units constitute first-order networks (FONs) in the network-of-networks architecture. It is known 

that the neocortex contains at least twelve distinct classes of neurons27, and some of the circuit path-

ways have been established through anatomical studies26, although no complete “wiring diagram” of 

neocortical circuits has yet been obtained. Figure 326 illustrates the synaptic cortical connections that 

have been conclusively demonstrated. In this figure it is obvious that not all classes of neocortical 

neurons are represented, and the principal objective of the neurobiological component of our proposed 

research is to supply more detail about the “wiring diagram” for these missing neuronal elements.  

 FONs receive numerous inputs from, and project numerous outputs to, other cell assemblies, 

including sub-cortical assemblies as well as other neocortical FONs. It is known that the great majority 

of ionotropic input afferents to the neocortex, as well as the output efferents from the pyramidal cells, 

are excitatory. Inhibitory interconnections appear to be strongly localized. This anatomical 

arrangement is consistent with the synfire chain model of activity transmission in the neocortex13,28. 

Synfire chains are feed-forward chains of cell assemblies characterized by synchronous firing 

behavior. A synfire node is an assembly of neurons that receive inputs from a common group of 

neurons in the previous link in the chain, and transmit outputs to a common group of neurons in the 

subsequent link in the chain. In our present context, synfire-chain-like structures constitute second-

order networks (SONs). The synfire hypothesis was put forward by Abeles to explain two critical 
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attributes of cortical signal processing: reliability of transmission, and robustness of operation in the 

face of cell deaths. It has been shown from theoretical considerations that something like a synfire 

chain is necessary for reliable propagation of information through the neocortex13,29. This reliability is 

achieved through synchronous firing of the neurons in a synfire node, which is known to be a more 

effective mechanism for stimulating firing responses in neurons in the next link of the chain. In 

addition, it is known that neuronal cell death proceeds at a relatively constant rate throughout the adult 

lifetime, and synfire chains are robust in the face of loss of neuronal elements due to cell death that 

would seriously compromise most other proposed schemes of information transmission. 

 For many years it was assumed by most neuroscientists that information processing in the CNS was 

hierarchical. Under this assumption, successive layers of neurons performed successive 

transformations on incoming data building up toward object and event representation at an output 

layer in which one or more neurons indicated recognition of that object or event by their firing 

activity. Such an “output layer” cell has often been called a “grandmother cell.” However, over the 

course of the past two decades this traditional model of neural network processing has been shown to 

be at odds with clinical findings from studies carried out on patients suffering from various forms of 

injury- or disease-induced brain damage. These studies clearly indicate that the “grandmother cell” 

hypothesis is completely inconsistent with the cognitive capabilities found to still exist in brain 

damaged patients. A summary of this evidence has been provided by Damasio18. The disagreement 

between the traditional model and empirical findings has led to the convergence zone hypothesis of 

cortical organization19. In this hypothesis, outputs from multiple functional units at one level in the 

neural structure converge on small assemblies of neurons, called convergence zones (CZs). CZs detect 

synchronized firing activities among diverse groups of functional nodes, and provide feedback signals 

returning to these layers that tends to maintain synchronized firing patterns from these groups.  

 Figure 4 illustrates the basic scheme of the convergence zone dynamical architecture as it applies to 

the sensory pathways. A similar structure is proposed for the motor pathways. Synchronous firing 

activities among various functional units in the early and intermediate sensory cortices converge on 

and are detected by CZ assemblies. The CZs provide feedback to the immediately previous layers of 

functional units, tending to promote and maintain their activities. The principal function of the CZ 

assembly is to produce binding codes for the representation of entities and events. Entities and events 

are represented by the suite of synchronous firing activities from the specific functional units involved. 

CZs also project forward to the next higher level of CZ assemblies. These, in turn, provide feedback 

projections to the immediately prior CZ layer.  

 Two types of binding codes are produced by CZs. Type I binding codes produce entity 

representations through synchronization of firing patterns in the functional units in sensory cortices. 
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Figure 4: Simplified schematic of convergence zone structure for the perceptual pathways. A similar structure is also 

proposed for the motor pathways. V, SS, and A depict early and intermediate sensory cortices in visual, somatosensory, and 
auditory modalities. Separate functional units are depicted by the open and solid ovals. CZ = convergence zone. H = 
hippocampal system. NC = noncortical neural stations in the basal forebrain, brain stem, and neurotransmitter nuclei. 

Feedforward pathways (heavy lines) and feedback pathways (light lines) are not rigid channels but, rather, are facilitated 
pathways that become active when concurrent firing in early cortices or CZs takes place. Furthermore, they terminate over 

neuronal assemblies in a distributed fashion rather than at specific single neurons. 
 

Type II binding codes produce representations of events unfolding in time by binding sequences of 

firing patterns, both in the sensory cortices and in the motor cortices. Separation of the pieces of an 

object, represented by specific cell groups, is called segmentation. Representation of an entity by 

putting these pieces back together is called superposition. Both are fundamental issues in the theory of 

neural networks and lead to one of the most difficult problems in current neural network theory: the 

binding problem. Von der Malsburg has given a very clear explanation of what the binding problem is 

all about59, and dynamic link architecture is his, and Damasio’s18,19, proposal for solving it.  

