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On Critical Representation in Brain Theory, Part II: General Schema 
of Knowledge Representation   

I.  The Representation Problem    

This is the concluding paper in my series [Wells (2011c, d)] on the metaphysical problem of 
knowledge representation. Its objective is the statement of the general problem to be solved in 
order to develop mathematical solutions for mind-body knowledge representation. With such a 
problem definition, the transition from metaphysics to empirical science proper is made. The task 
of formulating specific solutions then belongs to a special natural science I call Critical 
psychophysics. The metaphysical solution provides a general solution schema as a template or 
roadmap for solving the knowledge representation problem. As experienced system engineers 
know quite well, coming up with a precise mathematical statement of what one wants to do is 
usually a far more challenging task than coming up with how to do it. This is the case for the 
knowledge representation problem.  

Knowledge (Erkenntnis) is any conscious representation or capacity for making such a 
representation by or through which meanings are determined. This critical Realerklärung of what 
"knowledge" means tells us at the outset that the representation problem and the knowledge 
representation problem are in actuality one and the same problem. In contrast, the main paradigm 
pursued by science and by engineering as exemplified by work in "artificial intelligence" [Woods 
(1986], so-called "mind design" [Haugeland (1997)] or so-called "android epistemology" [Ford et 
al. (1995)] have tended to first make a real division between "knowledge" and "knowledge 
representation." Having made that improper division, most of these efforts more or less treat the 
"knowledge" division much as Plato did – which is to say they reify knowledge as a primitive 
thing about which nothing more need or can be said. About the only practical difference is that 
Plato proceeded to place knowledge per se (the Platonic Ideas) in that peculiarly un-Greek heaven 
he called "the world of true and full being" [Plato, Phaedrus]. Modern scientists and engineers, in 
contrast, either choose to stay silent about the nature of this mysterious őν or to pronounce ex 
cathedra that "knowledge is rules." Kosko wrote,  

Rules associate ideas. They relate one thing or event or process to another thing or event or 
process. In natural and computer languages rules have the form of if-then statements. If it 
rains, you get wet. If you get wet, you can't play golf. It will rain on Saturday. So you can't 
play golf on Saturday. It won't rain on Sunday. If you can't play golf on Saturday and if it 
won't rain on Sunday, you can play golf on Sunday. So you play golf on Sunday. [Kosko 
(1993), pp. 158-159]  

Kosko is a bit fuzzy on the question of why "if-then rules" are knowledge but the decision (the 
outcome of applying the rules), which is not itself an if-then rule, is not knowledge (unless, of 
course, one argues by fiat that "decision = rule ∧ knowledge = rule ∴ decision = knowledge")1. 
Fuzzy logicians, like Kosko, and artificial intelligence researchers are not wrong to introduce the 
idea of rules into the context. Critically, a rule is an assertion made under a general condition. As 
such, a rule (or, rather, its mechanization) is a capacity for making a representation and therefore 
is knowledge of that type provided that its asserted outcome has conscious representation2. What 
does this often-controversial adjective (conscious) imply? The Critical answer to this is far easier 
than one might predict. Empirical consciousness is a representation that another representation 
is in me and is to be attended to. A computer scientist or an engineer should feel comfortable 

                                                 
1 In the language of mathematics, the symbol ∴ is pronounced "therefore" and the symbol ∧ is pronounced 
"and." The "decision = rule" premise is an arbitrarily imposed minor term in this syllogism.  
2 A conscious representation is called a perception.  
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thinking about this in terms of: (1) a pointer of some sort (the representation of 'consciousness,' 
which belongs to the human capacity for formulating species); and (2) something pointed to 
(which could be either empirical knowledge or could be another member of the 'capacity for 
making' species of knowledge). The key thing to note is that this Realerklärung is a practical 
explanation in terms of what the representation leads to (viz. attending to the indicated 
representation, which in its turn also leads to something). A representation (parástase; 
"depiction") means something and all meanings are at root practical. The study of meaning in 
any and all its manifestations is called semantics.  

One could say these are hair-splitting distinctions3, but if we are unaware of them we fall into 
the fallacies that arise from homonymous usages of key terms. In particular, practices in AI 
(artificial intelligence) and fuzzy logic engineering often drift into thinking that knowledge (the 
object of the parástase) is the parástase itself, i.e. mistake data for knowledge per se and lose 
track of meanings as the necessary context of knowledge. Even Plato didn't make that mistake:  

 Now, as we have said, every human soul has, by reason of her nature, had contemplation 
of true being; else would she never have entered into this human creature; but to be put in 
mind thereof by things here is not easy for every soul . . . Few indeed are left that can still 
remember much, but when these discern some likeness of the things yonder, they are 
amazed, and no longer masters of themselves, and know not what is come upon them by 
reason of their perception being dim.  

 Now in the earthly likeness of justice and temperance and all other prized possessions of 
the soul there dwells no luster; nay, so dull are the organs wherewith men approach their 
images that hardly can a few behold that which is imaged . . . [;] pure was the light that 
shone around us, and pure were we, without taint of that prison house which now we are 
encompassed withal, and call a body, fast bound therein as an oyster in its shell. [Plato 
(Phaedrus), 249d-250e]  

To behave like an inattentive Platonist but insist on being called a scientific materialist is 
nothing but denial, and to make a habit of it is called a neurosis. In Part I [Wells (2011c)] the 
semantics context was made clear, and in the next paper in this series [Wells (2011d)] the 
metaphysical requirements implicated by this context were developed. The knowledge 
representation (somatic code) problem was shown to have the mathematical form of a topology 
problem, specifically, a topology generation problem. The task before us now is to further clarify 
and make distinct the particular form of this problem. It is, as Kant likely would have put it, to lay 
down the Metaphysische Anfangsgründe (metaphysical rudiments) of the solution method.  

II. The Topology Problem in the Context of Organized Being      

A. State Space Models. Solving the knowledge representation problem comes down to 
solving a topology generation problem. As mentioned earlier in this series, mathematicians 
approach this on a case-by-case basis and then generalize topology theory from what they learned 
by studying the special cases. Hocking and Young put it this way:  

 Topology may be considered as an abstract study of the limit-point concept. . . In 
applying the unifying principle of abstraction, we study concrete examples and try to 
isolate the basic properties upon which the interesting phenomena depend. In the final 
analysis, of course, the determination of the "correct" properties to be abstracted is largely 
an experimental process. . . In many cases a "natural" topology exists, a topology agreeing 
with our intuition of what a limit point should be. . . In general . . . we require only a 
structure within a set which will define limit point in a simple manner and in such a way 

                                                 
3 I am tempted to quip, "mere matters of semantics" but for the knowledge representation problem there is 
nothing "mere" about semantics.  

2 



On Critical Representation in Brain Theory, Part II  Richard B. Wells 
June 30, 2011 

that certain basic relations concerning limits points are maintained. . .  

 The study of topologized sets (or any other abstract system) involves two broad and 
interrelated questions. The first of these concerns the investigation and classification of the 
various concrete realizations, or models, we may encounter. This entails recognition of 
equivalent models, as is done for isomorphic groups or congruent geometric figures, for 
example. In turn, this equivalence of models is usually defined in terms of a one-to-one 
reversible transformation so chosen as to leave invariant the fundamental properties of the 
models. As examples, we have the rigid motions in geometry and the isomorphisms in 
group theory, etc. . . The second broad question in studying an abstract system such as our 
topologized sets involves considerations of transformations more general than the one-to-
one equivalence transformation. The requirement that the transformation be one-to-one and 
reversible is dropped and we retain only the requirement that the basic structure is to be 
preserved. . . In topology, the corresponding transformations are those that preserve the 
limit points. [Hocking and Young (1961), pp. 1-3]  

In Wells (2011d) all of the discussion was devoted to the soma-semantical topological space 
and no explicit mention was made about a second "equivalent model space." Where does that one 
come from? Finding it presents no difficulty when we remember that the applied metaphysic of 
the somatic code pertains to psyche [Wells (2009), chap. 1] and that its major acroam is the 
general transcendental Idea of Rational Psychology: absolute unity of the thinking subject. On the 
side of soma and the judicial-sensorimotor idea, the model space is a state space of somatic 
activity fields. All we have to do is remember the logical role of psyche, namely, to enforce 
thorough-going reciprocity between somatic representations and noetic representations. The 
second and equivalent model space is a state space of noetic representations. In the language of 
topology theory, the one-to-one reversible transformations Hocking and Young mention 
comprises what is called a homeomorphism between somatic state space X and noetic state space 
Y. The transformations are mapping functions – let's call them f:X → Y and g:Y → X – and these 
are psyche functions. Figure 1 illustrates this model-universe. Mapping function f, which takes 
somatic state space over into noetic state space, belongs to receptivity in psyche whereas mapping 
function g, which takes noetic state space over into somatic state space, belongs to 
motoregulatory expression in psyche.  

