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I. The Problem of the Neural Code 

This tech brief concerns the problem of the neural code and a new approach to the neural 

coding problem. Briefly stated, the problem of the neural code is this: What is the organization of 

the system or systems of information coding in the brain? The problem was first raised in 1956 by 

John von Neumann and to this day has remained one of the outstanding unsolved problems of 

theoretical neuroscience. Von Neumann saw the neural coding problem as analogous to a “brain 

language.”  

As pointed out, the nervous system is based on two types of communications: those which do 
not involve arithmetical formalisms, and those which do, i.e. communications of orders (logical 
ones) and communications of numbers (arithmetical ones). The former may be described as 
languages proper, the latter as mathematics.  

 It is only proper to realize that language is largely a historical accident. . . Just as languages 
like Greek or Sanskrit are historical facts and not logical necessities, it is only reasonable to 
assume that logics and mathematics are similarly historical, accidental forms of expression. They 
may have essential variants, i.e. they may exist in other forms than the ones to which we are 
accustomed. Indeed, the nature of the central nervous system and of the message systems that it 
transmits indicate positively that this is so. We have now accumulated sufficient evidence to see 
that whatever language the central nervous system is using, it is characterized by less logical and 
arithmetical depth than what we are normally used to (Neumann, 2000).  

Since von Neumann wrote these words in 1956, theoretical neuroscience has examined only a 

few hypotheses regarding what form this “brain language” might take. The oldest one, proposed 

by von Neumann himself, is the firing rate model. In this model, it is speculated that information 

is conveyed by being encoded in the rate at which action potentials are generated by neurons. 

This hypothesis is closely tied to an analogy with man-made data communication systems, 

especially those that use frequency-shift-keying modulation methods. This model works well 

enough in some cases, such as in the transmission of sensory information from nerve endings in 

the peripheral nervous system, but there is now a large body of evidence indicating that this 

model is not adequate for explaining a great deal of what appears to be going on in the central 

systems.  

A second hypothesis, hinted at by von Neumann but not developed until the work of von der 

Malsburg in 1982, holds that information is conveyed in the brain through correlations of neural 

firing patterns. This hypothesis is known as the correlation theory of brain function (Malsburg, 
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1994). Malsburg proposed this model largely in order to deal with certain mathematical 

difficulties the firing rate model is incapable of handling, but it received some later and indirect 

support from a model developed independently by Damasio, which holds that entities and events 

are represented in the brain by time-locked, synchronous neural firing patterns (Damasio, 1989a, 

1989b). This model has since become known as the convergence zone hypothesis (Damasio, 

1994, 1999).  

Traditionally, theoretical neuroscience has proceeded by adopting the firing rate model or the 

correlation model as a starting point and then proposed neural network models based on this 

presupposition. These researches have had numerous successes (otherwise these approaches 

would have been abandoned long ago), but have run into unsolved difficulties as well. It is not 

unfair to say that in many ways the tradition of presupposing a signal representation for the neural 

code and then building up a theory from such a supposition is like trying to understand mountains 

by examining them rock by rock and without recourse to the science of geology. Given enough 

rock gathering and enough patience, one would expect to eventually understand a particular 

mountain, and it is certainly easy to recognize a rock when you see one. But it is better by far to 

try to see the whole mountain first and develop a theory from that starting point.  

The neuroscience equivalent to viewing the whole of a mountain is called psychology. From 

psychological studies we do not obtain information regarding neuronal signals or neural anatomy 

and physiology. What we obtain is the gross picture of the overall end result as this is exhibited 

through the observable behaviors and self-reports of the human subject. Within psychology, the 

subdiscipline most closely linked to adaptive and learning phenomena is developmental 

psychology. The person generally regarded as the father of developmental psychology was the 

great Swiss psychologist Jean Piaget. Over his sixty years of experimental research, Piaget and 

his collaborators put together what is perhaps the most well-developed and self-consistent system 

theory to be found anywhere in psychology. Piaget’s theory covers human psychological 

development from infancy to adulthood, and finds that the same fundamental psychological 

processes at work in the infant are also the processes most fundamentally underlying human 

intelligence at the adult level (Piaget, 1975), (Piaget et al., 1977).  

One of Piaget’s major findings was that logic and logical thinking in humans is the outgrowth 

of a primitive proto-logic operating in infancy at the sensorimotor level of development and 

before the development of language. This proto-logic is revealed in behavioral forms Piaget 

called the logic of actions and the logic of meanings. The vast corpus of Piaget’s work documents 

in step-by-step detail the advancement from these most elementary forms of practical logics to 

the capacity for logico-mathematical thinking humans develop by age 15 years. Bärbel Inhelder, 
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Piaget’s long-time collaborator, wrote in the preface to his last book, 

 Piaget intended to bring to light the very roots of logic by going back to implications between 
sensorimotor actions. Such a logic could only be a logic of meanings where implications are not 
restricted to statements: in the subject’s view, every action or operation is endowed with 
meanings; therefore, one may deal with systems of implications among the meanings of actions, 
and then among the meanings of operations. Provided that the meaning of the actions and the 
causality of the actions are carefully distinguished, the subject’s expectations and anticipations 
about the chaining of actions bear witness to the existence of early inferences. Hence a 
privileged form of inference is the action implication, which is an implication between the 
meanings of actions. Piaget was thus initiating research on a “protologic” in which forms and 
contents are less differentiated than in operatory systems. After his investigations of 
correspondences, elementary dialectics, and categorical logic, in which he brought out the 
elementary and formative stages of operations, Piaget was deepening his study of the modes of 
understanding that are used as cognitive tools well before the subject can thematize them (Piaget 
and Garcia, 1991, pp. vii-viii).  

In simple terms, in the sensorimotor development stage of infancy the meaning of an action is 

what the action leads to, the meaning of an object is what can be done with the object. Piaget’s 

finding implies that all the complex meanings we understand as adults have their point of origin 

in the extremely simple and practical logic of meanings supported by the infant’s elemental logic 

of actions. His findings are based on observable behaviors in young children, which in the 

sensorimotor stage of development can be classified into three basic transformational structures.  

 To express the same idea in still another way, I think that human knowledge is essentially 
active. To know is to assimilate reality into systems of transformations. To know is to transform 
reality in order to understand how a certain state is brought about. By virtue of this point of 
view, I find myself opposed to the view of knowledge as a copy, a passive copy, of reality. In 
point of fact, this notion is based on a vicious circle: in order to make a copy we have to know 
the model that we are copying, but according to this theory of knowledge the only way to know 
the model is by copying it, until we are caught in a circle, unable ever to know whether our copy 
of the model is like the model or not. To my way of thinking, knowing an object does not mean 
copying it – it means acting on it. It means constructing systems of transformations that 
correspond, more or less adequately, to reality. . . The transformational structures of which 
knowledge consists are not copies of the transformations in reality; they are simply possible 
isomorphic models among which experience can enable us to choose. Knowledge, then, is a 
system of transformations that become progressively adequate (Piaget, 1970, pg. 15).  