 In addition to the direct feedback supplied by the CZ assemblies, late-stage CZs also project to 

non-cortical neurons in the hippocampal system, basal forebrain, brain stem, and neurotransmitter 

nuclei. These, in turn, send modulatory signals to various cortical circuits at a variety of levels. These 

modulatory signals facilitate attention, learning, and other higher cognitive functions. In the network-

of-networks topology of DLA the interconnected assemblies at this level constitute third-order 

networks (TONs).  

 The features and topological organization of the DLA model of neural structure just described are 

consistent with the conjectures made by Minsky and Papert concerning what sort of neural network 

organization would likely be required to overcome the most serious mathematical issues raised by 

9 



Initiative for Dynamic Link Neurocomputing 

their theoretical work on perceptron networks8. Indeed, it is noteworthy that Minsky’s and Papert’s 

conjectures predated the empirical findings that led to both the DLA model and the convergence zone 

hypothesis, both of which were proposed independently of the Minsky-Papert theory. Furthermore, 

our own research work has strongly suggested that dynamic links can improve the performance of 

even classical feedforward neural networks. This finding is based on our observation that complex 

non-linear optimization problems involving mappings from an input retina to an output vector do often 

produce one-to-many optimal mappings dependent on both spatial and temporal correlations in the 

input signal set. Furthermore, our research has shown that this multiplicity of optimal solutions truly 

does represent a one-to-many set of optimal solutions (the Vongkunghae set) and is not merely an 

artifact of so-called “local minima” in the performance surface of the network30,31. In a classical 

feedforward network Vongkunghae sets cannot be implemented, and a suboptimal re-mapping is 

necessary to obtain the one-to-one or many-to-one mapping functions that these classic ANNs are able 

to implement. DLA networks, on the other hand, are inherently capable of spatio-temporal 

modulations which retain the optimal one-to-many optimal solution sets.  

 

III. The Research Initiative  

General Objectives and Funding of the Proposed Work 

 The principal General Objectives for this project are: 1) to understand how the dynamical network-

of-networks (DLA) organization in brain structure can be viewed in a computational context; 2) to 

discover what implications dynamical organization holds for information processing; and 3) to 

develop from this knowledge a new class of computing devices organized and designed to take 

advantage of these findings. These objectives constitute the top-level engineering outcomes of this 

research. These objectives can be met by the achievement of the following four general Scientific 

Objectives: 1) to formulate a canonical graph-theoretic description of dynamic link neurocomputing; 

2) to find and implement solutions to the problems of segmentation, binding, and neural coding; 3) to 

derive from the graph-theoretic expression of neurocomputing a canonical description of data 

structures, formal grammars, and state-dependent neural coding to be used to connect the theory of 

dynamic link neurocomputing with the main body of computer theory; and 4) to demonstrate the 

feasibility of our theory by constructing prototype dynamic link neurocomputer networks in VLSI. 

How these four objectives come to be the principal scientific objectives is explained in the discussion 

of discipline-specific objectives described below.  

 This research is inherently interdisciplinary, involving contributions from neuroanatomy, 

computational neuroscience, computer science, computer engineering, and microelectronics teams. 

Team members from each of these disciplines have discipline-specific objectives, stated below, in 
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support of the three principal General Objectives. Most of these discipline-specific objectives cross-

couple with the objectives of the other disciplines, requiring close research collaboration in order to 

achieve success in this program of work. Externally funded research contracts for multi-disciplinary 

Specific Research Topics are required in order to carry out this work in support of this Initiative, and 

the Specific Research Objectives these projects must serve the General or the Scientific objectives of 

the Initiative. 

 Because discoveries in each discipline have important implications for the others and vice versa, 

the work within each discipline is expected to contribute to the following additional program 

outcomes: A) identification from disciplinary findings of collateral research questions for other 

disciplines; and B) interdisciplinary collaboration in writing and submitting collateral research 

proposals to be submitted to National Science Foundation, the National Institutes of Health, or other 

appropriate external funding agencies. It is expected that these collateral topics for additional research 

will arise as an outgrowth of team efforts to accomplish the top-level objectives. As an example for 

how this is envisioned to take place, let us imagine the following situation: Discipline A develops an 

hypothesis or discovers a question such that specific knowledge from Discipline B must be obtained in 

order to test the hypothesis or address the question; Discipline B finds itself unable to supply this 

information from present knowledge, and proposes collateral work for obtaining this knowledge; 

Disciplines A and B jointly develop an interdisciplinary research proposal for obtaining this new 

Discipline B knowledge and for applying it in Discipline A. Situations such as this arising from 

collaborative work produce research synergy, i.e. “the whole is greater than the sum of its parts.”  

 Given the size and scope of this project, an average of two new proposals per pair of disciplines per 

year (10 proposals per year), at an average per-proposal funding level of $500k over 3 years, is a 

necessary level of proposal productivity. Achievement of this outcome with a 15% to 30% success 

level in contract awards is necessary to maintain momentum in the Initiative. Critical mass for on-

going Program funding required to maintain continuity in the Team and to make significant progress 

toward the General Objectives is about 6 funded contracts providing an annual Program budget of 

about $1 million per year.  