 

Figure 1: The homeomorphic two-model problem of topological organized being. 
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Now because the problem solution is of interest to a much broader community of scientists4 
than the relatively smaller community of system theorists, and because I wish to do what I can in 
this paper to help this broader community keep up qualitatively well and as quantitatively well as 
individuals' mathematics backgrounds permit, this term "state space" must be described5. On the 
side of soma, the representation universe is exhibited as a universe of somatic places that are 
characterized by quantitative measurements of somatic activities. This terminology was explained 
in the applied metaphysic [Wells (2011d)]. Each such place is called a state variable. The 
aggregation of places and their activities in an activity field is called the somatic state.  

Here it is important to remember that somatic places have their boundaries set by 
measurement uncertainty so that a physical aggregation of biological cells in any particular place 
must be looked at as comprising just one set membership state variable. This is to say that the 
state variables of soma cannot be defined with objective validity by arbitrarily carving up 
somatic anatomy. Somatic state variables have to fall on the scientist's side of the horizon of 
possible experience [Wells (2011a)], and the measurement capabilities he has at his disposal set 
what can be identified as an objectively valid somatic place. This epistemological constraint on 
the mathematics is neither a new nor any longer a revolutionary thesis. Einstein said what 
amounts to the same thing in 1915:  

 In classical mechanics, as well as in the special theory of relativity, the coordinates of 
space and time have a direct physical meaning. To say that a point-event has the X1 
coordinate x1 means that the projection of the point-event on the axis of X1 determined by 
rigid rods and in accordance with the rules of Euclidean geometry, is obtained by 
measuring off a given rod (the unit of length) x1 times from the origin of the coordinates 
along the axis of X1. To say that a point-event has the X4 coordinate x4 = t means that a 
standard clock, made to measure time in a definite unit period, and which is stationary 
relatively to the system of coordinates and practically coincident in space with the point-
event will have measured off x4 = t periods at the occurrence of the event. [Einstein (1915)] 

The "rods and clocks" for somatic measurements are considerably more complicated, but this is 
not in the least relevant to the problem. In the facet A of experience, the physical capacities of 
observation and measurement set rules for mathematics to obey, and then physics is in its turn 
obliged to heed the constrained mathematical consequences in regard to principal quantities. 
Epistemology-constrained mathematics is nothing else than Einstein's metaphysical axiom.  

The somatic state can now be represented by a state vector of finite dimension. The somatic 
state space is then nothing else than the vector space in which the state vector ranges. Here it is 
important to know that state definitions are not unique in the mathematical connotation of 
uniqueness [Nelson (2003)]. If one has two different-looking state spaces but all external 
observations of each are equivalent (in the context of set membership, i.e., they belong to the 
same solution set) then the two state spaces are set membership equivalent (indistinguishable). 
The Critical doctrine of method [Wells (2011a)] mandates set membership formulation of the 
mathematical system because this is epistemologically required for the possibility of principal 
quantities to be associated with physical appearances with objective validity.  

Turning now to the noetic state space Y, everything that has just been said about the somatic 
state space applies equally to Y except that the state variables are no longer somatic places but, 
rather, noetic representations [Wells (2011c)]. This brings up a rather obvious question. Noetic 
representations, all of which belong to the homo noumenon aspect of being a human being, are 
supersensible. This means they cannot be measured by any physical measurement apparatus. 

                                                 
4 even though their interests likely do not extend so far as the mathematical gory details of system theory. 
5 system theorists do not need the concepts explained; they already know them. Non-system-theorists need 
less than a full mathematical explanation, and that is what a "description" is.  
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How, then, are we to deal with them with objective validity? This is where epistemology-centered 
metaphysics is utterly crucial. Noetic representations are supersensible but they are not isolated 
from experience. The rigid and uncompromising first principle of transcendental analysis is that 
the only permissible constructs of nous are those necessary for the possibility of experience. 
Every aspect of the structure of nous (and of psyche as well) follows deductively beginning with 
the Critical major acroams of Kant's metaphysics through the minor Critical principles and, 
finally, through the Metaphysische Anfangsgründe provided by mental physics. The noetic state 
variables are objectively valid because they are constructed to be objectively valid and with their 
transcendental places strictly delimited by mental physics so that they stand at the horizon of 
possible experience as noumena and never go beyond it. If one cares to say that physical Nature is 
physics-determinable, one would equally well say mental Nature is mental-physics-determinable.  

The non-uniqueness of state variable representation means that two system models with very 
different appearances can produce identical action responses, y, when stimulated by the same 
aliment input, u. Figure 2 illustrates an example of this. System 1 contains three integrators and 
its state variables have been defined as integrator outputs. System 2 contains only two integrators. 
It is obvious by inspection that these two models differ in appearance. The state of System 1 is 
the column vector X = [x1 x2 x3]T, and is described by a three dimensional state space. System 2, 
in contrast, has two state variables and is described by a two dimensional state space. However, 
direct analysis shows that both systems are described by the same differential equation. The two 
systems are therefore equivalent in terms of action responses to alimentary stimuli.  

 

Figure 2: Two system models that are output-equivalent. u = alimental stimulus; y = system output action; 
integrator outputs xj are used as state variables. A dot above a variable denotes time differentiation 

(Newton's notation). Although the model appearances are obviously different, both produce the same y 
action response when stimulated by the same u input and both have the same differential equation for y. 

The small square boxes denote scaling gain factors. The rectangular boxes are integrator functions. Circles 
with the notation Σ inside denote summations. 
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The state of System 1 of figure 2 is said to be "state unobservable" in the lexicon of system 
theorists. This means that no amount of observation of the system's input stimulus u and output 
action y can suffice for an observer to be able to determine the system's state X. If an observer 
were presented with systems 1 and 2 as two "black boxes" he would be unable to discern any 
difference between them. Mathematically, this means that the system state X is a secondary 
quantity in the mathematical model [Wells (2011a)]. It has no correspondent in the physical 
world (facet A) and no ontological significance whatsoever. In contrast, system action y is a 
principal quantity of the model and has ontological significance for facet A.  

As another example, the wave functions used in quantum mechanics are state variables in a 
quantum mechanics model. They are mathematical secondary quantities and have no ontological 
import. Like all state variables, however, they do have epistemological import because the idea is 
used to understand physical appearances and behaviors of quantum mechanical systems. There is 
a long-standing debate in physics over what is called "entanglement" and it is a debate enlivened 
by experiments [Rohrlich (1983)]. Yet it is nothing but an argument concerning the ontological 
significance of state variables. But because the state variables have no ontological significance, 
the debate itself is empty – one of physics' modern day homologues to an old theological 
argument over how many angels can dance on the head of a pin. William James wrote,  

 It is astonishing to see how many philosophical disputes collapse into insignificance the 
moment you subject them to this simple test of tracing a concrete consequence. There can 
be no difference anywhere that doesn't make a difference elsewhere – no difference in 
abstract truth that doesn't express itself in a difference in concrete fact and in conduct 
consequent upon that fact, imposed on somebody, somehow, somewhere, and somewhen. 
The whole function of philosophy ought to be to find out what definite difference it will 
make to you and me, at definite instants of our life, if this world-formula or that world-
formula be the true one. [James (1907), pg. 25]              

B. Continuity and Homeomorphism. One pragmatic definition of topology theory is that 
topology theory is the study of continuity. What does "continuity" mean? Before getting into the 
mathematical definition, it is worthwhile to look at a pragmatic description of this idea. James 
wrote, "I can only define 'continuous' as that which is without breach, crack, or division" [James 
(1890), pg. 237]. James makes a mild (but not non-serious) ontological overstep in this statement. 
He would have better said "that which I cannot perceive to have a breach, crack, or division." It is 
quite obvious that the ability to perceive any "breach, crack or division" is limited by whatever 
empirical uncertainty characterizes the instrument used to make the observation, whether this 
instrument is a human being's capacities of external sense or is some measuring tool (scientific 
measuring instrument) that is used to provide his senses with a sensuous dabile ("givable"). We 
cannot perceive continuity; we can only perceive the appearance of a lack of the property of 
continuity. This means that continuity, like the wave functions of quantum mechanics or the state 
variables of a system model, belongs to the mathematical facet B of understanding and is a 
secondary quantity. Continuity is an object of mathematics (and so it is proper for hypothetical 
mathematics to study it) but it is not an ontological object of physical Nature.  