In the early 1960s, after his discovery that the sensorimotor actions and behaviors that effect 

these transformations fit into a three-fold system of classification, Piaget was astounded to learn 

that these three types of structures corresponded neatly with the fundamental mathematical 

structures found by mathematicians – in particular, by an interesting group of young, mostly 

French mathematicians known collectively as the Bourbaki mathematicians – to be irreducible to 

one another and from which all the rest of mathematics can be constructed. These three 

mathematical structures, called algebraic structure, topological structure, and order structure, 

were called the Bourbaki mother structures.  

 A number of years ago I attended a conference outside Paris entitled “Mental Structures and 
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Mathematical Structures.” This conference brought together psychologists and mathematicians 
for discussion of these problems. For my part, my ignorance of mathematics then was even 
greater than what I admit to today. On the other hand, the mathematician Dieudonné, who was 
representing the Bourbaki mathematicians, totally mistrusted anything that had to do with 
psychology. Dieudonné gave a talk in which he described the three mother structures. Then I 
gave a talk in which I described the structures I had found in children’s thinking, and to the great 
astonishment of us both we saw that there was a very direct relationship between these three 
mathematical structures and the three structures of children’s operational thinking. We were, of 
course, impressed with each other, and Dieudonné went so far as to say to me: “This is the first 
time that I have taken psychology seriously. It may also be the last, but at any rate it’s the first.” 
(Piaget, 1970, pg. 26).  

Was this mere coincidence or perhaps nothing more than another illustration of the power of 

mathematics to describe anything that has a formal description? Or is there something more to it 

than this? Philosophers and scientists alike have marveled for centuries over the ability of 

mathematics – which is clearly an invention of the human mind – to quantitatively describe 

nature – which is usually presumed to not be an invention of the human mind. Coincidence it may 

be, but consider Piaget’s finding that the copy of reality hypothesis is a provably false hypothesis. 

In this case, all the objects one comes to know must be constructed (since they cannot be the 

result of making a copy). The intriguing possibility this raises is that perhaps, since children’s 

knowledge is built up on the basis of Piaget’s practical sensorimotor transformational structures, 

the concordance of mathematics and the experimental sciences is due to one and the same root 

cause – namely, the intrinsic nature of how human beings come to know their world and 

everything in it. The concordance between mathematics and experimental science would then not 

be the product of mere accident; rather, it would be because mathematical knowledge and 

empirical knowledge are both weaved from the very same psychological cloth.  

If this is true, then another implication is presented. It is a fundamental tenet of neuroscience 

that all behavior in animals – including man – is the product of brain structure and brain function. 

If the structure of human behavior is found to be isomorphic to the fundamental structures of 

mathematics – algebraic structure, topological structure, and order structure – then perhaps the 

structure and function of neural organization is also none other than Bourbaki mother structure. If 

this corollary implication is true, then perhaps the secret to unlocking the neural code lies not 

with searching for the brain’s “language” but, rather, by looking into the development of neural 

and neural-glial structure. The research question for computational neuroscience then becomes: 

What is functionally necessary if it is to be possible for the brain to develop algebraic, 

topological, and order structures in its neural network systems? Investigation of this question is 

the subject of this branch of research here at LCNTR. This is how we shall define the problem of 

the neural code. 
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II. Psychophysical Neural Network Modeling 

It is not Piaget’s contention that sensorimotor correspondents to the mother structures exist 

full-grown and innate at the time of a child’s birth. Quite the opposite is the case. The newborn 

infant comes into the world with a set of basic and genetically-determined sensorimotor reflexes 

that do not yet rise to the level of, say, a full-blown algebraic structure. Although it is true that 

some innate capabilities – namely those relating to the child’s earliest perceptual representations 

of space – already show fundamental elements of topological representation (Piaget and Inhelder, 

1967), the great majority of these structural transformations acting at the sensorimotor level must 

be built up during the stage of sensorimotor intelligence from birth to approximately age 2 years 

(Piaget, 1952, 1954). The extension of the mother structures to habits of thinking and reasoning 

follows their sensorimotor development over a period of years from age 2 years to approximately 

age 15 years (Inhelder and Piaget, 1964), (Inhelder et al., 1974).  

Under the fundamental tenet of neuroscience, the neurological substrate for these behavioral 

abilities is modeled by mathematical neural network models. Such models quantitatively 

represent large numbers of neural networks and are functional in nature. To appreciate the 

physical scale of these models, it is helpful to consider the “system roadmap” shown in figure 1. 

Research in theoretical neuroscience can be broadly divided along the lines of component 

modeling,  which runs from molecular and cell-level models to models of functional properties of 

 
Figure 1: System roadmap depicting the span of levels of scientific reduction studied in computational neuroscience. 

The topic of this tech brief belongs to the system architecture model level but involves all three levels depicted in 
yellow background in this figure.  
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Figure 2: PET scans showing areas of significant activation (deep red) and significant inhibition (deep purple) in 

human subject during the experiencing of anger (Damasio et al., 2000). 

interconnected groups of hundreds of neurons, and system modeling, which runs from statistical 

models of neuron populations close to the biological level to models of major brain systems with 

functions closely related to the psychophysical level of experimental research. The constituent 

elements of system architecture models, which is the topic of this tech brief, are models that take 

in the functional properties of assemblies of hundreds of thousands to millions of neurons.  

Because system architecture models and the lower modeling levels from which they are 

constructed operate hand-in-glove with experimental psychology, it is important to appreciate 

how neuroscience makes the connection between brain and the objects of psychology. The 

method is based on drawing functional correspondences between brain structure actions and basic 

psychological entities such as emotion, perception, consciousness, and so on. Today this is done 

by using measurement tools such as positron emission tomography (PET) scans and functional 

magnetic resonance imaging (fMRI). Figure 2 illustrates a PET scan taken for a subject during the 

experiencing of anger. Different color levels in the scan correlate to levels of metabolic activity in 

the cells in various regions of the brain. Metabolic levels are known to be higher for neurons that 

are actively signaling than for neurons in the quiescent state. Thus, PET scans provide data on the 

activity level of neuronal signaling, and computational models at the map, network system, and 

system architecture modeling levels in figure 1 represent this activity level in their signal 

variables.  

