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I. Introduction 
 
 This will be a two-part tech brief on dynamical modeling of the skeletomuscle system of a 
single jointed limb comprised of a fixed-position bone, a movable bone, and two muscles 
arranged as an agonist-antagonist pair. Part I will deal with modeling the mechanics of the 
system. Part II will deal with the modeling of the sensory neurons. My intent in this tech brief is 
to provide the mathematical foundation for more advanced systems comprised of multiple joints 
and multiple degrees of freedom. 
 
 At the outset it seems necessary to make a brief comment on why I have chosen this 
particular model for our bipedal locomotion work. In particular, why go into such detail in 
modeling the behavioral characteristics of muscles when it is obvious that any mechanical system 
we might eventually build will not be made out of biological material. As I see it, there are two 
motivating factors for this approach. In the first place, the biologically-based model presents us 
with a number of nonlinearities in the dynamical equations describing the system. To my way of 
thinking, the application of neural networks to the control of linear systems is a rather pointless 
endeavor because the linear system can be controlled less expensively, and with a much greater 
mathematical foundation, by the well-established methods of modern control theory. On the other 
hand, the control of nonlinear systems is much less well understood by standard theory and 
usually requires nonlinear elements in its controller. One example of this is the application of 
variable-structure switching control systems. Another is the use of fuzzy or neurofuzzy control 
methods. I have already mentioned, in a previous tech brief, that the spinal sensorimotor control 
system appears to implement a sophisticated form of VSSC.  
 
 In the second place, developing methods capable of dealing with the nasty and sometimes 
harsh realities of the nonlinear skeletomuscle system model presented here seems to me a fruitful 
path for later dealing with some sometimes nasty nonlinear factors in man-made electro-
mechanical systems. For example, a mobile robot must be made lightweight if it is to operate for 
any appreciable length of time using battery power. Achieving light weight in a robotic platform 
implies several things. It implies the use of low-density materials in the construction of the 
chassis, and although low-density materials with high tensile strength do exist, inexpensive low-
density materials tend to depart rather noticeably from “rigid body” behavior. For example, it is 
nice if the teeth of a plastic gear are rigid, but unless a very hard plastic is used they won’t be. 
Stepper motors are widely available, but lightweight stepper motors are small, have highly 
variable speed-torque characteristics, and exhibit a number of nasty nonideal departures from the 
rather simplified motor models presented in a junior-level electric motor course. The use of 
cables (strings, really) to actuate limb movement is a lightweight alternative to installing rotary 
actuator motors at joints, but when cables are introduced as the actuator means we take a big step 
toward the biological method since muscles and tendons are really nothing more than meat 
cables. Cables stretch, go slack, and otherwise exhibit a number of similarities to the type of non-
linearities the model presented here discusses.  
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Figure 1: Simplified single-joint limb model. The system has two idealized bones, each modeled as a 

rigid body, and two muscles, l1 and l2, modeled as contractible cables. � is the joint angle, taken as positive 
in the counterclockwise direction. ����� corresponds to the limb handing straight down. m is the mass of 

the movable limb, in kilograms, and g is the acceleration due to gravity (9.807 meters per second per 
second). The weight of the limb is mg and acts at the center of gravity of the limb as shown in the figure. 

The limb is modeled, rather ideally, as a homogeneous cylinder of radius r and length L1 + L3 + L4.  
 
 

 Taken together, these two considerations justify, in my mind at least, targeting the bio-
mimetic model presented here. Put another way, if we can develop design methods and pulse 
coded neural networks to control the system presented here, it seems to me very likely that we 
will be able to do the same for the far-less-sophisticated types of systems man might construct. 
That, at least, is the justification in my mind for the model presented here. 
 

II. Kinematics and Mechanics of the Movable Limb 
 
 The model of the limb mechanical system is illustrated in figure 1. The movable limb is 
approximated as a homogeneous cylinder of radius r, mass m, and length as shown in the figure. 
It is connected to the fixed bone at a pivot, assumed to be free of friction (another idealization). 
This figure is a departure from a real skeletomuscle system in two important ways. First, in a real 
bone-muscle system there would not be the protrusion L3 at the back side of the limb. Instead, 
muscle l2 would go around a pulley at the joint and attach to the movable bone on the underside. 
By representing the system as shown in figure 1, I have merely constructed a representation that 
gives an equivalent mechanical leverage to the movable bone. In the second place, the system 
shown above suffers loss of muscle control at ����� because at this position the force from either 
muscle passes directly through the pivot point and center of mass (and therefore can develop no 
torque). In a real skeletomuscle system, both muscles would wrap around a pulley at the joint and 
attach to the muscle at some angle that still permits the development of a torque. Rather than deal 
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with the slightly more complicated set of equations that this pulley arrangement entails, we will 
assume that the joint contains a torsional spring acting in the clockwise direction when ��������� 
where � is some small positive angle (let us say, for example, 2 degrees or 0.035 radians). This 
somewhat artificial assumption allows us to maintain control of the limb at all limb positions. We 
will further assume that any limb position ��������� triggers a nociceptor sensory neuron that 
transmits a severe pain signal, i.e., a high frequency burst of pulses rising in frequency in 
proportion to the difference ���������.  We will likewise assume a second nociceptor that 
transmits a similar pain signal when �����. This artifact mimics the action of joint nociceptors 
(see the previous tech brief on the spinal sensorimotor system). We will model the torsional 
spring as developing a clockwise torque of the form 
 
  � �� � � �������� ������� uBK sss

�T  clockwise      (1) 
 
where u(x) is the unit step function 
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and �  denotes the time derivative of �. K�

s is the spring constant and Bs is the damping coefficient 
of the spring. We will assume that the firing rate of the nociceptor is proportional to the torque in 
(1). We will likewise assume that the firing rate of the “zero angle” nociceptor is proportional to 
� � � ���� ��u�� . The action of each nociceptor is to cause inhibition in the agonist muscle and 
excitation of the antagonist muscle. 
 