We have here a very interesting case of epistemological vs. ontological significance. If a 
"breach or crack" can be perceived (and they can), then the concepts "breach" and "crack" are 
sensuous and belong to physical Nature with ontological significance of some kind. Yet their 
contrary, continuity, does not belong to sensuous Nature. Continuity has epistemological 
significance only; discontinuity has both epistemological and ontological significance. Is physical 
Nature continuous? That question is formally undecidable because continuity is a secondary 
mathematical quantity. What, then, does that mean for discontinuity? The answer is: discontinuity 
is a noumenon standing at the horizon of possible experience and its practical objectivity is that 
of a condition of appearance. This means, Critically, that discontinuity is not a substantive object 
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but, rather, a concept of a relationship between appearances and perception. It grounds nothing 
ontologically. It is, however, a ground for the orientation of human understanding. One might 
call it a psychological stimulus because it leads, for example, to distinctions such as the me vs. 
not-me real division (a judgment with ontological significance). The perception of discontinuity 
and the Organized Being's reaction to this perception go to the governing acroam of reflective 
judgment (the principle of formal expedience in Nature) and the judgment stimulates evocation of 
one of the regulative principles of pure practical Reason, namely, the transcendental cosmological 
Idea: absolute completion in the series of conditions. What this means is that perception of 
discontinuity stimulates judgmentation to understand the Nature of the discontinuity. Simply put, 
it is a fundamental characteristic of human intellect that we understand Nature as one Nature-in-
general and reality in terms of one substratum of Reality-in-general. If, as some physicists these 
days are inclined to do, one speculates about the possibility of "multiple" or "parallel" universes, 
all these "multiverses" are understood as particulars embedded within some larger universal 
framework. All multiverse theories end up positing one "hyperspace" to hold the universes.  

All this is to say that the epistemological significance of discontinuity is as stimulus for 
reasoning about the ontology of Nature and the Objects in Nature. In other words, discontinuities 
psychologically require explanation. The mental physics of judgmentation in seeking for such an 
explanation is described in representational terms by four negative principles of judgmentation:  

• in Quantity – in mundo non datur saltus ("a leap is not given in the sensible world");  

• in Quality – in mundo non datur hiatus ("a gap is not given in the sensible world");  

• in Relation – in mundo non datur casus ("chance is not given in the sensible world"); and 

• in Modality – in mundo non datur fatum ("fate is not given in the sensible world").  

"Not given" means that leap, gap, chance, and fate are not objects of sensuous experience but, 
rather, are only concepts employed in the judgment of appearances. For example, a young child 
does not think anything happens "by chance." He always pins some sort of causal or pseudo-
causal explanation to everything he experiences [Piaget (1930)].  

The mental physics of judgmentation pertaining to this is called the synthesis in continuity 
[Wells (2009), chap. 7 §3.2]. Among other things, this synthesis orients the process of perceiving 
and conceptualizing appearances. This is to say it contains an objectivity function, the function for 
understanding appearances as objects. This places "continuity" as an object in the mental logical 
division of organized being and thus makes "continuity" a mathematical object-of-reasoning.  

Having established the bona fides for mathematics' sole custody of the idea of continuity, let 
us now look at what mathematics has to say about it. We begin with figure 1. Let us pretend we 
could look at this figure "frozen" at some particular moment in objective time, t1. At any such 
time there is an epistemological relationship between the somatic state space and the noetic state 
space as a consequence of the principle of thorough-going reciprocity between nous and soma. 
The consequence is this: between the state of the somatic model and the state of the noetic model 
there is necessarily a homeomorphic mathematical relation. What this means is the following. Let 
X denote the somatic state space and let x1 be the state of the somatic model at time t1. Let Y 
denote the noetic state space and let y1 be the state of the noetic model at time t1. Let f be some 
transformation that maps state space X to state space Y (symbolically, f:X → Y). Let g be some 
transformation that maps state space Y to state space X (g:Y → X). Denote the mapping of state 
x1 to Y as . Then . This is what is meant by homeomorphism between the 
two models. It means that at t

( ) 11 yxf a ( ) 11 xyg a

1 the states x1 and y1 represent the same information. Note that a 
trivial consequence of the homeomorphism is that ( )[ ] ( )[ ] 1111 , yygfxxfg aa  for every x and y 
in the two state spaces. This is not a postulate. It is a theorem of mental physics.  
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Figure 3: Cartoon-level illustration of trajectories in a two-dimensional state space with state [x y]T. Each 
point on the blue lines denotes a particular state that lies on the indicated trajectory. 3A is a hyperbolic 

trajectory. 3B is an elliptic trajectory. Objective time is not illustrated in either figure. 

Now, x denotes a somatic activity field at time t1 [Wells (2011d)]. As for noetic state y, each 
state variable in y is some specific noetic parástase and the aggregation of all of these in y is the 
total state of representations in nous. Let us call this a parástase field by analogy to the model of 
the somatic activity field. Transformation f is a receptivity function of psyche and transformation 
g is a motoregulatory function of psyche. The principle of thorough-going nous-soma reciprocity 
then has for one of its consequences the mathematical requirement that the pair [f, g] of mapping 
functions of psyche must form a homeomorphism at every instant of objective time t. From a well 
known theorem of topology, this means f is a continuous function in X and g is a continuous 
function in Y.  

Because X is structured as a universe of topological neighborhoods in soma [Wells (2011d)], 
this theorem of mental physics tells us that Y is structured as a universe of topological 
neighborhoods in nous. However, a universe of topological neighborhoods is not yet a system of 
topological neighborhoods and, therefore, is not yet a topology. More is required for this.  

C. Connectedness and Trajectories. A somatic system of neighborhoods is a temporal 
sequence (in objective time) of activity fields that has been associated to form a somatic 
morpheme [Wells (2011d)]. Thus we must deal with the idea of a temporal sequence of activities. 
An organized sequence (one that represents a somatic morpheme) is called a trajectory. By the 
homeomorphic theorem above, the appearance of a somatic trajectory necessarily implies the 
(mathematical) existence of a noetic trajectory as its image in nous. Figure 3 illustrates this notion 
of trajectories. (Note that here x and y now represent state variables of somatic space X).  

Now, there are three distinct Existenz cases of organized being with which the theory must 
deal. These are: (1) the equilibrium case; (2) the non-equilibrium case; and (3) the transition case 
between non-equilibrium and equilibrium, which I will call the re-equilibration case. As the 
equilibrium case is the simplest of these, I begin with it.  

Figure 3B is the cartoon-level illustration of the equilibrium case. Critical analysis of the 
Realerklärung of "equilibrium" in organized being concludes that equilibrium means a closed 
cycle of activity in which there are no innovations [Wells (2009), chap. 4, §3.5)]. There are a 
number of names for this. Mathematicians often call such a cycle a limit cycle. Piaget calls it a 
circular reaction and identifies several psychological species of it [Piaget (1952)]. Mental 
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physics calls it a life cycle.  