The organization of the various modules found in system architecture models is deduced from 

what is known of brain anatomy and intercellular connectivity. The mathematical descriptions for 

6 



LCNTR: Meanings-based Networks 

 
Figure 3: Functional column structure proposed by Szentágothai. 

these models must maintain a close connection with biological facts. The computational neuro-

scientist is not free to engage in arbitrary speculation concerning the structure of his or her 

models. The lowest-level constituent of a network architecture model is called a map model. A 

map node is an abstract representation of neuron cell assemblies comprised of thousands of 

neurons anatomically organized so as to form a functional unit. Biologists give such cell 

assemblies names like functional columns, blobs, barrels, and nuclei. Figure 3 illustrates a 

qualitative model of a functional column in the neocortex (Szentágothai, 1983). In human 

neocortex, one such functional column contains on the order of 17,000 neurons. Functional 

columns are closely interconnected to neighboring columns in the cortex and also connect to 

more distant columns and sub-cortical structures via long-distance projections through the white 

matter of the brain (Wells, 2005).  

Map models are interconnected to make network system models. These models are functional 

representations of how map-level neuron assemblies affect one another due to the signals that 

pass between them. Network system models are deduced from gross anatomical properties of the 

synaptic interconnections among functional units. A variety of network system modeling theories 

have been proposed over the years by different theorists. The different modeling theories have 

differing degrees to which their “anatomy” and dynamical descriptions (“physiology”) are based 

on actual biological structure. The modeling theory that has most closely remained faithful to 

psychological and biological fact over the years was discovered and developed by Grossberg and 

goes by the name adaptive resonance theory or ART.  
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Figure 4: The on-center/off-surround anatomy. Each node in this diagram is a map model. Each map has excitatory 

self-feedback and projects inhibitory signals to the neighboring maps. The designation of a map as an on-center or an 
off-center map is relative, i.e. every map is “on-center” relative to itself and “off-center” relative to other maps. 

ART networks are based on what is called an adaptive resonator network system model. 

Adaptive resonators, in turn, are based on a frequently-occurring biological structure known as 

the on-center/off-surround (OCOS) anatomy. Figure 4 illustrates the general concept of an OCOS 

anatomy. See the figure caption for the explanation of this structure. The mathematical expression 

for an adaptive resonator consists of a set of coupled, nonlinear first order differential equations. 

An ART resonator is so called because this system of dynamical equations undergoes a natural 

response leading to steady-state solutions where the pattern of state variables of each map in the 

network are said to form a short term memory (STM) pattern representing a “resonant state.” The 

ART resonator anatomy consists of two “fields” of interconnected maps, one of which, F1, 

receives input signals (afferents) into the network system and the other of which, F2, “classifies” 

or “categorizes” the afferent input pattern.  

Figure 5 illustrates the basic layout of a typical ART network (Carpenter and Grossberg, 

1987). In addition to the adaptive resonator (comprised of fields F1 and F2), the network system 

also contains additional map elements that comprise what is called the attentional/orienting sub-

system of the model. As you might guess from this terminology, adaptive resonance theory grew 

out of neural network research originally aimed at understanding various psychological 

phenomena concerning classical psychological conditioning, perception, and behavior (Grossberg 

1967, 1968, 1969a-c, 1970a-b, 1972a-b, 1973, 1975, 1976a-c), (Ellias and Grossberg, 1975), 

(Levine and Grossberg, 1976). A tutorial introduction to ART networks is given in (Wells, 2007, 

chapters 14-17).  

ART networks solved, in part, one of the vexing problems in neural network theory. This was 
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Figure 5: A typical ART network structure. This particular structure is called an ART 2 network. The resonator is 

formed by the interconnection of the two network “fields” F1 and F2. These fields are connected to one another through 
two matrices of connection weights, W and Z. The elements of W are called the bottom-up weights; those of Z are 

called the top-down weights. The two taken together are called the long-term memory (LTM) of the network. Vector 
signal K is called the top-down expectation signal. Vector I represents the afferent inputs to the network. The 

attentional/orienting subsystem is a third network subsystem that exerts a control function over the activities of the 
adaptive resonator. Adaptation in this network model means changing the values of the W and Z matrices in response 

to the signals and the state variables in the mathematical description of the network. 

the problem of how to model neural network “learning” (in the mathematical rather than the 

psychological sense of that word) in a manner that was consistent with both psychological and 

neurological reality. The term “learning” when used in this sense denotes the adaptive 

determination of connection weight values between the various nodes in a network system model. 

Roughly speaking, the connection weights in the mathematical description of neural network 

systems mimic the biological phenomenon of cell-to-cell transmission of information at neuronal 

synapses. (The word “synapse” derives from a Greek word meaning “connection”). It has been 

known since the early 1970s that in many, many synapses the strength of connection between 

neurons is not constant. Rather, it undergoes activity-dependent changes leading to either greater 

or lesser conveyance of physical signals from one neuron to another. Tutorial overviews of this 

phenomenon are given in (Wells, 2003a-b) and in (Wells, 2007, chapter 11).  

Prior to ART, neural network models employed various schemes for automatically adjusting 

the network weights. Grossberg was the first to point out that all these schemes suffered from two 

major flaws. First, these schemes employed neurologically unrealistic means for effecting the 

weight changes. Second, all these schemes suffered from a peculiar form of learning instability in 

which the learning of new weight connections by the network inevitably led to the “forgetting” of 
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previously learned recognition codes (Grossberg, 1987). ART was developed for the purpose of 

solving these problems in a biologically and psychologically realistic way.  

III. The Context Issue in ART Network Adaptation 

Although ART and ART networks succeeded marvelously in meeting the research objectives 

pursued by Grossberg, there remain three troublesome and interrelated issues with the ART 

concept as it stands today. The first is what we might call the “open-mindedness” of ART 

learning. ART networks are in large measure classifier or categorization networks. An input 

pattern I that is matched sufficiently closely by one of the LTM vectors Wj in the W matrix will 

cause the activation of a corresponding node xj in the F2 field and cause the deactivation of all 

other F2 nodes (this is called a 0-1 distribution in ART terminology). If no currently-established 

Wj vector provides a sufficiently close match to I, the attentional/orienting subsystem will cause 

the network to commit one of its uncommitted Wj vectors to “learning” pattern I. (Likewise, the 

corresponding uncommitted Zj vector in the Z matrix will also “learn” I). On the other hand, if I 

is a sufficiently close match to some Wj vector, the network will adapt that vector in such a way 

that Wj approaches a statistical expected value representative of the features of the set of input 

vectors {I} that satisfy the matching criterion (Carpenter and Grossberg, 1987), (Wells, 2007, 

chapter 17). Whether or not there is a “sufficiently close” match is determined by a parameter in 

the attentional/orienting subsystem called the network’s vigilance parameter. The only 

constraints imposed on the induction of the adaptation of W and Z are: (1) there must actually be 

an active input I presented to the network; (2) the network itself must be in adaptive resonance; 

and (3) once a node xj in the F2 field has been selected and adaptation begins, the network cannot 

switch to some other F2 node during adaptation. These constraints are built into the network and 

when they are all satisfied, the network will “learn” I regardless of any other factor.  