 Given the lengths L1 – L4 and the joint angle �, the other two interior angles and the muscle 
lengths follow from basic trigonometry as 
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The limiting cases for the muscle lengths evaluate to 
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If the tension in muscle 1 produces a force F1 and that of muscle 2 produces force F2 , then the 
torque produced on the limb by each muscle is given by 
 
  � ��sin111 ��� FLT  clockwise           (4a) 
 
  � ��sin232 ��� FLT  counterclockwise          (4b). 
 
 Modeling the limb as a homogeneous cylinder of radius r, the center of mass of the limb is 
located at 
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with respect to the axis running down the center of the cylinder and taking the pivot point as the 
origin of the coordinate system. The torque produced by the weight of the limb is therefore 
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The net torque acting on the limb, including the contribution by the torsional joint spring (1), is 
then 
 
  T  counterclockwise         (5). swL TTTT ���� 12

 
 In order to find the dynamical equation of motion for the limb we must have the moment of 
inertia of the limb referenced to the pivot point. For a homogeneous cylinder, the moment of 
inertia referenced to the center of mass is given by 
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To translate the moment of inertia to the pivot point we apply the parallel axis theorem 
 
  . � �2xmII comj ���

 
In this case, the displacement �x is equal to the distance of the center of mass from the pivot 
point. Therefore, after a minor bit of algebra, the moment of inertia about the joint is given as 
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 We next apply Newton’s law for rotational systems and obtain the differential equation 
describing the motion of the limb as 
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For numerical solution of the model equations it is convenient to express (7) in state variable 
format. We will define �  and two state variables, s�� ��� 0 1 and s2 as 
 
                  (8a) ���1s
 
and 
 
                 (8b). �� �� ���2s
 
Applying these to (7) yields the coupled system of equations 
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where we have explicitly denoted that TL is a function of s1 in (9). The dynamical equation (9) is a 
coupled set of nonlinear differential equations for which there exists no general closed form 
solution (so far as I know). Thus we will require a numerical solution. Note also that (9) is a 
function of muscle forces F1 and F2 , which we must obtain from the model equations for the set 
of extrafusal muscle fibers making up muscles 1 and 2. Consequently, (9) is also coupled to the 
muscle model equations presented in section IV.  
 

III. The Hill Model and the Muscle Element Laws   
 
 Were it possible to write a complete set of equations describing a muscle, which no one has 
yet accomplished, it is certain that this set of equations would consist of coupled partial 
differential equations. This is because the muscle is a distributed electro-mechanical-chemical 
system, and all distributed systems are described by partial differential equations. Equations such 
as these, even when they are linear, are notoriously difficult to solve because it proves difficult to 
adequately describe their boundary conditions (which in partial differential equations play the 
same role that initial conditions play in ordinary differential equations). No one has ever seriously 
proposed to approach muscle system modeling in this way. What is done instead is that the 
system is approximated by a set of lumped elements, in much the same way that electric circuit 
elements are lumped element approximations of Maxwell’s equations.  
 
 In 1949 A.V. Hill proposed such a lumped-parameter model for the muscle.1 Hill’s model is 
still in use today, and it remains the most popular form of lumped-element model for the muscle. 
In point of fact, there are actually two canonical forms of Hill’s model, but these forms are 
mathematically equivalent under a suitable change of variables.2 The canonical form we employ 
here is the easier one to apply to a muscle when it is regarded as composed of multiple motor 
units acting in parallel with one another.  
 
 Figure 2 illustrates the Hill model. Although this model is typically applied to the whole 
muscle, for our purposes we will regard the area shown in the yellow background as representing 

                                                 
1 A.V. Hill, “The abrupt transition from rest to activity in muscle”, Proc. Roy. Soc. London B, vol. 136, 
issue 884 (Oct. 19, 1949), pp. 399-420. 
2 T.A. McMahon, Muscles, Reflexes, and Locomotion, Princeton, NJ: Princeton University Press, 1984, pp. 
23-25. 
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Figure 2: Hill Model. The high-lighted area depicts a single motor unit. PEC = parallel elastic component; 
SEC = series elastic component; C = contractile element; B = damper element. The PEC is considered to be 
an elastic element applying to the entire muscle. Each motor unit consists of C, B, and an SEC. T = tension. 
TSEC = tension in the SEC. TC = tension produced by the contractile element. TB = tension produced by the 
damper. TPEC = tension produced by the PEC. By convention, the distance from the mechanical ground at 

the left side of the figure to the junction of the SEC with C and B is denoted x1 . The distance from this 
junction to the junction of the SEC with the PEC is denoted x2 . The distance from the mechanical ground 
to the opposite side of the PEC is the muscle length . The x-axis is considered positive going to the right 

and x = 0 corresponds to the mechanical ground. 
�

 
one motor unit. Other active motor units are in parallel with this unit and with the element labeled 
PEC (parallel elastic component). There are four basic mechanical elements in the Hill model: 1) 
contractile element, C; 2) damping element, B; series elastic component, SEC; and 4) parallel 
elastic component, PEC.  
 
A. The contractile element. The contractile element C is the “active” element in an extrafusal 
motor unit. It corresponds to the role played by voltage or current sources in an electric circuit. C 
responds to motoneuron inputs by contracting. Thus, the tension TC it produces always acts to try 
to shorten the muscle. C is incapable of producing an extension force. Action potentials arriving 
at the terminal of a motoneuron axon cause the release of the neurotransmitter acetylcholine 
(ACh) at the neuromuscular junction (which is typically called the endplate and is the muscle 
equivalent of a synapse). Binding of ACh to its receptors in the muscle cells stimulates the release 
of internal stores of calcium (Ca2+) in the muscle cells. Ca2+ in turn stimulates a complex 
chemical reaction within the muscle fiber, the net effect of which is to cause the fiber to contract. 
The tension developed by C increases in response to greater motoneuron activity, reaching a 
maximum value TCmax that depends on the particular type of muscle and the effective diameter of 
the muscle fibers. Typical biological values for TCmax are on the order of about 2 kg/cm2 (multiply 
this by 9.807 to get the tension in newtons/cm2). Recall from our previous “Muscles” tech brief 
that a motor unit consists of a multiplicity of fibers, all of the same type (i.e. S, FR, or FF in order 
of increasing fiber diameter). The effective area of a motor unit is the area per fiber times the 
number of fibers.  
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 The tension that can be produced for a given level of motoneuron excitation is a function of 
the ratio of fiber length to its “resting length” . If Q0� C is the tension that would be produced 
when the contractile unit length is x1 =  (see the caption under figure 2), then the tension 
produced at length x

0�

1 =  is given by �

 
  � �01 �xAQCC ��T  , T           (10a) maxCC T�

 
where the function A is the tension vs. fiber length characteristic depicted in figure 4 of the 
“Muscles” tech brief. A reasonable approximation for A within biological limits imposed on the 
range of muscle lengths possible is given by 
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The function A is always non-negative; separation of the muscle from the bone occurs at values 
for x1 within the positive-valued range of A given in (10b).  
 