Equilibrium imposes a mathematical requirement on trajectories in somatic space-time6. The 
requirement is called local path connectedness. The mathematical explanation of this idea gets a 
bit detailed, e.g.: Hocking and Young (1961) pp. 14-17); Baum (1964) pp. 98-104; Wall (1972) 
pp. 41-47, but the idea itself is simple enough to grasp. Consider the ellipse of figure 3B. The 
usual topology of the real number plane ℜ2 [Baum (1964), pg. 22] defines the ε-neighborhood Np 
of a coordinate point p = (x, y) as the set of points p' = (x', y') that satisfies the condition 

    ( ) ( ){ }0,N 22 ><−′+−′′= εεyyxxpp  . 

Thus, each point p has for its neighborhood a "ball" of points within radius ε  of p. Let S denote 
a specific shape (the hyperbola in figure 3A, the ellipse in figure 3B) defined by S ⊂ ℜ2. Call the 
shape H for the hyperbola and E for the ellipse and let a, b ≥ 1 and ε  <  a2, b2. Then  

    
{ }

( ) ( ){ }122

22

=+=

=−=

byaxpE

ayxpH
. 

The neighborhood Up of a point p ∈ S restricted to S is then Up = S ∩ Np.  

A space S is path connected if for any pair p1, pn ∈ S there is a sequence of pj ∈ S such that  

    1,,1U1 −=∈+ njforp
jpj L .              (1) 

Similarly, a topological space S is locally path connected (l.p.c.) at p ∈ S if its neighborhood Up 
contains a neighborhood V such that any two points in V are connected by a path in Up [Wall 
(1972), pg. 45]. Every path connected space is connected but not every connected space is path 
connected. If S is l.p.c. and connected then it is path connected.  

Examining figure 3B, it is fairly obvious that E is path connected because it is l.p.c. at every p. 
In contrast, hyperbola H in figure 3A is disconnected. Consider p1 = (a, 0) and pn = (-a, 0). There 
is no path in H connecting these two points because any route from p1 to pn must leave H. The 
hyperbola consists of two disjoint semi-hyperbolas defined by x < 0 and x > 0. If S can be 
partitioned into disjoint subsets, such as in this case, then S is defined to be a disconnected space.  

In the somatic state space X of figure 1, the neighborhoods of a somatic place p are those 
activity fields in which the somatic activity at p is determinably non-zero [Wells (2011d, e)]. In 
order to regard X as a vector space, we must allow its state vector X to contain all the somatic 
places in X. The somatic activity of p is determinable if it is measurable (that is, if the 
instrumentation for observing it can detect metabolic action). Let S denote a trajectory in X where 
a trajectory is defined to be a determinable actual succession of activity fields N1, N2, . . . with Nj 
a neighborhood of somatic place pj and with p1 regarded as the starting place of the trajectory. 
The Organized Being (OB) is in equilibrium if and only if the trajectory meets two conditions:  

1. the trajectory is locally path connected; and 
2. the trajectory eventually returns to N1 after including at least one activity field N ≠ N1.  

                                                 
6 For purposes of discussion, it is easier to explain this point by referring to somatic appearances. You 
should, however, bear in mind that for the somatic cycle being described there is a homeomorphic image of 
this cycle in noetic space-time. Topologists call the receptivity function f (and the motoregulatory function 
g) an embedding.  
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Such a trajectory is said to define a sensorimotor scheme of a circular reaction. The ellipse in 
figure 3 is a cartoon-level illustration of this. Note that because X and noetic state space Y are 
related by a homeomorphism, if the trajectory in X is a circular reaction then the image trajectory 
in Y is also a circular reaction.  

Next I consider the non-equilibrium case. In this case the initial trajectory is locally path 
connected but the trajectory fails to cyclically return to any N appearing in the initial sequence. 
The trajectory is said to rupture if in the sequence of somatic appearances an activity field Nj+1 
appears that is not locally path connected to the immediately antecedent activity field Nj. The 
rupture of the trajectory is called a sensorimotor cycle rupture. The trajectory is said to terminate 
at Nn if after reaching Nn another equilibrium cycle is subsequently established.  

There are some metaphysical conditions pertaining to the real possibility of the ruptured non-
equilibrium case. However, it seems best to me to put off this discussion in favor of completing 
the mathematical exposition. Here I will just say that a ruptured trajectory is mathematically 
possible but its real Existenz is problematic outside of some special contexts such as, e.g., if the 
OB suffers a stroke. Figure 4 illustrates a non-equilibrium trajectory with cycle rupture.  

The final case, the re-equilibration case, is the synthesis of the first two. It consists of two 
components, an initial non-equilibrium terminating trajectory and a subsequent equilibrium 
trajectory. Figure 5 is an illustration of this case. A non-equilibrium trajectory begins in 
neighborhood N1 and travels by a locally-connected path to neighborhood Nj+m. At that point an 
equilibrium cycle (denoted by the ellipse) begins.  

The re-equilibration trajectory is, again, mathematically possible. For it, too, there are some 
metaphysical considerations I will put off in order to maintain "local path connectedness" in the 
basic mathematics. Suffice it to say these contexts pertain to trajectories that appear "chaotic."   

D. Neighborhood and Neighborhood System Generation. Topological spaces are a priori in 
the context that they are mathematical objects, but no topological space is necessary a priori. 
What I mean by this is that every topological space is constructed by a human being and the way 
in which it is constructed depends on his personal empirical circumstances. The way in which he 
constructs it is necessitated to conform to either his mental or biological circumstances.  

 

Figure 4: Cartoon level illustration of the concept of a non-equilibrium trajectory with cycle rupture. The 
initial trajectory travels unidirectionally from N1 to Nj before jumping to Nj+1. 
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Figure 5: Cartoon-level illustration of the re-equilibration case. A non-equilibrium trajectory begins at N1 
and progresses to Nj. At Nj it encounters a disturbing innovation, departs from the hyperbolic path and 

travels l.p.c. along a different topological shape until reaching Nj+m, where a new equilibrium cycle begins. 

When I say a particular construction is necessitated what I mean is that the construction is 
made necessary in order to satisfy some particular purpose the person doing it has in mind as the 
reason for engaging in this action. For example, if the purpose of the construction is to propose an 
hypothesis of the empirical Nature of an OB on the basis of observation and experiment, the 
topological model must be made in such a way that its principal quantities do not stand in 
contradiction with the scientific observations the hypothesis proposes to understand. There are a 
great many ways by which a topological neighborhood could be defined.  

Research in developmental psychology has led to a model of human necessitation that is not-
incongruent with mental physics and pertinent to the discussion in this paper. Piaget wrote,  

 The principal results of the present research can be summarized in the following three 
points: (1) Necessity pertains to the composition carried out by the subject and is not an 
observable datum inherent in objects; (2) it is not an isolated and definitive state, but the 
result of a process (necessitation); and (3) it is directly related to the constituting of 
possibilities that generate differentiations, whereas necessity is related to integration – 
hence, the two formations [possibility and necessity] are in equilibrium. . .  

 [Necessity] does not emanate from objective facts, which are by their nature merely real 
and of variable generality and therefore subject to necessary laws to a greater or lesser 
extent. They only become necessary when integrated within deductive models constructed 
by the subject. The necessity of p can thus not be characterized only as the impossibility of 
not-p, since new possibilities can always emerge, but must be described in Leibniz's 
manner as the contradiction of not-p, and this relative to a specific, limited model.  

 What, then, is this endogenous origin of necessity? . . . Such a principle at the base of the 
necessitation process, and one having axiomatic validity, would be: "It is necessary that 
necessities exist," without specifying what they are. But why do there have to be 
necessities? It is because without them thinking would get lost in a Heraclitean flux, if it 
forgot or neglected them. And since thinking is always in development, it cannot do other-
wise . . . than to integrate the past with the current state. Such integration, once complete, is 
the source of necessity. . .  

 We thus define as necessary those processes the composition C of which cannot be 
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negated without leading to a contradiction. It is obvious, and this confirms the role of 
assimilation, that only the subject's own actions (or operations) permit the verification of 
the contradictory nature of not-C. Reality can only indicate that not-C, in fact, [has not yet 
occurred7], which is insufficient to demonstrate its impossibility. . . In particular, the 
complete integration of the past within the current state, which is a condition for logico-
mathematical necessity, can only be inferential in nature, as opposed to other subject 
activities such as the modification of habits . . .  