Now, this is precisely what an ART network is supposed to do. Considering only the network 

by itself, there is nothing wrong with any of this and a great deal about it that has demonstrated a 

close correspondence with psychological and psychophysical experimental findings. The “open-

mindedness” of an ART network’s learning process only becomes an issue when it is joined to 

the second issue, which is the issue of limited categorization capacity. There is only a finite 

number of nodes in the F2 layer, and once they are all committed the network’s learning capacity 

is exhausted. The basic operation of an ART network is such that it will quickly use up this 

capacity as successive I patterns are applied. The network does not discriminate, which is to say 

that it “neither knows nor cares” what any particular I input might be; if the pattern is presented 

the network will learn it (if it still has uncommitted F2 nodes) and, after its capacity is exhausted 

10 



LCNTR: Meanings-based Networks 

it will merely reject all subsequent mismatching patterns by producing resets in all the 

mismatched F2 nodes (resulting in an all-zeros F2 output). Put another way, the network does not 

attempt to “economize” its commitment of F2 nodes; it is like a novice poker player who stays in 

every hand all the way to the showdown and soon loses all his money. The only way to avoid this 

outcome and achieve some functional objective for the network is to train the network, either by 

selecting beforehand what patterns it is to learn and presenting only them until all F2 nodes are 

committed, or by augmenting the network with a “teacher” network. In the latter case, this multi-

network network (the “learner” network plus the “teacher” network) is called an ARTMAP 

(Carpenter et al., 1991).  

Resorting to either of these alternatives illustrates the third issue, namely that the ART 

network lacks what we might call a “sense of context.” If one pre-selects and presents patterns to 

be learned, the context is being supplied by external agency; if one augments the ART network 

with a “teacher network” then this is equivalent to building in what the rationalist philosophers of 

the 18th century called “innate ideas.” Neither recourse is acceptable as a brain model; neither 

recourse is consistent with psychological findings. Taking these three issues together, we arrive at 

the statement of the theoretical problem we wish to study: how does one build “context” into a 

neural network system architecture without introducing unrealistic and ad hoc mechanisms? 

This problem is not bound up with any kind of shortcoming related to adaptive resonance 

theory itself. Grossberg (1975) very clearly pointed out that the basic ART network provides a 

functional rather than mechanistic description, and that the various mathematical properties of the 

network implicated – but did not claim to mechanistically model – the functions of numerous 

anatomical structures in the brain. He referred to the ART network’s functional mathematical 

descriptions as “mock” structures, e.g. mock-neocortex, mock-hypothalamus, mock-septum, and 

so on. It is worth keeping in mind that before specific working ART networks were first 

demonstrated, no one knew how to successfully model any of the psychological or psycho-

physical phenomena ART was developed to address. The ART network is a classifier and a very 

good one at that. Choosing what to classify is not part of its “job description.” Seen in this way, 

the problem stated above might be called a “meta-problem” in the sense that it is part and parcel 

of the larger context of network system architectures found at the psychophysical edge of the 

roadmap in figure 1. This brings us back around to the logic of meanings discussion in section I.  

IV. The Cortical-Thalamic Hypothesis of Meanings Context 

Viewed very abstractly, a classifier network meets the definition of an algebraic structure 

known as a groupoid. Formally, a groupoid is any mathematical structure consisting of a set of 
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inputs and an m-ary operation on this set possessing the property of closure. It takes quite a bit of 

abstract thinking to see the network of figure 5 in these terms; one must assign to every vector I a 

unique subset of abstract symbols (such that each I is regarded as consisting of m symbols drawn 

from a set S) and likewise assign each possible categorization vector x2 to one symbol in S. (In 

ART 2, these sets are finite). But once we have done so and the adaptation process has committed 

all the F2 nodes as categories, the network is an instantiation of a groupoid.  

Piaget’s theory holds that some groupoids are innate in the sense of already being present at 

birth (hereditary sensorimotor reflexes) and others develop soon after birth (first acquired habits). 

The theory further holds that the development of intelligence in the infant and child involves the 

successive structuring of ever-more complex structures, many of which correspond to the 

mathematical notions of semigroups (a set plus a closed, associative operation), monoids (a semi-

group plus the existence of an identity element), and groups (a monoid plus the existence of 

inverses). Additional algebraic structures (a set with two or more operations on the set) likewise 

are constructed from these gradually and over time. Concurrently, topological structures and 

order structures are also found to develop. Piaget was able to present some concrete examples that 

illustrate these processes but, since he was not a mathematician, he did not develop a more 

general theory of this. This is not too surprising since the formulation of a general theoretical 

framework turns out to be rather complicated, as was shown and explained in (Wells, 2006). We 

will not attempt to go after a completely general theory in this tech brief; rather, we will focus our 

efforts on those aspects of the problem inherent in the research question stated in the previous 

section.  

When a mathematician formulates a mathematical structure, he or she does so with some 

context for that structure already in mind. An example of such a context is “finding a more 

general concept of ‘arithmetic’.” Abstract algebra, point-set topology, and lattice theory are all 

examples of this sort of generalization mathematicians pursue. Within the context of theoretical 

neuroscience, our interest at present is in finding a proper way to express what mathematicians do 

in terms of large-scale brain structures and brain functions in a way that remains objectively valid 

in relationship to neurological and psychological facts. Even more specifically, what we wish to 

explore is the more rigorous explanation of the still-somewhat-vaguely-worded Piagetian notion 

of a logic of meanings underpinning the development of human intelligence.  

Piaget’s finding that the logic of meanings is indissolvably linked to practical sensorimotor 

actions at the most primitive levels of intelligence was shown by Wells (2006) to be fully 

congruent with the general theory of the phenomenon of mind. We will therefore take as our 

starting point for this work the hypothesis that context in ART network adaptation control is to be 
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sought in practical sensorimotor functions, and we seek for a proper network system architecture 

for expressing the instantiation of context derived from a neurological foundation for a logic of 

meanings. Within this objective, the previous research question can be sharpened up a bit by 

asking: What manner of attentional control is needed to restrict ART network learning to only 

those signals within the system that bear upon the sensorimotor logic system for which the 

ART network constitutes a function subsystem? In researching this question, we will explore the 

consequences of the following hypothesis: (H1) The interaction of neocortex and thalamus is a 

neurological substrate for the logic of meanings.  