 

Discipline-specific Objectives of the Proposed Work  

A. Neuroanatomy Objectives. The specific objectives of the neuroanatomical component of this 

research are: NA1) to obtain from experimental studies additional information on synaptic 

interconnections in the neocortex; NA2) to integrate this additional knowledge with existing 

knowledge to propose possible cortical circuit models for functional column organization within the 

neocortex; and NA3) to communicate these findings to other members of the team and assist in the 
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development of cortical circuit and network models. It is expected that this knowledge will help “fill 

in more of the missing pieces” in our understanding of cortical circuits. This information and the 

models consistent with these findings are critical to an understanding of stability conditions in the 

DLA network, as well as for understanding the pathways for the modulatory mechanisms at work in 

the dynamical re-organization of functional units.  

 

B. Computational Neuroscience Objectives. The specific objectives of the computational neuroscience 

component of this research are: CNS1) to obtain from quantitative physiological modeling of small 

cortical networks a quantitative model of the types and distributions of modulatory signaling 

mechanisms necessary to realize dynamic links; CNS2) to develop new models of networks within the 

network-of-networks architecture that incorporate these modulatory mechanisms; CNS3) to develop 

computational models of the information processing implications of cortical circuit models proposed 

in NA2; CNS4) to communicate findings of issues and questions requiring additional knowledge of 

neural anatomy to the NA team for guidance of research direction; and CNS5) to analyze these model 

results to facilitate development of a mathematical theory of computation for parallel neurocomputing 

by means of DLA structures and communicate these findings to the CS, CE, and ME members of the 

team.  

 

C. Computer Science Objectives. The specific objectives of the computer science component of this 

research are: CS1) to develop evolutionary computing algorithms, based on findings from NA1, NA2, 

CNS1, and CNS2, for the design of FONS, SONS, and TONS structures to serve as models for 

possible large-scale network configurations; CS2) to propose fitness functions that can serve as 

mathematical guides and propose questions for additional research work by the NA and CNS 

disciplines; CS3) to analyze evolved network structure results to facilitate development of a 

mathematical theory of computation for parallel neurocomputing by means of DLA structures; and 

CS4) to communicate these findings to the NA, CNS, and CE members of the team. 

 

D. Computer Engineering Objectives. The specific objectives of the computer engineering component 

of this research are: CE1) on the basis of the functional unit paradigm of cortical organization, to 

propose possible interpretations of neuronal activity as data structures; CE2) to develop from the 

findings of CNS2 a mathematical language or other expression of data flow/information processing 

operations implied by these neuronal structures; CE3) to establish the mathematical properties of 

binding codes required to produce combinatorial and sequential entity- and event-oriented binding 

code representations; CE4) to communicate the findings of CE1-3 to the CNS and CS team members 
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for guidance and direction of their model development work and collaborate in the development of the 

mathematical theory of neural computation; CE5) to develop and pose parallel computation problems 

drawn from classical parallel computing tasks that can serve as exemplars and test cases for the 

mathematical theory developed in this research, and to communicate these test cases to the CS and 

CNS team members as guidelines for their research; and CE6) to propose a computer architecture for 

dynamic link neurocomputing seen as a parallel computer (e.g. in terms of SIMD, MIMD, PAA, or 

some combination thereof or some other form of computer organization as appropriate). 

 

E. Microelectronics Objectives. The specific objectives of the microelectronics component of this 

research are: ME1) to design, fabricate, and test new VLSI circuit implementations of neural network 

units proposed by the CNS, CS, and CE members of the team; ME2) to carry out experiments posed 

by the CS and CE members of the team to determine if the outcomes of the proposed network 

structures are in agreement or disagreement with expectations based on the mathematical theory being 

developed; ME3) to communicate detailed findings and results to the other members of the team to 

provide them with experimental facts arising as consequences of the proposed models and paradigms; 

ME4) to analyze the feasibility of implementing proposed structures within the tolerance and 

parametric limitations imposed by existing VLSI technology; and ME5) to determine packaging, 

power dissipation, performance, and interconnect issues that must be addressed in practical 

implementations of neurocomputers based on the findings of this research.  

 

Initial Program-Start-Up Methods for Accomplishing Proposed Objectives  

 Methods for Accomplishing the Neuroanatomical Objectives. At present the largest hole in our 

knowledge of the organization of the neocortex is in knowing the specific identity of elements 

postsynaptic to the intrinsic axonal projections of non-pyramidal neurons, especially projections to and 

among inhibitory interneurons. More knowledge of this organization is essential for determination of 

both the stability properties of functional columns and the information processing functions carried out 

within a functional column. It is noted here that obtaining a complete “wiring diagram” of cortical 

functional columns is an unreasonable expectation at the present state of the art in experimental neuro-

anatomy, and such a complete picture is neither required nor expected. However, hypotheses based on 

experimental data can be used by the CS team members to evolve multiple putative cortical circuits 

consistent with anatomical findings, and these circuits can be theoretically examined by the CNS team 

members to determine possible different information-processing implications for the evolved circuits. 

It is at this NA-CS-CNS juncture where most of the cross-disciplinary collaboration can be expected 
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to originate. The theoretical models and putative circuits will pose additional anatomical questions, 

and research findings on these questions will lead to additional modeling work.  