 The complex dynamics of contraction can be approximated as a leaky integrator. The 
dynamical equation of the contractile element can therefore be approximated by a single state 
variable obeying the equation 
 

  � �tp
C

QCC ����

��

01
�Q            (11) 

 
where � is the leaky integrator time constant and p(t) is the action potential pulse train. Referring 
to figure 2 of the “Muscles” tech brief, the time constant for a fast fiber (FR or FF) is on the order 
of about 10 msec, while for slow S-type fibers the time constant is about 3 to 3.5 times longer. 
The force constant C0 = TCmax for the motor unit. As noted in the “Muscles” tech brief, FR fibers 
develop about 4 times more maximum tension than S fibers, and FF-type fibers develop about 2 
times more maximum tension than FR-type fibers.  
 
 There is one additional complication to consider in modeling the contractile element. Under 
sustained high-frequency bombardment by motoneuron action potentials, a motor unit exhibits 
desensitization, which is a loss of responsiveness by the muscle fibers to continued AP 
stimulation. We will postpone discussion of this factor to a later point in this tech brief. For now, 
it is sufficient to say that desensitization can be modeled as a reduction in C0 due to excess 
stimulation. This effect is important, in my opinion, because it affects the motoneuron recruitment 
characteristics that our evolved spinal cord neural networks must employ. 
 
B. The Elastic Elements.   A muscle when passively stretched exhibits an elastic restoring 
force that tends to return the muscle to its original length. In part this force is due to stretching the 
connective tissue that surrounds the muscle fibers. In part it may be due to stretching the tendons 
which terminate muscle tissue and attach it to the bone. There is reason to believe that the muscle 
fibers themselves are at least partly elastic. It is this elastic restoring force that is represented by 
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the elastic elements (springs) in the Hill model. It is not completely correct to assign these 
elements to any one particular physical source, but for our purposes we may regard the PEC as 
being mostly due to the connective tissues and the SEC as being primarily dominated by tendon 
fibers terminating specific motor units.  
 
 Muscle and tendon fiber stiffness follows a remarkably simple empirical stress-strain 
relationship. Stress is defined as force per unit cross sectional area of a fiber. Strain is defined as 
the deformation in length due to an applied stress. The empirical relationship is given by 
 

  � ���
�

�
���

d
d

�               (12) 

 
where � is the stress, 0����  is the ratio of length to resting length (sometimes called the slack 
length), and � and � are empirical constants. Ballpark values for these constants are � = 12 (a 
dimensionless quantity) and � = 8.3 grams/cm2 (when the stress is expressed in gram-force units). 
This gives the stress in (12) units of grams/cm2, which can be converted to newtons/cm2 by 
multiplying it by 9.807�10-3. Evaluating (12) gives us 
 
  �              (13). �� ��

��� e
 
where � is the integrating factor (in units of grams/cm2).  
 
 We can apply (13) to the PEC by assuming that at the resting length (or slack point) where � 
= 1 the stress is zero. This gives us � ���� ��� exp . The total force is stress multiplied by the 
cross sectional area so that the elastic tension produced by the PEC is 
 
  � �� � � �0

1 1 �� �����
�� ueAPEC

���T           (14) 
 
where A is the cross sectional area in cm2. Because muscle density is about 1.0 grams/cm3, the 
effective cross sectional area of the whole muscle can be estimated from 
 

  
cminlength

gramsinweightA � . 

 
 By defining ��  we can re-express (14) in the standard form  0��� �
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Applying (15c) to (15b) and substituting into (15a) gives us the element law for the PEC as 
 

  � 00
1

��� ����
��

�
��

��

ueK PECPEC
��

��

�T          (16) 

 
where 0������ .   
 
 The element law for the SEC is similar but does have a slightly different form. This is due to 
an ambiguity in defining what exactly constitutes the length x2 of the SEC in figure 2. The 
ambiguity arises because it is not clear what exactly is the physical correspondent to the SEC. It 
will be mathematically convenient for us to think about the SEC as representing strain in the 
tendon fibers to which the motor unit attaches, and therefore to regard x2 as representing the 
length by which the tendon is stretched beyond its resting length. We take x2 = 0 as the relaxed 
state of the tendon, and therefore x2 < 0 indicates that the tendon is slack. This convention 
requires us to represent the total muscle length as 
 
  �              (17) � 221 xuxx ��� �
 
where x1 is the length of the contractile element. Under this convention the constant � in (12) is 
no longer a dimensionless quantity, but rather has units of "per cm". We denote this by �s and 
write the element law for the SEC in standard form as 
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where 
 
               (18b) sSECK �� ��0

 
and � is a dimensionless tension constant. Since both terms in (18b) are empirical values, it is 
probably simplest to simply regard KSEC0 as simply some empirical constant in its own right. 
(18b) merely ties KSEC0 to the stress-strain law.  
 
 KPEC and KSEC are known as the stiffnesses of the two elastic elements. We should note that 
according to equations (15b) and (18a) both these factors are functions of lengths, and therefore 
the PEC and SEC are nonlinear springs. Because we are associating the SEC with tendon fibers, 
and tendon fibers are generally more "stiff" than the connective muscle tissue, we can generally 
assume that KSEC0 > KPEC0. 
 