A. The Thalamus and its Motor Logic Role. In mammals all sensory information reaching 

the neocortex, with the single exception of olfactory sensory information, comes to the cortex by 

way of the thalamus.1 This has been known for some 70 years and gave rise to a traditional view 

of the thalamus as a kind of relay network or gateway for sensory data. Something that was never 

clear, but always a puzzle, about the traditional model is: Why? What functional purpose is served 

by interposing a major subcortical brain structure – the thalamus – in between the sensory nerves 

and the cortex? Why not route sensory information directly to the early sensory cortices? This is 

what occurs, more or less, with olfactory signals. Why did evolution favor the development of the 

thalamus in vertebrates, and why should primates, including Homo sapiens, have the largest and 

most complex thalamus found among mammals?  

 
Figure 6: System-level schematic of the sensorimotor network environment of the thalamus. 

                                                 
1 For a tutorial overview of brain structure see (Wells, 2005).  
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The early research, from which the traditional picture of the thalamus resulted, was carried out 

by dissection, post mortems, and through research on anesthetized animals. In recent years, one 

key new fact has gradually emerged: Most, and maybe all, sensory signals going into the 

thalamus are also projected to neural motor circuits. Furthermore, it has been found that most, 

perhaps all, feedback signals returning to the thalamus from the neocortex also project to the 

central nervous system’s motor pathways. This is illustrated schematically in figure 6. Recently 

some leading experts in thalamic research have been led to propose a new paradigm for the role 

of the thalamus. The new model holds that the thalamus informs the cortex not only about 

sensory information but also about the motor state of the organism. Furthermore, since the 

feedback pathways from cortex to higher-order (HO) nuclei in the thalamus also appear to contain 

motor information, the thalamus can be seen as passing on motor command information to other 

regions within the neocortex. This is illustrated in figure 6. Thus, the thalamus is to be seen not 

merely as a sensory portal but, rather, as a structure having a sensorimotor role (Sherman and 

Guillery, 2006, pp. 357-389).  

This new view of the thalamus is, of course, interesting in its own right. But when put in 

context with the developmental psychology finding that all early meanings the infant and child 

assigns to entities and events is a practical sensorimotor meaning, the new thalamic paradigm 

would seem to assume an even larger degree of significance for brain research. Sherman and 

Guillery comment,  

These pathways demonstrate that even primary sensory areas such as area 17 (V1)2 have 
significant motor outputs that give these areas access to motor controls independent of any 
higher cortical processing.  

 We have mentioned . . . that several of the axons that bring inputs to first and higher order 
thalamic nuclei have branches that innervate cell groups with connections to motor centers . . . 
but so far we have not explored the implications of these connections. In addition . . . most, 
possibly all, cortical areas have connections with motor or premotor areas. These pathways 
provide evidence that not only can “motor assembly begin before sensory signals reach the 
highest levels” but that it must begin before the sensory signals even reach the thalamus, and that 
it must accompany corticocortical processing at essentially every stage. The messages that pass 
along the axons to first order relays, and that also pass along branches of the same axons to 
motor centers, provide a close and essentially unbreakable link between action and perception at 
the earliest stages of sensory processing, and those that pass along branching axons to higher 
order relays provide essentially secure links between cortical outputs to motor centers and 
perceptual processing through corticocortical connections (Sherman and Guillery, 2006, pp. 361-
362).  

Thus, the recent neurological evidence supports Piaget’s contention that there is an essential link between 

actions and perceptions. It may be that we now possess a key clue to understanding the neurological 

substrate for the logic of meanings.  

                                                 
2 V1 is part of the primary visual cortex. 
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Figure 7: The anatomical environment of the thalamus. The thalamus is divided into three distinct regions known as 
the dorsal thalamus, the ventral thalamus, and the epithalamus. The thalamic reticular nucleus belongs to the ventral 
thalamus, while the thalamic relay nuclei belong to the dorsal thalamus. The epithalamus is most closely associated 
with the hypothalamus and is not represented in this figure. In addition to sensory afferents coming up via the spinal 
cord from the peripheral nervous system, the thalamus also receives signals from the cerebellum (which is involved 

with motor control), the amygdala (which is involved with affective phenomena such as emotions), brain stem (which 
is implicated in consciousness and in arousal, waking, and sleeping), the hypothalamus, and the basal ganglia (also 

known to be involved with the motor functions). The precise connectivity of the hypothalamic inputs and those of the 
DRN are not yet understood, which is indicated by the question marks in the schematic. DRN = dorsal raphé nucleus. 

Hist = histamine pathway. 5-HT = serotonin pathway. Ach = acetylcholine pathway. Hist, 5-HT, and Ach are 
metabotropic modulator signals, which means they alter how their target neuron cells react to stimuli. + denotes that the 

metabotropic pathway is excitatory, while – denotes that the metabotropic pathway is inhibitory. L denotes a layer in 
the neocortex. 

B. The Anatomical Environment of the Thalamus. Figure 7 is a schematic illustration of the 

anatomical environment for thalamic signaling pathways. The dorsal thalamus (see figure 

caption) makes up the largest part of the thalamus in primates, and projects to topographically 

organized regions of the neocortex (the brain’s “gray matter”). It is composed of more than 30 

distinct relay nuclei (RN) specialized for passing information from particular sensory and other 

modalities. All the axons carrying these signals must pass through the thalamic reticular nucleus 

(part of the ventral thalamus). The TRN itself makes no projections to neocortex but rather sends 

inhibitory feedback signals to the relay nuclei in the dorsal thalamus. Both the RN and TRN are 

subject to modulations due to signals from other brain structures, including brain stem and the 

hypothalamus. Ascending afferents converge on what are called first order (FO) nuclei, which 
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also receive feedback signals originating in layer 6 of the neocortex. In addition, the thalamus 

receives signals originating from layer 5 of the neocortex. These converge on higher order (HO) 

nuclei, so called because the information passed back from the thalamus to neocortex due to these 

sources contain information “the cortex has already seen” – whereas the FO nuclei convey 

information “the cortex has not previously seen.”  