 There are a number of technical reasons why fuller knowledge of cortical circuitry has been 

difficult to obtain, and these reasons have been reviewed in Chapter 3 of White26. It is widely agreed 

that the best approach to this problem is attempt to reconstruct the identity of elements through a series 

of thin sections in which both the pre- and post-synaptic neurons are labeled32. Labeling of 

postsynaptic cells might be accomplished using the well-known method of retrograde HRP 

(horseradish peroxidase) staining33. Presynaptic labeling might be accomplished by anterograde 

staining in which macromolecules are attached to HRP using immunohistochemical methods34. The 

primary technical difficulty in this method is obtaining sufficient relative isolation of labeled pairs 

from other labeled elements.  

 On the other hand, there is a large body of statistical information regarding the distribution of 

connections made by various non-pyramidal cells to various areas of the postsynaptic neuron26, as well 

as on the expression of intracellular molecules in various electrophysiological classes of cortical 

neurons27. Various experimental findings on the expression of these molecular markers35,36,37,38,39 

combined with those of the known statistical distributions can be coupled with our staining 

experiments to propose possible circuit connectivities. These putative connectivities will then be 

subjected to analysis by both computational models (CNS team) as well as by evolutionary computing 

(EC) analysis (CS team) to determine what possible implications these connectivities have for the 

stability, responsiveness, and functionality of functional columns. 

 Our experimental studies can be carried out on male Sprague-Dawley rats. Experimental 

procedures will be done in accordance within the Institutional Animal Care and Use requirements. The 

whisker barrel cortex is suggested as the object of the study, both because these structures are a known 

example of functional column organization in the cortex and because the barrels are evident 

histologically in correspondence to their respective vibrissa. There is a good deal of literature 

published about the barrel cortex40,41,42,43,44,45,46,47,48,49,50,51,52,53,54, and these findings are useful in 

analysis by other team members to determine the computational properties of the barrel. Thick 

sections (1-2 microns) will be cut from each tissue block using an ultramicrotome (LKB), mounted 

onto glass slides, stained, and examined with a light microscope to identify barrels in the cerebral 

cortex and orient to the layering in the cortex. The tissue block will be trimmed and/or re-oriented 

appropriately and thin sections (600-800 nm) will be cut from them and picked up onto copper grids 

(150-300 mesh). After cutting thin sections another group of thick sections will be prepared to serve as 

a guide when examining thin sections. Thin section analysis will be carried out using transmission 

electron microscopy. The barrel cortex from the right hemisphere will be used for studying the 
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synaptic inputs to neuronal cell bodies and horizontally-oriented structures. The barrel cortex from the 

left hemisphere will be used for studying synaptic inputs to apical dendrites and other vertically-

oriented structures. The right hemisphere will be sectioned perpendicular to the surface so that each 

layer of neuronal soma is evident. The left hemisphere will be sectioned parallel/tangential to the 

surface so that vertically-oriented dendrites and axons will be cut in cross-section and therefore we 

shall be able to measure their diameters accurately. 

 

 Methods for Accomplishing the Computational Neuroscience Objectives. Computationally 

efficient Hodgkin-Huxley-like ionotropic signaling models for cortical neurons have been previously 

reported55. We will use the Wilson cortical neuron models will be used to simulate the behavior of the 

trigger zone and for small cortical neural netlets. We will use the MATLAB™ simulation language. 

The Wilson models will be augmented with new models of metabotropic second-messenger signal 

cascades for both monoamine and neuropeptide metabotropic mechanisms. Affects of metabotropic 

signaling mechanisms will initially be incorporated into these models using long-time-constant Rall 

alpha-function dynamics  
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where fj is the second-messenger activation variable for metabotropic synapse j, � is the time constant 

for second-messenger action, U is the Heaviside step function, Vj is the membrane voltage of the 

presynaptic neuron, �j is the presynaptic threshold for NTX release, and S is a conductance 

modification factor. This is the simplest possible dynamical model for second-messenger cascade 

effects, and it is anticipated that higher-order kinetic models must eventually replace the Rall model to 

obtain agreement between model results and physiological data. Diffusion models will be developed to 

propagate S in the near-vicinity of metabotropic synapses, and active transport models will be 

developed to propagate S to locations distal from the metabotropic inputs. Ionotropic channel 

conductance modification will initially be based on S according to g = g0 + S�gm where g0 is the long-

term synaptic weight value and gm is the sensitization factor associated with effects of metabotropic 

second-messenger cascade reactions.  

 Simulations of small netlets under various signaling conditions will be used to develop simplified 

single- and multi-compartment neuron models composed of leaky-integrator-based feeding field 

dendritic inputs, leaky-integrator-based metabotropic linking field inputs, and a standard neuromime 
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firing compartment56. This form of model is computationally efficient enough to permit simulation of 

small networks of vertically-oriented cell groups in close proximity within the neocortex. These 

models will be available to the CS members of the team to support evolutionary computing work.  

 Simulations will proceed based on the hypothesis of dynamic re-organization of functional units. 