C. The Damper Element. It is an empirical fact that muscle tension during contraction and the 
speed of the contraction are coupled to each other. Hill found that the relation between them 
follows a characteristic hyperbolic equation, now known as Hill’s equation. For  and total 
contractile muscle tension T

01 �x�
AB = TC + TB (see figure 2), Hill’s equation is 

 
  � �� � � � baTxbaT CAB ����� 1�           (19) 
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where a and b are empirically determined constants. Hill’s equation fits the experimental data for 
; for muscle stretch ( ) the muscle departs from the behavior predicted by the 

equation. We will discuss the modeling of the stretch case in a little while. Substituting T
01 �x� 01 �x�

AB = TC 
+ TB  into (19) and solving in terms of TB gives us 
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where B is the damping coefficient. Note that B is a function of both velocity and the tension 
produced by the contractile element. Although Hill’s equation is deduced only for the whole-
muscle case, we will make the assumption that it applies to individual motor units. Ballpark 
values for a and b (derived from Hill’s studies of toad legs1) are:  grams (gram-force) and 

(0.2 � muscle length) per second, where muscle length is taken as �  in cm.  
4�a
0�b

 
 There is a maximum speed at which active shortening of the muscle can occur. Solving (19) 
for the total tension we get 
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Since TAB can never be negative (because active muscle force can only contract, it cannot extend), 
we find the maximum speed of contraction when TAB = 0. Letting contraction speed be defined as 

, we get 1xv ���

 

  
a

bT
v C

�max               (21). 

 
 It is convenient to define the dimensionless factor 
 

  
v
b

T
a

C
��k               (22). 

 
At the maximum tension that can be developed by the contractile element, k typically lies in the 
range . Biological values for  per unit area of muscle are on the order of 
about 2.0 kg/cm

25.015.0 min �� k maxCT
2, as noted earlier. At k = 0.25 and T = 2 kg./cmmaxC

2, (22) implies an effective 
total fiber area of about 8�105 �m2, and the anatomical range of muscle fiber diameters runs from 
10 �m to 100 �m per fiber3. The number of fibers depends on the distribution of S-, FR-, and FF-
type muscle fibers in the muscle, and we should recall that each motor unit is made up of only 
one type of muscle fiber. We can use this to develop numerical values for individual motor units 
as follows.4  
 
 Using the whole-muscle range for kmin as given above, the effective area of the muscle is 
                                                 
3 A. Vander, J. Sherman, and D. Luciano, Human Physiology, 7th ed., Boston, MA: McGraw-Hill, 1998, pg. 
288. 
4 Bear in mind that Hill’s model was developed from whole-muscle experiments. Therefore, parameters 
such as k as measured by Hill and others reflect whole-muscle characteristics, which we must subdivide to 
find the appropriate numbers for individual motor units.  
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The typical distribution of S-, FR-, and FF-type fibers in a muscle has been characterized by 
Henneman.5 Letting NS , NFR , and NFF denote the number of S-, FR-, and FF-type fibers, 
respectively, in the whole muscle, then from Henneman’s distribution I calculate the approximate 
formula for Aeff based on average fiber diameters5 as 
 
            (23b). FFFRSeff NNNA ������ 69401963227
 
where Aeff

  is expressed in �m2. These fibers are distributed over the various motor units, subject 
to the constraint placed upon their total number by (23b). Average fiber diameters for each type 
of fiber are approximately 
 
  dS = 17 �m, dFR = 50 �m,  dFF = 94 �m  
 
and so if a motor unit has nMU fibers (all of the same type with diameter d), then the effective area 
of the motor unit in �m2 is given by  
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and the kmin for that motor unit is 
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            (24a). 

 
The maximum tension in grams that can be developed by that motor unit’s contractile element is 
then 
 

  
minmin

0max
4

kk
aCC ���T  grams         (24b) 

 
where C0 is the force constant in (10a).  
 

For example, a motor unit consisting of 100 S-type fibers would have a kmin of 8.81 and a C0 
of 0.454 grams (86.4�10-3 newtons). Its maximum contraction velocity would be 
 

  023.0
81.8
2.0

min
max ���

k
bv  muscle length/sec (= 0.43 cm/sec for = 20 cm). 0�

 
In comparison, a motor unit with 100 FF-type fibers would have kmin = 0.288, C0 = 13.9 grams, 
and vmax = 0.694 muscle lengths/sec (= 13.9 cm/sec for a 20 cm muscle).  
 

                                                 
5 V.B. Brooks, The Neural Basis of Motor Control, NY: Oxford University Press, 1986, pp. 58-60. 
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 In order to be consistent with the maximum tensions illustrated in Figure 2 of the “Muscles” 
tech brief, the average FF-type motor unit compares to the average S-type motor unit as 
 
              (25a) � � �SMUFFMU nn �� 26.0 �

�

 
and the average FR-type motor unit compares to the average S-type motor unit as 
 
              (25b) � � � �SMUFRMU nn �� 46.0
 
from which we get 
 
  n            (25c). � � �FRMUFFMU n�� 565.0
 
These relations give us relative C0 ratios that are self-consistent with measured data. Bear in mind 
that NS in (23b) is nMU(S) times the number of S-type motor units, and similarly for NFR and NFF.  
 
 In order to avoid notational confusion later on, let us agree to denote the whole-muscle kmin 
with the special symbol kw (0.15 < kw < 0.25). Given a kw describing the whole muscle, let us 
denote the number of motor units in the muscle as GS , GFR , and GFF  for the S-, FR-, and FF-type 
motor units, respectively. From kw we calculate the muscles effective area from (23a). The (23b) 
can be expressed in terms of the “mix” of motor units and nMU(S) as  
 

  � � �SMUFFFRS
w

nGGG
k

�������

� 1804903227102 5

�

                                                

      (26). 