 Being closely allied to integration, necessity thus consists in an auto-organization causa 
sui. It is not an observable datum in the real world. It is a product of systematic 
compositions that involves a dynamic of necessitating processes rather than being limited 
to states. This dynamic begins with the formation of concepts susceptible of and designed 
for mutual composition. It takes its departure from situations in which the organization of 
concepts is heterogeneous and includes only partial comparisons in terms of similarities 
and differences and where coordinations by reciprocal assimilations are not attained. . .  

 What is to be learned from these situations is rather obvious: there exists no more an 
absolute beginning in the development of possibilities than one can determine an absolute 
end to necessity. Any necessity remains conditional and will need to be transcended. Thus, 
there do not exist any apodictic judgments that are intrinsically necessary. [Piaget (1983), 
pp. 135-143]  

These specific findings are congruent with the theory of mental physics. There is no science 
without the scientist. Mental physics can delimit a scientist's theoretical options but it cannot, nor 
does it try to, do away with the role of empirical science, nor does it try to embrace a return to the 
failed metaphysics of rationalism. It does oppose embracing the failed metaphysics of pure 
empiricism and the pseudo-metaphysical prejudices of scientific materialism.  

Now getting back to the topic at hand, the topologist's selection of criteria for defining a 
topological neighborhood generally follows a doctrine of method and quite often follows one 
equivalent to conforming with three "methodological axioms" known as Hausdorff's postulates 
for neighborhoods [Vaidyanathaswamy (1960), pg. 69]. These are:  

1. Each element p of a set S (which is to be made into a topological space) has at least 
one neighborhood and is an element of every one of its neighborhoods;  

2. If Up and Vp are two neighborhoods of p, there exists a neighborhood of p which is 
contained in Up ∩ Vp;  

3. To each neighborhood Up of p, there exists a neighborhood Vp of p such that Up 
contains a neighborhood of each point of Vp.  

The first two Hausdorff postulates are concerned with neighborhoods of a single p, while the 
third links together the neighborhoods of different places. It is important to note that (3) does not 
say that all the members of Vp must be contained in the same subset neighborhood within Up. It 
only says that at least one such a Vp must exist and that within Up there must be subsets that taken 
overall constitute neighborhoods for each element x ∈ Vp. This postulate insures that Vp is locally 
path connected in Up.  

Sets are defined by associations of elements and associations are defined by properties. Sets, 
such as somatic activity fields, that constitute principal quantities are always finite sets8 and the 

                                                 
7 Piaget actually wrote "never occurs" here, but this was mere verbal carelessness. As the very old saying 
goes, "You can't prove a negative." Piaget knew that. "Never" is a very long time.  
8 The axiom of infinity in the Zermelo-Fraenkel-Skolem axiom system is not objectively valid [Wells 
(2006), chap. 23].  
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property sets that define the association must be systematically not-inconsistent. By this I mean 
the properties used to define a set cannot contain semantic antinomies (Russell paradoxes). This 
statement is an axiom of subcontrarity replacing the Zermelo-Fraenkel-Skolem (ZFS) axiom of 
substitution (also called the axiom of replacement)9 in an axiom system of Critical mathematics10.  

Different property sets define different topologies. Because functions are often used to define 
properties, it is instructive to look at the practical definition of a mathematical function:  

[A function f is] a many-to-one correspondence [that associates] with each element r of [a 
set] R a definite element s = f (r) of [a set] S. If every element of S occurs as a value of f (r) 
as r varies in R, we say that f is a map of R onto S; in the contrary case we say it is a map 
of R into S. [Vaidyanathaswamy (1960), pg. 9]  

A somatic activity field is an association of somatic places where somatic activity is measurable 
[Wells (2011d)]. The consequence of this definition is that the topological space of activity fields 
belongs to a mathematical classification called a Hausdorff11 topological space [Baum (1964), pg. 
40]. Hence, the use of Hausdorff's axioms of method is appropriate for this theory. For purely 
practical reasons, the formal (hypothetical) somatic state space X is defined as the universe of 
somatic places regardless of whatever activity might be found in each specific place. Therefore a 
topological space is a subspace of X. This is analogous to defining the universe set of a 
topological space to be the set of rational numbers while defining its state space to be the set of 
real numbers. This permits activity fields to be constituted as what topologists call "open sets" 
and to be regarded as topological neighborhoods.  

At the date of this writing, it seems very likely that future empirical work will lead to the 
setting of additional properties for defining activity field neighborhoods and subsets. Qualitative 
analysis of brain scan images is an example of empirical research that in a very practical context 
can be regarded as an investigation of neighborhood properties exhibited in brain function. For 
now, though, what is discussed in this paper is all that we are justified in asserting a priori in 
regard to somatic neighborhoods and neighborhood systems on the basis of the metaphysical 
analysis carried out to date.  

One last item needs to be discussed in regard to the formal structuring of the topological 
problem. To this point, the topological ideas being used have been illustrated by means of two-
dimensional cartoon representations. It is quite obvious that the somatic state space is of a 
dimension much higher than two, and so the appropriateness of the cartoon examples is called 
into question. To respond to this question, it is to be noted that in the development of most 
structures in mathematics, functional notation in terms of a single variable is used in defining 
multi-variable concepts and constructs. Mathematicians do this by means of a rather neat trick, 

                                                 
9 for definition of the ZFS axiom system, see Bernays (1968), pp. 3-26.  
10 The axiom of substitution is not an axiom but, rather, an axiom schema for an indefinite number of 
axioms. Its formal statement using the Russell-Whitehead formal language system of mathematical notation 
is so complex that it is even difficult to precisely render it in English. ZFS, like other usual axiom systems 
that appear in mathematics, formulates all its axioms as positive assertions so that they basically could be 
constituted as machine-readable instructions. (This is because of Hilbert's failed program of formalism). If 
we are willing to admit that computers and Turing machines are not mathematicians and mathematicians 
are people, then an axiom stated using subcontrarity, "is not-inconsistent," will do because an OB can judge 
inconsistency from finite examples. The axiom of substitution attempts to make a positive definition of 
"consistency," which is an altogether more difficult task but one that aims at preventing inconsistency. Is it 
not simpler just to say "if I find an inconsistency in my axiom system, I must change my axiom system"? 
Persons who embrace the metaphysics of rationalism cannot make this admission, but the rest of us can.  
11 Named after Felix Hausdorff, the German mathematician who pioneered topology theory. Hausdorff and 
his wife committed suicide in 1942 in order to escape being sent to a Nazi extermination camp.  
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namely, to regard this single variable as being the representation of a set of variables. In this way, 
they can define a function of one variable and then use this as a basis for expanding the definition 
to cover functions of two, three, or however many variables one might require. Topologists, for 
example, use this trick to develop the notions of connectedness and path-connectedness in terms 
of mathematical "points" (so-called "zero-dimensional properties") and then extend these 
concepts to concepts of "n-path-connectedness" by replacing points with polyhedra [Wall (1972), 
pg. 47]. The analogous operation here is to regard figures 3-5 as planar projections of some 
higher-dimensional state space. This is done, for example, by regarding the axis variables x and y 
in the figures as being representations of vector partitions of the state vector, i.e. S = [x ¦y]T 
rather than just S = [x y]T. This trick can be applied to produce state vectors of however high a 
dimension as one might require. Such are the practical tricks-of-the-trade employed by 
mathematicians in working their scholarly craftsmanship.  

III. Graph Theory and Embedding Field Theory      

It is a well known empirical fact that the phenomenon of soma exhibits physiological changes 
in appearance over time (biological maturation, growth and development, re-organization of brain 
structures, etc.). It is also a well known fact that human behaviors exhibit a pattern of 
psychological development that objectively grounds positing the Dasein of kinesis for the 
phenomenon of nous ("mental development"). Furthermore, the principles of mental physics 
present the objective actuality of mental development as a theorem of a priori necessity for the 
possibility of experience as human beings come to know the phenomenon of experience. When 
the phenomenon of being human is modeled mathematically in objective time, these facts lead to 
an apodictic consequence, namely, that the functions f and g depicted in figure 1 vary in objective 
time. This theoretically necessitated variation, however, is tightly constrained by the a priori 
condition that the pair [f, g] must always comprise a homeomorphism.  