According to the correlation theory of brain function24 projection (output) neurons in these assemblies 

fire synchronously. This hypothesis will be tested in short-chain synfire configurations and the degree 

of synchrony, degree of participation of synchronously-firing output projections, and phase delay 

relationships among these outputs will be characterized. This characterization permits the development 

of higher-level population models57 of data flow signal processing with each node in the population 

model representing complex assemblies of neurons (nodes) for the network-of-network level 

representation of the system.  

 Analysis of the results of these models will be based on the hypothesis that the brain employs 

innate representations and binding codes that constitute the three Bourbaki “mother structures” 

(algebraic, order, and topological structures)58. Our analysis will attempt to identify the neuronal 

substrate of these structures, and positive identification of this substrate will lead directly to the 

identification of the computational operations carried out by the networks. Bourbaki structures have 

immediate implications for mathematical, learning, and computational properties of the system, and 

the findings of this analysis will be communicated to the CE and CS team members.  

 

 Methods for Accomplishing the Computer Science Objectives. The principal theoretical problems 

of neural organization are those of segmentation, superposition, binding, and the neural code59. 

Traditional neural network theory has always dealt well with the problem of segmentation, but 

combining segmentation and superposition has always posed special difficulties, collectively called 

“the binding problem.” These issues have been thoroughly reviewed by von der Malsburg59. Dynamic 

links and a graph-theoretic paradigm have been proposed as a biologically realistic method for solving 

the binding problem. An algorithm extending the basic concept of the Hopfield network has been 

demonstrated which integrate these concepts at the FON level60. This algorithm jointly optimizes a 

pair of Hamiltonian functions over a network of McCulloch-Pitts-like neural elements (perceptrons), 

and these Hamiltonian functions can serve as a starting point for a fitness function evaluating networks 

at the FON level. Evolved FONs are a likely point of origin for collaboration with the NA and CNS 

team members, and evaluation of FON information processing characteristics is a likely junction point 

for the CS, CE, and ME team members.  

 At the SON and TON levels of the system, additional complications arise, and do so in large part 

because of the as-yet-unresolved issue of neural coding. There is growing acceptance that firing rate 
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by itself is not a sufficient description of the neural code. Strong theoretical arguments have been put 

forth in support of the hypothesis that short-term synchronization of firing by groups of neurons is an 

important form of neural coding at the SON level of neural organization61, although there is also 

evidence that single spike events also sometimes contain important information on the external 

stimulus62 in animals lower on the phylogenetic tree. Detection of synchrony and coherence against a 

background of stochastic activity poses a difficult detection problem in neural networks as well as 

issues of time-scale requirements. Pawelzik has proposed a mathematically simple model which 

quantifies coherence in information-theoretic terms63, and his model functions can serve as a starting 

point for fitness function development at the SON level of network organization. Because synfire 

chains constitute a type of data flow information processing network, they are a likely junction point 

for collaboration between the CS and CE team members. 

 At the TON level of network organization still more complications arise from the convergence of 

SON signals onto CZ assemblies, and from the requirement for temporal binding codes to represent 

objects as time-sequenced events (see figure 4). Chief among these complications is the question of 

how and when induction of long term potentiation (LTP) and long term depression (LTD) of synaptic 

plasticities takes place. In traditional neural network theory the LTP/LTD induction problem is 

approached statistically, and it is this statistical approach that contributes to the NP-complete issue of 

neural learning raised by Minsky and Papert. Reinforcement learning and the actor-critic architecture 

approach to network learning has more recently become widespread64,65. This method bears a striking 

analogy to the putative function of the hippocampal formation and non-cortical structures in figure 4. 

The critic element of an actor-critic architecture fills the role of a “reward” system, and this role is 

analogous to that played by elements of the limbic cortex, amygdala, hippocampus, ventral tegmental 

area, and nucleus accumbens in the central nervous system66. This system employs metabotropic 

signaling mechanisms and is believed to play an important role in learning.  

 The main difference between the usual actor-critic approach and the architecture of figure 4 lies in 

the location of the critic and the non-objective nature of its value function within the system. In 

somewhat loose terms, signaling from the brain’s reward system has the character of impulsive and/or 

emotional drives rather than that of a direct and objective measure of system performance. Wells has 

argued that this non-objective character of the critic/value system is a logically necessary character of 

any system whose task is to stimulate concept formation in a neurocomputer67. Similarly, Picard has 

concluded that an element of “emotional intelligence” is necessary for even simple tasks in pattern 

recognition, machine learning, and machine decision-making68 and has proposed simple models for 

objective functions of this emotional intelligence. Finally, there is psychological evidence that an 
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affective “value system” and affective “interests” complement the energizing character of affectivity 

in the development of human intelligence69.  

 In this project we should confine our critic-value fitness function to primitive functions that 

respond to the presence or absence of stability in firing patterns converging on CZ networks. 

Psychologically, the emotion of “happiness” appears to be what some psychologists have called a 

“neutral gear,” i.e. a point of stable system operation70. A measure of such operation is coherence 

detection carried out by elements of CZ assemblies coupled with identification of non-coherent 

upstream signaling assemblies. The critic would respond to coherence/incoherence through 

metabotropic signaling to induce LTP in network connections expressing coherence and LTD in 

network connections involved in incoherent signaling. Findings from this work are likely junction 

points for collaboration among the CS, CNS, and CE team members, and have implications for the 

ME team as well. 