 
This constraint equation puts restrictions on the number of different motor units that must be 
included in the overall model. For example, if we were to simply pick 5 S-type, 2 FR-type and 1 
FF-type motor units as comprising a muscle, then with kw = 0.25 equation (26) tells us nMU(S) must 
be 169 (rounding up to an integer number of fibers). Equations (25) then specify the number of 
FF- and FR-type fibers per motor unit as 44 and 78, respectively (again rounding to an integer 
number of fibers). From this and the average fiber diameters given earlier we find kmin and C0 for 
each motor unit using equations (24). For the example numbers just given, this would be 
 
   S-type: kmin = 5.21, C0 = 0.767 grams 
   FR-type: kmin = 1.31, C0 = 3.053 grams 
   FF-type: kmin = 0.655. C0 = 6.11   grams 
 
for each individual motor unit. The maximum total force the muscle could exert with all motor 
units active and at their maximum tensions would then be 16 grams (0.157 newtons = 0.035 lbs.), 
which is consistent with the choice of kw and equation (22).6  

 
6 You may find this maximum force value to be surprisingly small. It is a consequence of our using the 
“toad value” of a = 4 grams in this derivation. Altering the number of motor units in (26) does not change 
the maximum force since this is a/kw . Large animals would have either a larger value of a (which affects 
equation (23a) and our other numbers) or else each “muscle” would actually be made up of parallel 
combinations of large numbers of “sub-muscles”, giving a greater Aeff  for “the muscle”. Judging from 
anatomical sketches I’ve seen, both strategies seem to be employed together in real animals. Since such 
“parallel sub-muscles” would be close synergists, for our purposes it is probably sufficient to calculate the 
“per sub-muscle tension” using the equations given here and apply a “whole muscle force multiplier”. 
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 Hill’s equation has thus allowed us to specify a number of muscle properties. Now, recall 
that the total tension for a motor unit is determined from (10a) and k is a function of this tension, 
as per (22). In general, as TC is reduced, k increases and vmax decreases. All this is for active 
muscle contraction. When the muscle is stretched, the damping properties no longer follow Hill’s 
equation. There is a slope change in TAB vs.  at = 0 and T1x� 1x� AB reaches a saturation value 
 
  � � 0,1 1max ���� xTm CAB �T           (27) 
 
where 0.2 < m � 0.8, with 0.8 being a fairly typical value for m. The increase in TAB is due to the 
damper opposing the stretching of the muscle. From experimental curves the saturation of muscle 
tension is reached at velocity7   
 

  � � maxmax1 1.01.0 v
a
Tb

x C
��

�
��           (28). 

 
 Also judging from reported data, we do not appear to introduce very much error if we ignore 
the aforementioned slope change and simply employ Hill’s equation up to the saturation point. To 
enforce continuity with Hill’s equation at the maximum stretch velocity we require 
 

  
� �

� �max1
max1

x
xb

aT
mT C

CB �

�
�

�

�

��T . 

 
With a minor amount of algebraic manipulation, this gives us 
 

  � �
� �max11,

1.0
11.0 xxT

k
k

CB �� ��

�

��
�T  . 

 
Combining this with our previous results, we obtain the complete model of the damping 

element as 
 

  � �

�
�
�

�

�
�
�

�

�

���

�	�
�


�

�����
�




�

vxT

vxT
k

k

vxvx
xb
aT

C

C

C

B

1

1

11
1

,

1.0,
1.0

11.0

1.0,

�

�

��
�

T         (29). 

 
The first term in (29) is in the form of a nonlinear viscous damper with damping coefficient B 
depending on velocity and contractile force TC . We will call this region of operation the “Hill 
region”. The middle term is reminiscent of sliding friction while the bottom term cancels the 
force produced by the contractile element when the muscle is contracting faster than vmax for that 
motor unit (as could happen when other motor units are dominating the muscle’s overall 
response). Note that (29) requires kmin to be greater than or equal to 0.1 (which should be no 
problem). k is calculated from (22) and v = b/k. Note that when the motor unit is inactive (TC = 0) 
we have k = � and v = 0 such that TB = 0.   
                                                 
7 op. cit. McMahon, pg. 15. 
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IV.  The System Dynamical Equations   

 
 The job of the muscle model is to calculate the total muscle tension T given the state of 
excitation of each motor unit and the initial muscle length . Let us suppose we have � motor 
units. The tension produced by a motor unit is always equal to the tension produced by its SEC. 
Therefore, 

�

 

  T               (30) � �
PECSEC TT �� �

�

�1�

�

 
where the superscript � denotes the �th motor unit. Provided that  is not negative, the SEC 
tension always equals the sum of tensions from the contractile element and the damper. 
Otherwise the motor unit tension is zero when  < 0 (i.e. the motor unit fibers are slack). 
Therefore, 

� ��
2x

� ��
2x

 
  T            (31). � � � � � �� � � �� ����

2xuTT BCSEC ��� �

�

 
 
For each motor unit, . The lengths  and �  are initial conditions for the 
solution of the dynamical equations for each motor unit. We assume that the equations will be 
solved on the computer using a sampling interval of 	t. We have three cases we must consider. In 
all cases we first calculate the contractile force Q

� � � � � �� ���

221 xuxx ���
� ��
1x ��

2x

C from equations (10) for each motor unit. I will 
describe this calculation after developing the other system equations. 
 
A. Operation in the Hill Region. For simplicity of notation, I am going to omit the superscript � 
in the following expressions. It is to be understood that we are calculating quantities for a 
particular motor unit in what follows. We assume initial values for x1 and  are available from 
the previous iteration of our calculation. We further assume that an initial value of  is available 
from the previous iteration. We first calculate 

1x�
�

 
  � � 12 xtux ��� �  
 
and from this determine the SEC spring constant as 
 

  � �
��

�
�

�

�

���
	

0,0

0,1

2

2
2

0 2

x

xe
x

K
K

x

s

SEC
SEC

s�

�   

 
noting that KSEC = KSEC0 when x2 = 0. Because we are assuming operation in the Hill region, we 
set 
 

  
1xb
aT

B C

��

�
�  

 
and equate the SEC tension with TAB  
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  � � 11 xBTxK CSEC �� ���� . 
 
Substituting for TC and re-arranging terms gives us the motor unit dynamical equation 
 

  
� �

B
AQ

B
K

x
B

K
x CSECSEC 0

11
��

��
�

����         (32). 

 
 At this point we must check  and verify that it lies within the Hill region. If it does not, we 
must use one of the solutions in the following section rather than solve (32) for x

1x�
1. Otherwise (32) 

provides the initial value for the velocity during the next calculation iteration. The quantity 
 

  
SEC

B K
B

��               (33) 

 
is the time constant of the motor unit in the Hill region. Biologically realistic values for �  for an 
S-type motor unit at rest in response to a single twitch are around 150 msec.