On the other hand, mental physics does not and cannot specify specific formulas of the system 
[f, g] because such formulas present knowledge of experience – and are for that reason contingent 
concepts. Understanding the [f, g] system in its specifics is one of the tasks within a special sub-
discipline of a broader natural science called Critical anthropology12. I call the special science 
taking this task under its topic Critical psychophysics. Critical psychophysics is the natural 
science of nous-soma reciprocity. Mental physics provides its Metaphysische Anfangsgründe 
(metaphysical rudiments) and the sensorimotor idea is its applied metaphysic.  

Psyche is the faculty for enforcing thorough-going nous-soma reciprocity in organized being 
and so Critical psychophysics is a science of psyche. As regards the [f, g] system, though, its task 
is one of mathematical psychophysics and it must, therefore, be concerned with objectively valid 
mathematical modeling of both the noetic and somatic systems. (Mathematical neuroscience is a 
framework science for it insofar as its theoretical constructs deal jointly with those objects of 
experience we classify as belonging to physical body and those we classify as mental). Its 
doctrine of method, therefore, requires a mathematical schema suitable to both nous and soma for 
understanding the temporal dynamics of each in objective time. This series of papers cannot be 
brought to a conclusion without discussing what is needed for and pertinent to this. It is to fulfill 
this need that another topic within mathematics is brought into the overall context of the 
knowledge representation problem, namely, the topic known as graph theory.  

As of the date of this writing, there has not yet been enough time for graph-theoretic treatment 
of nous to yield up enough experience with sufficiently significant pertinence to be employed in 

                                                 
12 Critical anthropology is "a doctrine of the range of knowledge of the human being possible through 
observation" [Kant (1800), 7: 119].  

14 



On Critical Representation in Brain Theory, Part II  Richard B. Wells 
June 30, 2011 

this paper for understanding the dynamical schema issue. What I mean by this is that this aspect 
of Critical mathematical-neuroscience is still in its primarily qualitative phase of development, 
and even those ventures into the topic that have been produced by psychology, e.g. Piaget et al. 
(1968) and Piaget (1975), are too qualitative to provide very much assistance. However, the same 
cannot be said of embedding field theory [Grossberg (1968, 1969a, 1971)]. For this reason, and 
because embedding field theory has not become widely known within the community of neural 
network theorists, it is pertinent and important to briefly discuss it here.  

The use of graph theoretic constructs called mathematical neural network models has been in 
practice for half a century. For the first several years (and, to a great extent, to the present day), 
the earliest essays in this new technical art were primarily forays of engineering said to be 
inspired by biology (biological neural science in particular) and did give some passing notice to 
psychology. Yet it would be both fair and accurate to say that these linkages were more romantic 
than scientific. The first serious efforts to scientifically link graph-theoretic neural network 
theory, neural science and cognitive psychology were made by Grossberg in the latter half of the 
1960s. It was Grossberg who named this new doctrine embedding field theory, and the name is 
particularly well-suited to the problem of knowledge representation.  

Furthermore, neural network constructs are particularly good implements for set membership 
mathematics, satisfying a key requirement of the Critical doctrine of method [Wells (2011a)]. For 
example, a neural network classifier can be regarded as a function representing a set membership 
solution set. An ART network13, e.g. ART 2 [Carpenter and Grossberg (1987)], can be regarded 
as a function for dynamically updating set membership solution sets. The viability of SMT (set 
membership theory) as a method for implementing adaptive systems has long been demonstrated 
(e.g. McCarthy and Wells (1997) and the citations therein), and there is today no doubt that 
embedding field theory and ART provide a powerful structure of applied mathematics for SMT.  

Although it has long been known that topology theory finds useful applications in graph 
theory, e.g. Wall (1972) pp. 90-91, the synthesis of topology theory and graph theory historically 
has been an underdeveloped (or, at least, under-emphasized and under-taught) topic in applied 
mathematics. The fundamental significance of topology theory for the problem of knowledge 
representation has, I hope, been amply demonstrated in this series of papers. The fundamental 
significance of applied graph theory for neural networks – and, therefore, for the dynamical 
problem of knowledge representation – has had a long history of awareness. However, it is 
probably more accurate than not to say that the link between knowledge representation and neural 
network graphics has not been sufficiently brought out. To the best of my knowledge, the most 
clear linkage between them is provided in embedding field theory, to which we now turn.  

Viewed in terms of knowledge representation in general, the general reduction problem is one 
of going from a semantic representation to noetic and somatic representations of knowledge. By 
the term semantic representation I mean any concrete instantiation of an example schematized to 
represent an object appearance for which an Organized Being has formed meaning implications. 
For example, the written letter sequence "ABC . . ." has as one of its meaning implications "the 
alphabet" for an OB who is a literate English-speaking person. In grammar theory, representation 
using sentence structure pattern diagrams, e.g. figure 6, can be regarded as a semantic 
representation to someone who has been trained in how to properly construct and interpret them. 
What all such representations have in common is presentation in terms of a spatial structure 
representation and an ordering structure representation. Metaphysically, what all such 
representations have in common is that within the structure of the Organized Being they are "dual 
coded" in a noetic and a somatic representation.  

                                                 
13 The acronym ART stands for "adaptive resonance theory." ART was discovered by Grossberg in 1976 
[Grossberg (1976)] and was an important outcome of embedding field theory [Grossberg (1978)].  
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Figure 6: Example of a sentence structure pattern diagram for "The students are in the library." 

Furthermore, the mathematical representation of a semantic parástase in nous is spatially and 
temporally discrete. This is illustrated in numerous places throughout Wells (2009) by the various 
diagrams of noetic representations. On the side of soma, observations of biophysical phenomena 
recorded by measuring instruments are usually presented mathematically as spatially and 
temporally continuous. It cannot be over-stressed, however, that such representations are not yet 
representations of signals (not somatic representations) because the raw observational data by 
themselves carry no inherent meaning implications. Meanings are noetic objects, not physical 
objects. The passage from raw observational data to the somatic parástase of a signal likewise 
involves a "chunking" of the data into a phoronomic form that is spatially-discrete even if its 
dynamic mathematical representation remains temporally continuous in toto. However, even such 
a dynamic temporal continuity of representation becomes mechanically14 discrete, i.e. takes on a 
re-presentation in terms of objective time intervals15 as soon as one begins talking about signals 
(in the plural) rather than the general signaling complex.  

This semantic property of interaction between spatio-temporally continuous and spatio-
temporally discrete depictions was noted long ago and linked to the phenomenon of learning by 
Grossberg. He wrote,  

[Although] each sensory modality seems to provide us with essentially different varieties of 
experience, the very same language tools are adequate for describing at least the rudiments 
of all of these various modalities. Thus, the discrete representation of continuous processes 
must be a universal representation of some kind. For this reason, we expect conclusions 
about the dynamics of language behavior to generalize to many other psychological 
phenomena.  

 The centrality of the connection between relatively discrete and continuous phenomena in 
behavior is better understood by considering several simple examples. Consider the 
phenomenon of walking for specificity. When a child begins to learn how to walk, he must 
concentrate much effort on the endeavor, and must attend continually to his efforts. An 
observer is struck by the many motions of the child that are inessential to the walking 
process, and by the total absorption of the child in the process. In an adult, walking takes 
on a different appearance. A first step is automatically followed by a second, the second by 
a third, etc. Once the decision to walk is made, the walk essentially takes itself, and one can 
pay attention to other matters so long as a minimal amount of obstacle avoidance is 
accomplished. After walking to one's destination, one "decides" to stop walking and the 
walking comes to an end. . . The very process of learning how to walk involves a passage 
from a relatively continuous representation of voluntary efforts at walking to a relatively 
discrete representation of these efforts. 