Figure 8 provides a more detailed schematic representation of the general signaling schema of 

the thalamus and the differences between FO and HO relay nuclei. One should carefully compare 

this figure with figure 6 above. The existence of HO relay nuclei is also part of the new paradigm 

for understanding the thalamus. In the older traditional model of perception processing in the neo-

cortex, it was thought that all such processing took place exclusively by direct corticocortical 

signaling. Under the new paradigm, direct corticocortical projections are still made (and, indeed, 

they constitute the majority of signaling pathways within neocortex), but these are augmented by 

signals from HO relay nuclei which, as stated above, contain motor command information.  

 
Figure 8: A more detailed schematic of the signal processing difference between FO and HO nuclei. All RN are 
thought to conform to the left-hand diagram, i.e. all thalamic relay nuclei receive feedback from layer 6 of the 

neocortex and it is thought that this feedback signal originates from the same region of the cortex as the ascending 
thalamic signal projects to. Both the ascending and descending signals project to cells (T) in the TRN that send 

inhibitory signals back to the associated relay nucleus. FO relay nuclei receive ascending signals from subcortical 
sources, including spinal cord, that have not yet reached the neocortex. HO nuclei, on the other hand, do not receive 

these lower ascending signals but do receive a feedforward signal originating in layer 5 of the neocortex as illustrated 
by the right-hand figure. This descending signal does not project to T cells in the TRN. The HO nuclei in turn project 
back to the neocortex, but to a different region than that from which the descending layer 5 signal originated. Black 

lines denote excitatory signals, red lines denote inhibitory signals. R = relay cells. I = interneurons. T = TRN cells. L 
denotes the layer in the neocortex. 
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Yet another indirect pathway from neocortex to thalamus to neocortex takes place by way of 

the basal ganglia. Unlike the pathway through the HO relay nuclei, this pathway is essentially 

modulatory in its nature. The basal ganglia projections to thalamus are projected to the TRN and 

its T cells, primarily in the ventrolateral, ventroanterior, and meriodorsal sections of the ventral 

thalamus. It is not very clear precisely what the function of these projections might be, but 

because they inhibit T cells the implication is that they remove the self-regulatory negative 

feedback between the TRN and the RN, which would tend to allow more vigorous signaling 

activity within the RN. Projections to neocortex from the RN implicated in this pathway are made 

principally to the pre-motor and supplementary motor cortices and to the prefrontal cortex.  

Within the basal ganglia there are a number of feedback loops in this pathway, the function of 

which is again not yet well understood. However, it is generally thought that some form of signal 

filtering is effected via this pathway. To make matters even more interesting, it is known that the 

thalamus’ midline nuclei, central medial nucleus, and intralaminar nuclei (all dorsal relay nuclei) 

make projections into the basal ganglia in addition to the diffuse projections they make to the 

neocortex. The relay nuclei receive afferent inputs from spinal cord, cerebellum and also from the 

basal ganglia. Whatever the precise function or functions of these pathways may be, it seems 

inherently clear that it involves motor signal processing because the basal ganglia and cerebellum 

are known to be involved in this, as are some of the ascending signals from spinal cord. However, 

the thalamic projections of this pathway back into neocortex are diffuse, i.e. do not readily seem 

to conform to a particular topographical mapping the way the major sensory modality afferents 

do. It is readily conceivable that this pathway is not confined to the corticocortical signaling 

regions within neocortex depicted in figure 6.  

Although different relay nuclei within the dorsal thalamus do not appear to make any direct 

projections to one another (that is, RN signals do not cross dorsal nuclei boundaries within the 

thalamus), some recent experimental evidence does hint that there may be indirect projections 

between relay nuclei by way of the TRN. This is rather highly speculative at this time, but if it 

should turn out to be true then yet another dimension would be added to the new thalamus 

paradigm. One speculative example of this is illustrated schematically in figure 9 (Sherman and 

Guillery, 2006). This network presents a scenario for possible control of activity arousal in neo-

cortical functional columns (ibid. pp. 239-242).  

To understand the idea behind this network, we must first review a few facts concerning 

neural signaling in the thalamus. Thalamocortical relay neurons exhibit two distinct firing modes 

called tonic firing mode and bursting firing mode. Tonic firing by the relay neuron is thought to 

be more or less a “relay mode” by which information presented to the thalamus is passed along to 
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Figure 9: Schematic illustration of possible cross-coupling between first order relay nuclei. This network connection is 

merely speculative at the present time, but is one possible guess for understanding how attentional focus might be 
implemented within the neocortex. 

neocortex more or less intact and without distortion. It is thought that tonic mode firing from the 

thalamus is effective in activating the target column in neocortex to respond to stimuli. Bursting 

mode, on the other hand, introduces severe nonlinear distortion of the ascending signal. There is 

an initial burst of activity upon initial application of a novel stimulus followed by a long interval 

in which the relay cell goes silent. It has been suggested that cells operating in burst mode may be 

more capable of detecting a novel stimulus or of detecting small variations in the general features 

presented within the ascending stimulus. In burst mode the relay cells are ineffective at detecting 

low frequency stimuli (< 1 Hz), respond best to intermediate frequencies (~ 4 Hz), and respond 

poorly or not at all to higher frequencies (> 10 Hz). In contrast, relay cells operating in tonic 

mode respond over this entire range of input stimulus frequencies.  

Owing to these properties, it has been suggested that burst firing may serve as a “wake up 

call” from thalamus to neocortex. Because of the severe nonlinear distortion introduced into the 

signal pathway by burst mode firing, it is thought that burst signals going into the neocortical 

functional column are difficult for those circuits to “analyze.” Although the notion that a column 

in the neocortex “analyzes” signals is more poetic than scientific, in the context of an ART 

network we can liken this notion to the more concrete statement that burst signals probably do not 

present signaling conditions required for achieving a state of adaptive resonance. In ART no 

network activity is regarded as “significant” except during a state of adaptive resonance.  
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Returning now to the model in figure 9, let us assume that the left-hand relay nucleus, RN1, is 

operating in burst mode while the right-hand nucleus, RN2, is operating in tonic mode. Then RN2 

is responding to on-going stimuli and passing this information along to its related neocortical 

column, FC2. (Using an ART network model for the latter, we can say FC2 is thereby placed in a 

state of adaptive resonance). RN1, on the other hand, is not providing its functional column, FC1, 

with signaling conditions required to establish adaptive resonance and so we regard FC1 as having 

low responsiveness to the incoming thalamocortical signal. In particular, in the absence of a novel 

stimulus presented to RN1, the burst mode state leads to no significant signaling being conveyed 

to FC1.  