B
8 (A single twitch in 

the relaxed initial state generates about 1/16 of the maximum tension for the contractile unit9). 
Under the same conditions and assuming that time constants scale with twitch time in proportion 
to figure 2 of the “Muscles” tech brief, the time constant for an FR-type motor unit is about 85 
msec, and that of an FF-type motor unit is about 64 msec. (This implies that a 	t of 10 msec 
should be adequate for calculation purposes). These representative values allow us to obtain an 
estimate for KSEC0 from the relationship 
 

  
16

161 0min
0

C
b

k
K

B
SEC �

�

��
�

�

  grams/cm       (34) 

 
where b = 0.2� ,  expressed in cm, C0�

0�

0� 0 expressed in grams. Using the example from before 
(page 12) and  = 20 cm we get the following values for KSEC0 for the time constants stated 
above: 
 
   S-type: 6.74;    FR-type: 12.32;        FF-type: 17.12. 
 
This compares to KPEC0 given by (15c) and (23a) as 0.04 (kw = 0.25). 
 
 The solution for (32) using the criterion of step-invariance (which is essentially an Euler’s 
method solution), we have the solution at time t given as 
 

  � � � � � � � � � � � �� � � �BB t
C

Bt ettAtQ
B

ttettxtx ��
� ���� ��

�

�
�
�

�
�����	
��� 1011 ���  (35). 

 
B. Operation Outside the Hill Region. If (32) indicates operation outside the Hill region we have 
two possible cases to consider. The first is where . This is the simplest case and gives vx �1�

 

                                                 
8 op. cit. McMahon, pg. 19, fig. 1.14. 
9 E. Kandel, J. Schwartz, and T. Jessell, Principles of Neural Science, 4th ed., NY: McGraw-Hill, 2000, pg. 
680, fig. 34-4. 
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  � � � �tttx ��� �1              (36a). 
 
The other case is where . In this case, vx �� 1.01�

 

  � �
� � � �� � � � � �� �001.0

11.0
���� ttAtQttAtQ

k
k

CCB ������
�

�
� �T  

 
from which we obtain 
 
  � � � � � � � � � �� � SECC KttAtQtttx 01 1 ��� ������� �        (36b). 
 
 The force produced by this motor unit is then calculated from an updated value of x2 as 
 
  � � � �� � � �11 xutxttKSECSEC ������ ��T         (37). 
 
C. Calculation of the Contractile Force. The neuromuscular junction, where axons from the 
motoneurons invade the muscle, is called the end plate. It is the neuromuscular equivalent of a 
synapse. A number of factors go into the evaluation of equations (10a)-(11). First, the end plate 
undergoes a longer refractory period (during which it does not respond to follow-on action 
potentials) than is the case for a typical synapse. An AP bombardment at a rate of about 100 APs 
per second produces a fused tetanus (refer to the “Muscles” tech brief), whereas a 50 AP/sec. 
volley produces only an unfused tetanus. This argues for a refractory period of about 10 msec. At 
a numerical sampling rate of �t = 10 msec, this implies we can define p(t) in (11) as follows. If 
no APs are received within the previous interval [t - �t, t], p(t) = 0. Otherwise, no matter how 
many APs arrive in that interval p(t) = 1. This accounts for the refractory time of the end plate. 
 
 Next, the end plate potentials observed at the neuromuscular junction have a time constant � 
on the order of 7 to 10 msec.10 For convenience we may take � = 10 msec. as a convenient value. 
Applying this to (11) and using the step-invariant (Euler) approximation we get 
 
  � � � � � � � �� tt

CC eCtpettQt ����
�������� 10 �

                                                

Q        (38). 
 
 There is one additional complication in computing TC. Prolonged action potential volleys 
desensitize the end plate response. This is a mechanism similar to short-term depression in pre-
synaptic terminals in neurons. Desensitization is evoked following bombardment in the range of 
from 10 to 20 APs at a maximal rate on the order of about 100 APs/sec.11 I have so far found little 
quantitative data on end plate desensitization, nor is the precise mechanism for it well understood. 
One possible mechanism for it is the following. An AP evokes secretion of acetylcholine (ACh) 
from the motoneuron’s presynaptic terminal. ACh binding to nicotinic receptors in the end plate 
causes the release of Ca2+ from internal stores within the muscle. It is known that Ca2+ is the agent 
that produces muscle contraction. However, it is also possible that rising Ca2+ concentrations in 
the muscle might shut down (desensitize) the ACh receptors in the end plate via a cycle of 
phosphorylation/dephosphorylation. Ca2+ would act as a second messenger in this metabotropic 
reaction, but it probably does not itself play a direct role in receptor desensitization.  
 

 
10 op. cit. Kandel et al., pg. 190, fig. 11-4. 
11 B. Katz, Nerve, Muscle, and Synapse, NY: McGraw-Hill, 1966, pg. 156. 
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 While a roughly 0.2 sec. AP volley is required to evoke the desensitization, the loss of ACh 
receptor sensitivity builds up over the course of a few seconds, and desensitization lasts for 
another few seconds after removal of the AP tetanus. It is numerically ill-conditioned to attempt 
to compute such a long-time-course event at the basic system sampling interval of 10 msec. 
Instead it is better to employ a dual-sampling-rate system in modeling the effect.  
 
 This is done by placing two discrete-time equivalent systems in cascade with a down-
sampler between them. The first system runs at a basic sampling interval of 10 msec. It takes p(t) 
as its input and produces an intermediate discrete-time variable yt as its output (where t is here 
taken as an integer sample number index). The variable y represents the state of the 
phosphorylation/dephosphorylation process. To model the threshold effect of desensitization we 
define an action variable zt. The system of equations describing this first block is 
 

              (39) 
tt

ttt

yz
ypy

���

���
��

�20
5.0 11

 
where � is a threshold variable that determines the number of consecutive non-zero values of p 
required to evoke desensitization. For a volley of 20 high frequency APs, � = 2�10-6; for a volley 
of 15 APs, � = 6�10-5; for a volley of 10 APs, � = 0.06. 
 