                                                 
14 In using the terms phoronomic, dynamic and mechanic, I refer to Kant's system of phoronomy, 
dynamics, mechanics and phenomenology in representational Quantity, Quality, Relation and Modality. 
This was explained in Wells (2011d).  
15 A time interval serves as a discrete quantum in set membership theory. For a mathematical example of 
the use of intervals as "numbers" in set membership theory, see Wells (1996).  
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 The intuitive significance of such a passage is easy to see. Once the saying of a verbal 
unit seems to the performer to be a simple act rather than a tremendously complicated 
juxtaposition of delicately poised muscular motions, he can proceed to integrate several of 
these units into more complicated composite units constructed from sequences of 
seemingly simple acts. After these composite units also seem to be simple, the composite 
units themselves can be organized into still more complicated composites, and so on. With-
out the reduction of continuous (and complicated) acts to discrete (and simple) acts, the 
integration of more complicated behavior based on these acts would seem hopelessly 
complicated. . . The passage from initially continuous representations of behavioral 
controls to asymptotically discrete representations is thus no casual event. It makes 
possible the emergence of new organized behavior patterns and is a prerequisite for 
effective learning. . .  

 Properties of discreteness and continuity coexist at every stage of learning. The 
continuous background is never wholly eliminated. We must study how certain processes 
superimposed on this background become increasingly discrete relative to an initially 
prescribed standard of continuity, and will have at our disposal at least two different levels 
of dynamical graining such that the degree of continuity of one level takes on a meaning 
only relative to the degree of continuity of the other. [Grossberg (1969a)]  

Grossberg demonstrated how these dynamical "grains" can be represented by a graph 
structure. Although earlier mathematical neural network theorists had used graphical forms as 
representations of their networks, the significant new idea Grossberg introduced was a general 
concept of what each vertex ("point") in a graph could represent depending on the level of 
representation L. This is a schematizing idea that was absent in the work of earlier neural network 
theorists. He referred to the collection of such "points" (vertices) in the structure as the "field of 
points" and noted that the actions of different field "points" were affected by the actions at other 
field points. The representation of these interactions is presented by functional arcs in the graph.  

Figure 7 illustrates this concept. For the sake of clarity only one field interaction is depicted 
and it is to be understood that a field interaction is presumed to exist between every pair of 
vertices in the graph. Vertices pj denote spatially discrete places in the field space.  A depiction of   

 

Figure 7: Graphical representation of a field at some level of description L. Vertices pj represent discrete 
spatial places where local actions xj(t) occur in objective time t. The numerical value of xj represents the 

degree of action occurring at pj at time t. xj = 0 denotes "no action." Action at a point pj affects the actions 
occurring at all other points. This is a field interaction and is represented by a measure of the amount of the 

effect produced, called the associational strength yjk from pj to place pk. 
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of the field space in terms of discrete places ("field points") is a requirement of Critical 
mathematics. This is because these points do not denote an idealized geometric point-in-space 
but, rather, a solution set of spatial intervals defining a volume in the space within which further 
fine discriminations of the local character of the space are not made. This is what is meant by the 
term level of description, L. Naturally, making a graphical depiction at level L does not preclude 
the possibility of making a lower-level depiction L-1 provided that L-1 does not call for more 
empirical certainty than can be provided by the measuring instruments used to associate physical 
phenomena with mathematical principal quantities. If L-1 is not precluded by this empirical 
consideration, then each vertex in figure 7 is replaced by a subgraph of the same schematic form 
as figure 7 illustrates. The practice of doing this is called scientific reduction (SR). Contrariwise, 
the theorist might choose to re-present the structure in less specific detail, as when he wishes to 
embed a part of his overall system into another graph, again schematized as in figure 7. In this 
case, all the places illustrated in figure 7 might be combined into one integrated place p at a level 
of description L+1. This p is then used as a specific vertex in a level L+1 graph. The practice of 
doing this is called model order reduction (MOR).  

At each place pj it is posited that "something is happening" in objective time t. This something 
is called the action xj at pj. It is a mathematical quantity represented by a numerical value that is 
in some way a measure of "how much is going on." This measure is an intensive magnitude, 
which means that it is a unity in which the idea of a multiplicity of values can be represented only 
by an approximation to negation ("no action occurring"). In Kant's terminology, xj is said to "fill 
the space" at pj [Kant (1786), 4: 496]. The numerical value assigned to xj is called the degree of 
matter at pj and is a parástase of dynamic Quality at pj. It is again important to note that if this 
degree of matter is to be associated with any sensible physical appearance then xj must be 
depicted as a set membership solution set, i.e., as an interval and not a "point" solution such as the 
transcendental number π16.  

The action at each place pj is posited to interact with (have an effect on) the actions at every 
other place pk. This is the field effect and is represented by a function yjk called the associational 
strength of the action effect at pk by action xj. This yjk is a mechanical idea of Relation, and it is 
the idea by which we regard xj as a moving power of matter [Kant (1786), 4: 497]. By 
convention, yjk has a minimum degree of 0 and a maximum degree of 1.  

Next the phenomenon of learning has to be taken into account. Let us call the graphical model 
of the system M.17 Let us designate an aliment of the system (e.g., an "input") at place pj by the 
symbol rj and call a temporal sequence of aliments a list. We assume each rj is drawn from a set 
of possible aliments, R, with rj = 0 denoting the sensible absence of an aliment at pj. We may 
further model the aliment effect as a vector r = [r1 r2 . . . rn]T if there are n vertices in the graph. 
We now come to the essential core idea of Grossberg's embedding field theory. At the semantic 
level representing phonemes, each vertex in the graph represents a specific phoneme. We will 
call a graph at this level of representation a semantic phoneme graph. In Grossberg's words,  

 Consider a machine M before it has learned anything. Suppose that M is capable of 
learning any list chosen from [a sequence] r1 r2 . . . rn in which no symbol ri occurs more 
than once. Suppose also that M is unbiased for specificity. . . Since M begins in a state of 
maximal ignorance . . . x1 grows momentarily and large signals are transmitted to all the 

                                                 
16 In classical electromagnetic field theory and the semi-classical "picture" of an electron, failure to treat the 
space-place pj as a set membership interval causes a famous antinomy. If the electron is regarded as an 
ideal Euclidean "point" in space, then a straightforward calculation shows that its electric field produces an 
infinite amount of electron mass. Because we know that the mass of an electron is really very, very tiny, 
this is a rather odious paradox. Quantum electrodynamics solves this problem by a method that, in practical 
effect, treats the principal space quantity as an SMT interval. The process is called renormalization.  
17 Grossberg called this graph a "machine."  
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other points pj, j ≠ 1. If r2 then occurred, p2 sends large signals to all the other points pj, j ≠ 
2. And so on. Before learning occurs, therefore, the entire "field" of points is influenced by 
an event at a single point, i.e., a kind of "Gestalt" effect "in space" occurs . . .  

 Now let us consider M after it has learned the list r1 r2 . . . rn. Then, by definition,  

( ) ( ) ( ) 1,12312 ≅≅≅ − tytyty nnL  

for all times t during which M knows the list, and all other yij(t) are approximately zero. 
Thus, a chain of associational strengths leads from p1 to p2, from p2 to p3, and so on until 
pn-1 and pn are reached. This chain has been embedded into the field of M's alternatives – 
hence the name "embedding fields" for our theory. [Grossberg (1969a)]  

Expressed in graph-theoretic terms, the outcome of adaptation dynamics appears within the 
topology of a graph as structures that have semantic interpretations. If the vertices of the graph 
represent semantic phonemes, the arc structures yij that adaptation dynamics develop constitute 
the formation of higher level semantic structures. Higher level structures become embedded in the 
graphical field. This is the significance of the earlier statement we saw where Grossberg said the 
OB can "integrate several of these units into more complicated composite units constructed from 
sequences of seemingly simple acts." Herein lies the ingenious insight of embedding field theory. 