Now let us suppose RN1 receives a novel stimulus. It then responds with a burst signal sent to 

FC1 that strongly drives the neocortical column into activity. This activity produces a feedback 

signal from layer 6 back to the T cell associated with RN1, causing RN1 to switch to tonic firing 

mode. At the same time, this T cell also sends an inhibitory signal into RN2, causing it to switch 

to the burst mode and reducing the inhibitory signal sent by the right-hand T cell to RN1. (In 

computer engineering terminology, this action is called a “flip flop”). The net result is that FC2 

drops out of adaptive resonance and enters a condition of low responsiveness, while FC1 enters a 

state of adaptive resonance and becomes highly responsive to its thalamocortical signal. In this 

way, one can say that neocortical network “attention” has “shifted” from FC2 to FC1 as a result of 

the novel stimulus presented to RN1.  

C. Meanings Context. If this speculative model is true, this would mean the thalamic network 

is functionally a part of the attentional subsystem depicted in figure 5. Furthermore, it implies that 

attentional subsystems for different ART networks are linked in agonist-antagonist relationships 

(which is, in part, what is depicted by the “to/from other networks” signal pathways in figure 5). 

Such relationships would make very little sense under the traditional model (how could different 

perception data be mutually antagonistic?), but it makes a great deal more sense in the new 

paradigm, where perception and motor action are intimately linked. This is because muscles (the 

engines of motor action) are arranged in agonist-antagonist pairs.  

Although the model of figure 9 is, at this time, merely speculative, it does have a number of 

interesting similarities to the neural organization of the ventral horn of the spinal cord (Wells, 

2003c). The feedback loop from R to T and back to R in figure 8 (which is not a matter of 

speculation) recalls to mind the regulating loop from alpha motor neuron to Renshaw cell and 

back to alpha motor neuron (Wells, 2003c, pt. III, figure 1). Going further, the cross-coupled 

inhibitory linkages in figure 9 call to mind the cross-coupled inhibition action mediated in the 

ventral horn via the Ia inhibitory interneuron (Wells, 2003c, pt. III, figures 3 and 4). The model of 
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figure 9 and the neural circuitry of the ventral horn do, of course, differ in detail but, overall, 

there are more similarities between the two than there are differences.  

Under the new paradigm for the role of thalamus, FO nuclei are regarded as passing along not 

only sensory but also motor state information, while HO nuclei are regarded as passing along 

motor command information. Now, to whatever extend the motor state and motor command 

information constitutes an “image” or a “reflection” of what is going on in the organism’s motor 

hierarchy, it would not be all that surprising if it turned out that this information is much more 

closely related to functional aspects of the ventral horn than has been generally thought. This 

would be especially the case if the putative neural code subsists in network organization and 

network state rather than merely in the signals that pass from one neuronal structure to another 

(which can be regarded as mere vehicles for effecting particular network states and a dynamical 

linking of neuronal subsystems to organize specific functional transformations). However, before 

we become overly enthusiastic about what may be no more than merely superficial similarities 

between the model of figure 9 and the aforementioned motor neuron circuits, we must deal with 

an important conceptual issue.  

The ventral horn networks mentioned above are part of the spinal cord network’s reflex 

circuitry. Descending motor commands coming down from the brain, on the other hand, are 

regarded as the neurophysiological instantiation of voluntary motion. How, then, could there be 

any objective validity to comparing spinal reflex circuits to high-level sensorimotor processes in 

the brain? A possible answer to this is seen when one considers the larger view of the spinal 

neuromuscular system for voluntary skeletal muscle control. Here, the current leading hypothesis 

for voluntary muscle control is the reflex arc concept. It is thought that voluntary muscle control 

by the brain is effected at the spinal cord level by co-opting the spinal cord’s reflex circuitry 

(Wells, 2003c, pt. I).  

The general idea is illustrated in simplified form in figure 10. Spinal cord reflexes are 

stimulated by various sensory nerves found in muscles, tendons, joints, skin, and so forth. One 

important class of nerve signals in this system is called the flexor reflex afferents or FRA. Some 

authors, e.g. Lundberg et al. (1987), prefer the term generalized reflex afferents or GRA to 

describe the sum total of afferent signals stimulating the reflex pathways. Descending motor 

commands from the brain converge on interneurons, perhaps located at the output layer of the 

dorsal horn of the spinal cord and/or at higher-level layers within the ventral horn, which 

ultimately drive alpha motor neurons. At the same time, other descending signals stimulate 

inhibitory neurons in the GRA feedback pathways, effectively cutting off immediate nerve 

stimulus in the reflex path and, in effect, substituting their own mock-sensory signal in its place.  
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Figure 10: Schematic illustration of the reflex arc concept. The circles indicate small subnetworks of neurons at the 

same synaptic level. IN stands for interneuron. Input signals are actually vectors rather than individual signals. The 
dashed lines indicate other possible layers of interneurons interposed between the subnetworks shown. The motor 

commands are descending signals from the reticulospinal and other tracts (see figure 7). Excitatory synaptic 
connections are indicated by the “<” synapse symbols. Inhibitory synaptic connections are indicated by the “•” symbol 
on the lower-left subnetwork. FRA is “flexor reflex afferents”, and Lo Th Cut is “low threshold cutaneous inputs”. α-

motoneurons are the motor neurons that drive extrafusal muscle fibers (Wells, 2003d). “Early IN” designates 
interneurons that directly receive afferent inputs. “Late IN” designates interneurons at deeper layers of the network in 

the signal pathway. (These would perhaps consist of neurons in the output layer of the dorsal horn or perhaps 
interneurons in the ventral horn). The solid-black subnetwork at the upper left in the figure represents mid-level 
interneurons in the dorsal horn. Note that this subnetwork sends inhibitory inputs to the early dorsal horn INs. 

According to this hypothesis, voluntary muscle control is “piggy-backed” onto the phylo-

genetically older reflex circuit arrangement and makes use of the “control circuit functions” 

already in place for basic spinal cord reflexes. In order for this hypothesis to work, however, it is 

clear that the brain must be able to supply the proper sort of mock-sensory signals for stimulating 

the reflex arc. Prior to the new thalamus paradigm, it was very, very unclear how this could be 

possible, and this was one theoretical argument to oppose the reflex arc concept.  

Analogy, of course, is often an untrustworthy guide. However, analogy between the overall 

organization of the ventral horn (Wells, 2003c, pt. IV) and the new thalamocortical paradigm 

discussed in this tech brief is probably our best guide given the present-day state of knowledge 

concerning the function and role of thalamus in relationship to neocortical functional columns. 

This seems particularly so in light of the psychological findings regarding the logic of actions and 

the logic of meanings discussed earlier. We can take some additional comfort from the fact that 

these findings are in complete congruence with a larger general theory of mental phenomena 

(Wells, 2006) and the analogy does not contradict this larger theory.  