 The output z is downsampled to a sampling period of 100 msec (i.e. it is decimated by a 
factor of 10) and applied to a threshold detector. Denote the downsamples of zt as hj where j is the 
integer sampling index of the second system. We model the thresholding device as 
 

  �             (40a). � �
�
�
�

�

	
�

0,0
0,1

j

j
j h

h
f

 
The dynamical equations of the second block are given by 
 

  
� �

min
0

405.0

95.0

k

h

j

jjj

���

���

�

���

C             (40b) 

 
where TCmax is the maximum value of tension in the contractile element. As you might suspect, 
the effect of desensitization is modeled as a reduction in C0. TCmax in (40b) denotes the nominal 
value of C0 as given in (24b). In using this model, it is vital to keep in mind that the system (40b) 
is running at only one tenth the rate of the rest of the system and that it samples only every 10th 
value of zt coming out of the system of (39).  
 
 It may seem as if accounting for desensitization is an unnecessary complication for our 
application. However, it does serve to provide a defense against one of the common problems 
often encountered in “optimizing” control system designs. When a control system is optimized 
without any sort of power constraint on the control signal, it usually turns out that the optimizer 
will simply choose to “bash” the plant it is controlling with very large control signals. Naturally 
enough, such an “optimum” mathematical control law runs into many problems if it is applied to 
a real system. Not the least of these is damage inflicted on the thing being controlled.  
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 Neural systems avoid this by recruitment of motoneurons activating additional motor units. 
The desensitization phenomenon in effect should force our genetic algorithms to evolve motor 
control networks that properly implement a recruitment strategy. Thus, in effect desensitization is 
a biological mechanism for introducing a power constraint in the operation of the spinal sensori-
motor control system. 
 
D. The Force Multiplier. It was pointed out on page 12 that the muscle tensions produced 
from the typical parameters we are using is rather small. This is a consequence of the fact that our 
experimental data is taken from small animals, e.g. frogs and toads. Larger animals can exert a 
larger muscle force because they have larger muscles. The easiest and most convenient way to 
model larger muscles, capable of exerting greater muscle force, is through a force multiplier, f. 
Applying f to (30), we obtain the total muscle force as 
 

             (41). � �
��
�

�
��
�

�
��	 �

�

�

PECSEC TTfF
1�

�

 
V. Solution of the Mechanical Equations   

 
 After finding the muscle forces F1 and F2 from the equations in the previous section, we 
must solve the dynamical equations (9) of the mechanical system. In equations (8) we defined 
two state variables in what may have seemed a peculiar way. The motivation behind these 
definitions is that we require a numerical solution for the nonlinear coupled set of equations (9).  
 
 Let �0 represent the solution for � at time t - �t, i.e. � �tt ��� �0� . We will denote the 
solution for time t as � � �� ��� 0t� . In this expression �0 is regarded as a constant, and so all 

time derivatives of � are equal to the time derivatives of ��, which we denote as , etc. We 
will define the quantity D(�) as 

���

 

  � � � ��DTTTT
I

T
I sw

j
L

j
������ 12

11
���         (42) 

 
where the torques and moment of inertia were defined in section II. D(�) is a nonlinear function 
of � and can be expanded in a Taylor series about the point �0. Let � ��D�  denote the derivative of 
D with respect to �.  Provided that �� is small enough, (42) can then be approximated as 
 
  � � � � � � � � 100002 sDDDDs ���������� ���������       (43) 
 
where s1 and s2 are as defined in equations (8).  
 
A. Approximate Solution of (43) by Euler’s Method. Provided that the sampling interval  is 
small enough, an approximate solution to (43) can be obtained step-by-step using Euler’s method. 
This solution method is in effect the same as step-invariant discretization of the dynamical 
system. We hold D and D’ constant over the interval  and, of course, D’ must exist at �

t�

t� 0. This 
latter condition can be satisfied for all angles with the exception of , where the 
damping term in the joint torsional spring term T

��� ��0

s causes a problem.  
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 Naturally, D and D’ must first be evaluated before (43) can be solved. In the case of D we 
simply use the various expressions given earlier to evaluate each component in (42) and sum 
them up. Expressions for the various terms in D’ are given later. For now we will assume these 
calculations have been carried out. The state vector and dynamical equations (9) are then 
 

                  (44a) �
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and 
 

             (44b) �
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where Sn-1 is the state vector from the previous iteration. The eigenvalues of the state matrix are 
equal to D��  and we will define the pole frequency 
 
  D���               (44c). 
 
There are three possible solutions to (44b), depending on the sign of D’. 
 
Case 1: D’ > 0. For this case one of the eigenvalues is positive real and the system is not BIBO 
(bounded input – bounded output) stable. The solution over interval  is t�
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1   (45a). 

 
Case 2: D’ < 0. For this case the eigenvalues are pure imaginary and the system is oscillatory. 
The solution over interval  is t�
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1   (45b). 

 
Case 3: D’ = 0. This is the degenerate case, having two eigenvalues equal to zero. The solution 
over interval  is t�
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         (45c). 

 
 In all three cases, the new angle �  is given by � . 10 s�� �

 
B. The General Expression for D’. D’ is the derivative of D with respect to � . In evaluating 
this derivative, it is essential that we keep in mind that the muscle lengths, and therefore the 
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muscle forces, are coupled to the joint angle. In this subsection we will give the general equation 
for D’. As we are about to see, this expression involves a number of other derivatives. We will 
develop expressions for those derivatives in the following subsections. In evaluation of the 
general expression given here, these subsidiary derivatives must be evaluated first.  
 
 Straightforward differentiation of the torque terms in (42) gives us 
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where � ���  is the Dirac delta function and the other terms were defined in the earlier sections. 
This expression is evaluated at the initial point �  when used in the solutions (45). However, the 
delta function will give us problems if � . Fortunately, Taylor’s theorem allows us to 
use whatever expansion point we wish so long as  remains small. Therefore, in evaluating our 
solutions we can test for �  and if it occurs we can perturb �  away from this point by 
some small amount. Letting a “0” subscript denote evaluation at � , the expression above 
becomes 
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     � ���� ���� 0uK s          (46). 
 
Dividing both sides of (46) by Ij gives us D’.   
 