 These classes of fitness functions can be used to evolve network structures at the FON, SON, and 

TON levels. The evolved networks can then be modeled as weighted digraphs, and their information 

processing capacities can be measured using the Frobenius theorem71 with capacity indexing by the 

maximum eigenvalue of their graph spectrum72. These findings will likely be of direct and urgent 

interest to the CE team.  

 

 Methods for Accomplishing the Computer Engineering Objectives. Computer theory, with its 

myriad subdisciplines and specialties, is without doubt the most well-developed, thoroughly-

researched instantiation of automata theory in existence. It contains a vast wealth of mathematical 

formalism expressing everything from computability theory (e.g. Turing machines) to formal 

grammars and languages to algorithm theory73,74,75,76. Now, when we look at brain theory 

(neuroscience) as a science, we have no other valid choice than to likewise regard the brain as an 

automaton regardless of whatever other philosophical or religious views we hold outside the proper 

realm of science. This is neither positivism nor scientific materialism (although it might be called 

Kantianism). It is merely a requirement of the scientific method. The scientific and mathematical idea 

of the brain-as-automaton goes back to von Neumann2, and it is indeed possible to show a one-for-one 

correspondence between the fundamental elements of computer organization and the psychological 

epistemology of brain function67. It follows from this that a general theory of neurocomputing must be 

expressible with the same rigor and in the same mathematical formalism with which general computer 

theory (automata theory) is expressed.  

 Development of a computer paradigm for the neurocomputer system requires translation of the 

ideas inherent in neural network theory into more traditional set-theoretic forms of expression, e.g. 
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logic functions and operations. In DLA, data structures are represented in the form of digraphs 

describing network connections, and such a graphical representation has a well-known corollary to 

data structure representation as a linked list77. Here the nodes in the graph represent data cells and the 

arcs represent link pointers. Linked list structures and the graphs that describe them likewise play a 

fundamental role in the construction of formal grammars78, which can here be regarded as the basis for 

algorithm expression in a neurocomputer.  

 It has long been known that neural networks are capable of expressing fundamental logic functions. 

It is likewise known that pulse-coded neural networks can express combinatorial logic functions79. 

Many gradient-descent-based algorithms for learning combinatorial logic expressions have been 

published over the years. Wells and Brennan have also demonstrated a Quine-McCluskey80-like 

adaptive algorithm for learning logic function expressions in the context of a content-addressable 

parallel processor81. Learning algorithms based on gradient descent using forward-backward methods 

have also been proposed for recurrent neural networks82.  

 More difficult, however, is the problem of developing and expressing sequential algorithms. At the 

simplest level, sequence learning is related to learning in recurrent neural networks. However, 

algorithms for recurrent networks reported to date address only static learning and do not express 

temporal sequences in their networks. The problem of learning and representing temporal sequences in 

neural networks is tightly coupled to the binding problem, e.g. Type II binding codes in Damasio’s 

model of neural function. Likewise, a single sentence in a formal grammar provides a basic entity 

object in an algorithmic representation, but it does not provide an algorithm because an algorithm 

expresses a sequence of operations and representations. 

 One way to approach the sequential representation problem is along the lines of Wood’s model for 

reasoning agents83. Wood’s loop is shown in figure 5. However, we require a less abstract 

representation of this process that will be compatible with the primitive and basic information 

processing operations present in the neurocomputer system. Recall that Type II binding codes are 

binding codes related to the motor cortex, i.e. to actions taken by the system. The “perception” of any 

action is a series of temporally-bound event-objects, each of which is represented by the integration of 

fragmentary representations from SON-level structures in figure 4. Type II binding codes can 

therefore be regarded as constituting a sliding activity window, which in turn is merely a state-

dependent-coding84 of object representations at any particular moment in time. The sequence binding 

problem therefore minimally involves two distinct but interacting learning operations: 1) formation of 
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Figure 5: Woods’ reasoning loop model of an intelligent agent. The agent constructs for itself a “world model” of the 

external world, which it uses in determining its actions and which it keeps updated in the face of changing circumstances or 
unexpected results. 

 

the initial binding codes for object representations coexistent in time; and 2) anticipation of subsequent 

object representations based on a representation of the present state (Wood’s EXPECT function).  

 The first of these learning operations is merely superposition of fragments of firing activities from 

some set of upstream networks at the SON level by a Type I binding code. By itself such a binding 

code does not produce within one representational state at one moment in time a representation of the 

distinct entity objects within the superimposed representation. Rather, such a representation must be 

regarded as a syncretic representation in which no sub-division of the object into a multiplicity of 

objects is immediately presented (not even the distinction between foreground and background 

objects). For purposes of terminology we will call this representation an intuition85. Psychological 

studies have shown that such syncretic perceptions are in fact the raw material from which intelligence 

is built up in young children86,87. Syncretism is universal in child development, and consequently we 

can make the hypothesis that the formation of syncretic Type I binding codes is a primitive learning 

operation in neurocomputing, and this hypothesis then requires a neural substrate. This substrate can 

be called an “attention network” and corresponds to the short-time-scale modulation of synaptic 

weights as described by von der Malsburg59. In graph-theoretic terms, this corresponds to dynamic 