Where, then, does this take us to at present? How are we to interpret and understand the phrase 

“meanings context” in regard to network system architectures and the idea of the neural code? Let 

us summarize the main points in this tech brief. 
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1. The thalamo-cortical system is a sensorimotor and not merely a sensory system. 

Information being processed and relayed by the thalamus to the neocortex simultaneously 

involves both data traditionally regarded as “perception data” and data reflecting motor state and 

motor command information. 

2. Thalamocortical signaling occurs in two modes. One mode, the burst mode, is postulated 

to be an attention-getting mode for the target neocortical functional columns and inhibits network 

adaptation of LTM weights (in the ART network model) by preventing the attainment of a state 

of adaptive resonance in the ART network. The other mode, the tonic mode, provides accurately 

conveyed sensorimotor information to the neocortex and enables LTM adaptation by supplying 

the signal conditions necessary for achieving adaptive resonance in the ART network.  

3. We make the hypothesis that the neural code subsists in the state and dynamically 

determined structuring of interacting neural network systems and not in the mere signaling 

that passes from one subsystem to another. Furthermore, we make the additional hypothesis that 

this dynamical neural structuring gradually takes the form of basic mathematical structures, i.e. 

algebraic structuring, topological structuring, and order structuring. This latter hypothesis is 

motivated by the findings of developmental psychology, which state that the most basic 

organization of sensorimotor schemes gradually comes to exhibit behaviors that are behavioral 

isomorphs of these basic mathematical structures.  

4. We make the hypothesis that the dynamical structuring of the network system 

architecture constitutes a logic of meanings that rests on a primitive proto-logic of actions. 

Prior to cognizance of objective concepts of entities and events, knowledge structure is practical 

rather than theoretical (Piaget, 1976) and has for its neural substrate the formation and 

organization of sensori-motor action schemes. These developed schemes take their point of 

origination from innate reflex schemes and capabilities possessed by the human infant at birth.  

V. The Next Step in the Research Program 

The hypotheses outlined above are quite speculative and they lie well outside the mainstream 

of current neuroscience thinking. Now, in science all hypotheses are rightfully regarded with the 

attitude denoted by the motto of the state of Missouri, i.e., “Show me.” We cannot regard them as 

having a well-established grounding unless we can also demonstrate that neural network system 

“learning” can be achieved that takes on the form of mathematical structures (algebraic, 

topological, and order structuring). The ability for a network system architecture to spontaneously 

form such structures has yet to be demonstrated.  

Prior to recent developments in our understanding of the thalamo-cortical system, 
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neuroscience had no guide posts or road signs to indicate how such structuring might be 

expressed in concreto by neuronal structures. It is not enough to simply demonstrate a neural 

network system that functionally implements a groupoid, a semigroup, a monoid, or a group. This 

is no significant achievement. What would constitute a significant achievement would be to 

produce a network architecture model that achieves this outcome using only assumptions and 

models tied back to neurological and psychological facts emerging from neuroscience research.  

A criticism often, and often justly, leveled at neural network research is that too many neural 

network models are ad hoc and are not the result of cumulative research (O’Reilly and Munakata, 

2000). This is a criticism that cannot be leveled, by an informed person, against ART (which was 

and is the fruit of many years of cumulative research that maintained good faith and allegiance 

with the findings of both cognitive and biological neuroscience). But ART is not and does not 

claim to be a finished theory. ART networks, such as the one illustrated in figure 5, are a 

beginning, not an end point. The focus of most current research involving ART is aimed at 

understanding the implications of ART at the scale of the network system architecture. Much of 

great interest and probable significance has been accomplished in recent years by ART theorists. 

However, it has been quite some time since deep and fundamental considerations have played a 

well-published role in considering the network architecture problem. This tech brief has tried to 

help remedy this situation.  

Because no one has yet demonstrated a general method or algorithm by which even the first 

step of the new paradigm – a spontaneous and unsupervised adaptation process taking ART 

networks from a simple classification function (a groupoid structure) to a semigroup function – 

this is the logical place to go next. To accomplish this, one needs to put together a simplified – 

but not overly simple – “body environment” in which signals have both sensory and motor 

context. Our work here at LCNTR, especially the spinoneuromuscular modeling work being 

carried out in the Soule Laboratory for Evolutionary Computing, is a good basis for this step.  

Next, one must develop models for the thalamocortical subsystem and its functional 

contribution to the attentional/orienting subsystems of ART networks. Third, this must be 

integrated into a model such as that illustrated in figure 6. This integration should aim at 

discovering what constraints are placed upon network systems (figure 5) if these systems are to 

spontaneously form mathematical structures. These three steps constitute the first basic research 

objectives for this program.  

From the viewpoint of theoretical difficulty, the third objective is likely to be the initially most 

challenging. Here something that deserves serious consideration is the system-level hypothesis 

made by Damasio in his convergence zone proposal (Damasio 1989a,b). Damasio’s model is 
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based on neurological findings implicating the idea that networks in the early sensory cortices 

comprise “feature fragments” that are coordinated and linked together by retrograde feedback 

from immediately downstream networks called convergence zones. A very simplified illustration 

of this concept is given in figure 11. For purposes of initial conceptualizing, it is probably 

advantageous to regard individual ART networks as constituting neural network state machines 

(NSM). The likely advantage to this is that it places the function of each network in a context in 

which the well-developed theory of finite automata is cast, thus potentially simplifying the 

process of relating neural network systems to mathematical structures. It might also turn out to be 

the case that perhaps individual networks such as figure 5 are better regarded as symbol-

representing automata rather than as actual groupoids in their own right. In such a case, the 

groupoid structure would appear at the level of the first-order CZ networks in figure 11, and 

higher algebraic structures would develop out of these structures. This representation question is 

at present open and unresolved.  

The model of figure 11 developed out of earlier theoretical considerations made prior to the 

more recent development of the new paradigm for thalamus. Thus, figure 11 presents no 

representation of the contribution of the thalamus, although it would not be inconsistent to cast 

NSM Γ in figure 11(b) in this role. This, too, is a research question for our earliest work in this 

research program.  

 

 
A                B 

Figure 11: Simplified version of two forms for Damasio’s convergence zone (CZ) model. The cylinders each represent 
one ART network. Afferent inputs and thalamic interactions are not illustrated in this figure. Each ART network in this 
picture is regarded as constituting a neural network state machine (NSM). (A): CZ structure with no lateral interactions 

between feature fragment networks A and B. (B): CZ structure with lateral interactions between feature fragments A 
and B mediated through a third network Γ. 
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