 We should take especial note of the derivatives of the muscle force terms in (46). As we saw 
earlier, the muscle forces are functions of the muscle length, and the muscle length is a function 
of joint angle. It would therefore be a great error to neglect these force derivatives in carrying out 
the Euler’s method evaluation of the dynamical equation (43). Doing so would be tantamount to 
inserting a fictitious zero-order hold on the muscle forces. However, we have seen earlier that the 
system described by the dynamical equation has inherently unstable roots. Case 1 is BIBO 
unstable, and case 2 is pendulum-like. This implies that sources of error in evaluating D’ could 
potentially lead to serious numerical errors.  
 
C. The Geometric Derivatives. The four derivatives for the geometry terms in (46) are very 
straightforward. Define 
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Then 
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There is an obvious numerical issue in (47c) and (47d) when �  or �  approach 0 or � . However, 
these occur only for the extreme joint positions �  = 0 or � . At these positions, the muscle 
lengths are either a maximum or a minimum, and therefore the derivatives are zero in these cases. 
 
D. The Muscle Force Derivatives. Each muscle produces its force in accordance with equation 
(41). Therefore 
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(48) is applied to each muscle and here I omit the muscle subscripts. We apply the derivatives 
term by term according to the earlier equations that defined the tensions in (48). For the PEC this 
gives us  
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 The analysis of the SEC terms is more involved since this tension is coupled with those of 
the contractile element and the damper. We have one term for each motor unit, and in the 
following I omit the motor unit superscript in order to simplify notation. We begin with 
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from which we obtain 
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 For the latter term we take advantage of the relation � � 122 xxux �� �  and apply a simple 
chain rule trick to obtain 
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1x�  is a by product of the muscle calculations. Although the second expression in (51) is valid 

regardless of the rate of change of muscle length, the first expression given might sometimes have 
some computational advantage when the muscle length is changing. As for the time derivatives of 
muscle lengths, these are given by 
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with 
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Both length derivatives go to zero at these extrema of � . 
 
 The derivative for KSEC  evaluates to 
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As we see, we require the evaluation of the derivative �ddx1  to obtain the solution to (51) and 
(53). There are four cases that must be considered in this evaluation. 
 
Case 1: Operation outside the Hill region with . vx 1.01 ��

 
 For this case, x1 is given by (36b) and the related equation (22). From this 
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where A is given by (10b) and 
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Case 2: Operation outside the Hill region with . vx ��1�

 
 For this case, �x  and �1
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Case 3: . 02 �x
 
 For this case, �x  and the result is the same as for case 2. �1

 
Case 4: All other cases. 
 
 This is the most difficult case to analyze. We begin by differentiating (35), followed by some 
minor calculus and a long bout of algebra. We use the damper terms from (20) and define the 
following series of intermediate variables: 
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Then 
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The expressions in this subsection must be evaluated for all motor units of each muscle. 
 

VI. Closing Remarks   
 
 This concludes part I of this tech brief. Here we have covered the details of the muscle 
model and the numerical solution of its dynamical equations given input signals from �-moto-
neurons. What remains to be covered in part II are the intrafusal muscle fibers and the sensory 
neurons that provide input to the spinal cord system via the dorsal root. The intrafusal fibers have 
no significant effect on the mechanical force applied to the limb, and so it was not necessary to 
include them in the “plant model” presented here in part I.  
 
 It is not necessary to wait for part II before we can begin preliminary examination of 
network evolution for controlling this limb. The intrafusal muscle spindles and their sensory 
neurons provide necessary feedback signals, but these are related to quantities modeled here. 
Group Ia afferents primarily sense muscle velocity, dtd�

�

, with some admixture of muscle 
stretch, . Group Ib afferents (Golgi tendon organs) sense muscle tension, hence muscle 
force. Group II afferents sense muscle stretch (but not muscle velocity). Group III muscle sensors 
are thought to respond to painful stimuli but it is also believed that they are pressure sensors, 
detecting pressure acting on the muscle fibers. Because muscles in contraction “bulge” and are 
restrained by the skin, a not unreasonable hypothesis for the action of group III afferents would 
be to assume they signal in proportion to the amount by which x

0�� �

1 < . Joint receptors of types I 
and II sense velocity, hence could be expected to measure � . Finally, we mentioned two joint 
nociceptors at the beginning of this brief that respond to extreme joint angles and whose action 
would be to inhibit further movement in the “painful” direction. 

0�
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 One of the curious things that strikes me about the dynamical solutions (45) and the 
eigenvalues for the natural response of this system is how much they resemble the type of control 
system dynamics one encounters in variable structure switching control systems. None of the 
natural modes of the system are stable in the sense of settling to a relaxed state under zero control 
signal input conditions. In part this is because inactive motor units supply no significant damping 
in the Hill model, leaving the joint torsional spring as the only source of damping. The result is a 
system that acts like a nearly ideal pendulum, which in the absence of damping would not settle 
to a zero-motion state.  
 
 Consequently, feedback control is essential for this system. No purely open-loop input 
signaling would suffice to accurately position the limb or even bring it to a stationary state. I have 
commented in a previous tech brief how much the organization of the spinal sensorimotor control 
system seems to be organized in a manner reminiscent of a variable structure switching control 
system. The model equations presented here seem to strongly support this earlier and rather 
intuitive observation of mine. The dynamical complexity of even such a simple joint system as 
presented here would also seem to be likely to have something to do with the great 
interconnectivity exhibited in the spinal cord neural network system. With so much going on in so 
many motor units, and with so many sensory feedback signals to process, it seems likely that such 
a rich network of lateral connections among the controlling neurons would be required to obtain 
swift and precise execution of movements and reflexes. 
 
 One thing we have not mentioned yet is the battery of skin sensors found in the body. We 
briefly discussed these receptors in part I of the SSMS tech brief. Inclusion of a number of 
idealized skin sensors distributed over the moveable limb would provide us with a means of 
“touch detection” for cases where the moving limb encounters an obstacle. It seems to me 
worthwhile in our early investigations to include some such cutaneous sensors so our evolved 
network can exhibit the ability to withdraw the limb on contact with an obstacle. Most industrial 
robots do not have such an ability at all (which makes them dangerous to be around), or have it in 
only a very limited degree (e.g. the bumper sensor on robot carts, intended to defend against the 
robot plowing through any and all pedestrians in its path).  