weighting of the arcs connecting the participating SONs, but also requires the superposition of a 

second graph (the control graph), which forms a TON structure. 
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 The second learning operation involves two temporal factors. First, the CZ assemblies that are 

eventually to produce the Type II binding codes that constitute the memory of a temporal sequence 

require a neural substrate in which Type I intuitive binding codes gradually “fade into” one another 

rather than switching absolutely abruptly. This can be regarded as constituting a run-length-limited 

coding sequence84, and this dynamical process whereby active Type I binding sequences blend into 

one another can be termed apprehension85. In graph-theoretic terms such coding sequences can be 

formally analyzed using principal states and approximate eigenvector analysis88, and the general 

theory of such sequences is describable in terms of sliding block code theory89. In terms of the neural 

substrate, the formation of a Type II binding code logically must involve detection of the “sliding code 

window” by a downstream (higher order) CZ assembly since the “codewords” that are “sliding” into 

one another are represented by the firing patterns of immediately upstream (lower order) CZ 

assemblies and not by early and intermediate perceptual networks (which represent no binding codes). 

The implementation of this temporal sequence recognition requires temporal binding to form what 

have been termed shifter circuits59. A content-addressable parallel processor81 can perform such a task 

by using a sliding mask and its select-first-responder function, and a reasonable hypothesis is that a 

neural network equivalent of such a processor (TON level network) can implement the same temporal 

imprinting and detection algorithms.  

 Concurrently with the initial-imprinting/subsequent-detection process just discussed, a means of 

suppressing and/or ignoring other signaling activities, and for determining which activities are to be 

attended to by the process above, is required. This requires some local attention mechanism exercising 

local control of the “microtopic” being encoded. This approach is consistent with von der Malsburg’s 

conjecture regarding the general characteristics for how temporal binding could first be achieved59. 

The Type II binding codes being formed by the above process produce “objective” representations; 

however, the task of attention is at root non-objective because it is a mechanism necessary for the 

possibility of representations of the objective type. The structures implicated for this task in Damasio’s 

architecture correspond to the non-cortical elements in figure 4. There is a considerable body of 

psychological as well as neurological evidence that implicates at least some of these structures with 

the “emotional intelligence” aspect of the system, and so on this point there is a need for close 

collaboration of efforts with the critic-value system work described earlier under the CS method of 

approach. Based on the aforementioned psychological findings, Wells has proposed signal 

coherence/incoherence as the neurological substrate for critic-directed attention mechanisms67,85. This 

hypothesis is consistent with von der Malsburg’s correlation theory of brain function24 and implies the 

need for neural network control structures, namely coherence/incoherence detectors, either within the 

CZ assemblies or locally augmenting their function, which project to the non-cortical networks. These 
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non-cortical networks, in turn, would then have to provide control signals back to multiple CZ 

networks to “fix attention” on some signal pathways while suppressing it for others. A possible 

network scheme for the coherence/incoherence detection task is shown in figure 6. The scheme in 

effect amounts to a neural network analog of a correlator/phase-locked-loop function.  

 The second temporal factor concerns the neural substrate of Wood’s EXPECT function. Once a 

temporal sequence has been encoded, detection of the possible beginning of its reoccurrence in some 

later sensory “experience” is ground for the system to anticipate that this temporal sequence is going 

to happen. Anticipation can be implemented by a sequence generator successively activating, in proper 

sequence and at the proper time, the binding code networks that have previously stored the binding 

code59,19. Anticipating CZ networks feeding back to the early and intermediate sensory networks 

condition these networks to fire. If the anticipated sensory data sequence occurs, then the anticipation 

is met; otherwise, there will be incoherence between the imaginary signaling sequence and the actual 

data path signaling sequence, and detection of this incoherence can be called a disappointment or a 

frustration in terms of the critic-value system network function. Occurrence of a disappointment or a  
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Figure 6: Possible coherence/incoherence detection scheme. CZ=convergence zone neuron or sub-assembly. PD=phase 

detector; CPG=central pattern generator. The general idea is that conditions of coherence and incoherence are characterized 
by the correlation found among signals. Synchronous time-locked signals converging on an integrate-and-fire CZ neuron will 
produce a periodic signal at its output at a firing rate that is an integer subharmonic of the incoming signal firing rates. This 
signal is compared (in frequency and phase) to a reference signal from a central pattern generator network. Phase/frequency 
errors produce output activity in the PD network which excites a neuron (or neurons) acting as the incoherence detector and 
simultaneously inhibits burst firing from the coherence detector neuron or neurons. These neurons project back to early and 

intermediate feature networks (a form of phase-locked loop structure) and to non-cortical critic-value networks. 
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frustration is an attention-signaling mechanism, but one acting across a much broader area of the 

system and at a much slower time scale than the attention mechanism discussed earlier59. Very 

compelling evidence from psychological experiments exists in support of the hypothesis that this 

mechanism is a fundamental characteristic of the way in which intelligence develops in human 

beings90,91.  

 In terms of conventional computer theory, the mechanisms for binding discussed above are 

instances of state machine algorithms belonging to that class of state machine organization usually 

called the linked state machine architecture92. In a graph-theoretic context state machine sequences are 

commonly represented using trellis diagrams, a trellis diagram merely being a state diagram 

“unfolded” to make explicit the temporal sequence. A trellis constitutes a special case of order 

structure and provides a natural mode for mathematically expressing not only fixed state sequences but 

also time-varying state sequences and such parallel operation constructs as fork- and join-relations93.  

 

 Methods for Accomplishing the Microelectronic Objectives. The ME team is responsible for 

implementing various neural network functions and structures in collaboration with the work of the 

other teams. The general schema for biomimic artificial neurons (BANs) has been previously 

established25 and a number of implementations of elementary neuron circuits have already been 

reported79,94,95,96,97. Additional neuron designs will have been produced and tested, and standard cell 

implementations for most of the analog neuronal functions will have been developed, by Jan. 31, 2005 

under the MRCI’s Neurofuzzy Soft Computing Program. These designs provide the basic elements for 

the design of network implementations using the NSF MOSIS fabrication program. It is to be noted, 

however, that implementation of very large networks in a single VLSI chip is likely to require die-

shrink re-design of these circuits in order to use higher-density (e.g. 0.5 micron) fabrication 

technologies.  

 Network structures developed by the CS and CE efforts will be translated into mixed-signal VLSI 

circuit designs using the established BAN and “forgetful logic” circuit designs as the starting point. It 

is noted that these designs will not necessarily be structured one-to-one with the block/signal-

processing diagrams from these teams, owing to constraints in matching precision and achievable 

tolerances in standard VLSI technology. In such cases where warranted by these practical 

considerations, the ME team will work closely with the CS and CE members to come up with alternate 

but functionally equivalent network topologies capable of being implemented within existing 

technology constraints.  

 At the present state of the art, multichip implementations are probably unavoidable in constructing 

the complete neurocomputer. It is furthermore anticipated that most chip designs will be pinout-
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limited unless appropriate partitioning design is carried out. The ME team will carry out the 

appropriate functional- and chip-partitioning to deal with these issues, and in those cases where pinout 

limitations are unavoidable the team will devise appropriate multiplexing methods for interchip 

communications67,98,99. The team will also carry out appropriate printed circuit board layout designs 

and mechanical packaging designs for the implementation of multichip breadboards and prototypes. In 

addition, the team will design an appropriate testing strategy so that the functionality of each 

integrated circuit can be verified in the laboratory.  

 For purposes of verifying the cognitive capabilities of the neurocomputer it will be necessary to 

provide the neurocomputer with a “body” – i.e. sensors, actuators, and a mechanical platform by 

which the neurocomputer can interact with the outside world. Test cases should include sensor arrays 

for auditory, and possibly simple visual, pixel arrays, motor drive circuits (e.g. for small wheeled or 

track vehicles to permit locomotion), and tactile arrays (e.g. “whiskers” for tactile exploration). The 

team will collaborate closely with the CS members to aid them in evolving appropriate sensory and 

motor control networks for processing the input data and output command flows. In addition, the 

design will incorporate battery sensors to detect low-battery conditions. This sensory information will 

flow to the non-cortical critic-value subsystem to sense “hunger” and trigger an appropriate “hunger 

response” (e.g. a behavioral analog to a baby’s hunger vocalization reflex, which therefore requires 

vocalization transducer circuitry). 

 To support the development of this platform we will sponsor one or more senior design projects. In 

addition, because it is likely that early neurocomputer prototypes will be too large and heavy to be 

incorporated into a small mechanical robotic platform, the ME team will provide a radio 

communication system linking the neurocomputer to the mechanical platform. The ME team will 

provide the systems-level specifications for this system, and we will implement it through a senior 

design project.  

 

IV. Broader Technical Framework of this Research 

 The initial methods described in the previous section serve as a launching point for the 

Neurocomputing Initiative. In the long run it is necessary to have a vision of where all this research is 

leading and what we can expect the landscape to look like when we get there. All the work described 

in this document is based on the expected characteristics of a large-scale general-purpose 

neurocomputer as described in the Program’s Vision Statement document100. The Vision Statement 

describes the general attributes and characteristics of the machine in terms of its functional 

organization. It describes the ways in which such a machine will be similar to von Neumann’s model, 

and more importantly the ways in which it will differ. Input, output, arithmetic-logic, memory, and 
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control functions of a large-scale general-purpose neurocomputer must be regarded in a very different 

way than are these functions regarded in a standard digital computer. In addition to the biologically-

inspired hardware substratum of the Machine, there is also an epistemological substratum that might 

be described as the idea of a “machine psyche.” This substratum constitutes such cognitive functions 

as sensibility, apprehension, imagination, objective and subjective judgment, objective and practical 

reasoning, motoregulatory (“instinctive”) action, and meanings, and how these cognitive traits are to 

be viewed in the organization of the Machine. The Vision Statement describes how to interpret the 

difficult ideas of intuition, concepts, affectivity, and ideas. As the Program progresses and the 

Machine takes shape, the research Team will be expanded to bring in contributors from the field of 

cognitive neuroscience in order to address important research questions contained within this 

epistemological substratum. Every co-PI in this Program is expected to become familiar with the 

broad framework expressed in the Vision Statement because this framework provides the unifying 

direction for all other work within this Program.  
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