IV. Topological Embedding Field Theory and Mind-Body Science   

A depiction (parástase) at the level of a semantic phoneme graph can be re-presented as a 
higher level graph in which the vertices represent phoneme structures rather than individual 
phonemes. Likewise, a semantic phoneme graph can be synthesized from a lower level graph in 
which the vertices depict semantic phones. (Phones are combined to form phonemes). These are 
both examples of MOR synthesis. In the language of Critical Logic, such a synthesis is called a 
prosyllogism [Wells (2011b)]. Contrariwise, the procedure can be reversed. One can descend 
from a semantic phoneme graph to a semantic phone graph or from a phoneme structure graph to 
a phoneme graph by scientific reduction. This kind of synthesis is called an episyllogism.  

Embedding field theory provides not merely a model but a framework science of modeling 
schemata applicable to moving up and down a ladder of MOR/SR levels. The crucial constraint, 
and principal thing to bear in mind, is the general semantic context of this paradigm. It is this 
context that fuses specific mathematical procedures to the topological theory in Wells (2011d) 
and its further discussion in this paper. However, for all this to be useful in understanding mind-
body phenomena, one must have a way to contextualize a semantic graph representation in terms 
of somatic and noetic graph representations.  

The practical utility of science for society is achieved because knowledge can be organized at 
different levels of abstraction. Bridges are made of atoms but a civil engineer does not (and does 
not need to) think about atoms when he designs a bridge. The MOR/SR process in science can be 
regarded as forming a ladder in which the rungs represent knowledge at different levels of 
abstraction. However, rungs in a ladder are held together by railings. This is a point taken too 
much for granted except by general system theorists. A typical scientist, when he has to move 
between levels of abstraction, often uses the term "modeling" to describe a MOR ascent of the 
ladder and the term "hypothesis" when he makes a descent by SR. A model (MOR outcome) is 
often looked upon with a trace of disdain as being somehow "less basic" as a description of 
Nature. In science education it tends to be treated as craftsmanship and students are usually 
expected to pick up on it – by osmosis, perhaps? – as they learn their special discipline. But this is 
a mere ontological prejudice. Hypothesis-making, on the other hand, tends to be venerated as if it 
were a mystic capacity scientists possess and non-scientists do not. The result is that both skills 
are treated as arts rather than as disciplined parts of a canon of scientific practice.  
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Figure 8: Typical depiction of levels of organization (A) and its re-depiction in ladder form (B). 

The ladder issue is appreciated in theoretical neuroscience but not as clearly appreciated as it 
needs to be. Figure 8A illustrates a typical depiction of what computational neuroscience 
textbooks usually call "levels of organization" in brain theory. The arrows are meant to denote the 
process of scientific reduction but in effect all they say is "and then we go to here." There is no 
explicit indication given in 8A that says "but make sure every pair of neighboring levels is a self-
consistent whole." There is, in other words, no overt indication that the ladder of knowledge has 
rails. Figure 8B is a better mathematical representation of what 8A is supposed to be saying. The 
rungs of the ladder are typically viewed as being "owned" by one or a few of the special sciences 
or sub-disciplines within one of the special sciences. However, if these sciences (or their sub-
disciplines) become "silos of knowledge" and do not effectively communicate with the others, 
what we have is not a unified scientific system but, rather, a disintegrating potpourri of 
knowledge fragments. The rails of the ladder are concerned with the structural integrity of the 
overall canon of science in general and its disciplined construction can be called general system 
theory. Note that the ladder depicts MOR and SR as co-equals and jointly essential to the unity of 
neuroscience overall.  This section of the paper is about the rails of the ladder.  

By one widely-accepted estimate, there are around ten thousand distinct classes of neurons, 
around 100 billion neuron cells, 100 trillion synapses, and somewhere in the range of 500 billion 
to 1 trillion glial cells in the anatomical brain. This staggering complexity is so vast that its true 
scope is as practically unimaginable as the notion of the distance from the earth to the Andromeda 
galaxy. One consequence of scientific materialism is that "brain science" begins by making a 
specious real division between the phenomenon of mind and the phenomenon of body and then 
discards the former with a romantic hope that mental phenomena will somehow re-emerge as a 
property of this unimaginably complex dead-matter system of cells. Even psychology tends to fall 
victim to this ontology-centered prejudice. Reber tells us,  

mind This term, and what it connotes, is the battered offspring of the union of 
philosophy and psychology. At some deep level we dearly love and cherish it and see 
behind its surface great potential but, because of our own inadequacies, we continually 
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abuse it, harshly and abruptly pummeling it for imagined excesses, and occasionally even 
lock it away in some dark closet where we cannot hear its insistent whines.  

 The history of the use of this term reveals two conflicting hypotheses: the tendency to 
treat mind as a metaphysical explanatory entity separate and apart from mechanistic 
systems, and the tendency to view it as a convenient biological metaphor representing the 
manifestation of the still-not-understood neurophysiological processes of the brain. [Reber 
(2001)]  

Where this state of affairs leaves biological neural science is this: the bio-mass of the brain 
carries in it no nameplates telling us "the function of this part of the anatomy is x." Only at the 
periphery (sensory cells and motor neurons) is the practical function of the neuro-glial anatomy 
discernible. Within this outer boundary, all guesses as to what function the cells are implementing 
(and, therefore, what the anatomical structure and physiological processes mean) is speculation 
and nothing more. The practice of science under the prevailing paradigm of pseudo-metaphysical 
materialism is what Kant labeled "natural science improperly so-called." The knowledge that 
neural science needs to succeed in understanding the central nervous system is the knowledge it 
threw away at the very first step when scientists make the fictitious real division between the 
phenomenon of mind and the phenomenon of body. The real object of the science is the entire 
human being – the Organized Being. No more, and no less.  

Biological objects regarded merely in and of themselves have no meaning in the context of 
knowledge. It is, though, intuitively clear that these objects have something to do with knowledge 
and so the key question is "what?" This is where a methodology of cross-linking semantic ladders 
provides a route to answering the key question. Figure 9 illustrates this idea. This series of papers 
has revealed that semantics can be mathematically expressed as a synthesis of topology and 
embedding field theory (center ladder in the figure). Let us explore the implications of this.  

 

Figure 9: Somatic and noetic ladder organizations of knowledge linked through topological semantics. 
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Meaning for biological organization is achieved by synthesizing a horizontal coordination of 
ladders of the form semantic organization ⇔ somatic knowledge representation ⇔ systematic 
neuroscience (figure 8B). The intermediary structure is somatic knowledge representation by 
means of topological embedding field theory. The intermediary representation is used to identify 
state-space forms of organization (structures embedded in a bio-somatic field) and to define what 
constitutes signals and signaling complexes in terms of somatic state-space (figure 1). Structures 
so defined mathematically, with identified principal quantities, provide the clues for what 
capacities must be presented in biological appearances. Anatomical and physiological research 
then looks for homeomorphic relationships of this kind. Biologists try to do precisely this already, 
but the system discipline required to provide adequate tools for the search has not been there to 
support the effort. The practical consequence is that merely having very smart people working on 
it isn't enough; a genius must appear on the scene from time to time or else some fortunate 
experimental accident must occur that jars the working paradigms and premises.  

If, on the other hand, the science works from practical (meaningful) ideas of mathematical 
organizations of biological function, then, hypothetically at least, one can descend from a somatic 
activity graph to an embedding field graph in which the vertices depict some level of biological 
anatomical structures, descend from these to successively lower-level anatomical structures, and 
so on until one runs out of instrumentation capability to provide for objectively valid association 
of principal quantities in the graph with sensible physical phenomena. Here I say "hypothetically" 
because even with adequate tools the mind-body system is still enormously complex and the 
contingency of empirical knowledge provides plenty of opportunities for very smart people to 
make mistakes. No one should underestimate the challenges of science.  

This is the biological logical division of neuroscience. We must also account for the mental 
logical division. Here the same methodology applies except that the horizontal structure goes 
semantic organization ⇔ noetic knowledge representation ⇔ noetic state-space embedding field 
topology (right-hand side of figure 9). With semantic structure re-expressed as noetic embedding 
field topological structure, one proceeds methodically in the same way as would be done in the 
biological division except that in this case we are dealing entirely within the framework of nous. 
An embedding field graph depicting noetic representation structures is deduced at some level. 
From there, one can either continue the SR process into progressively lower levels of noetic 
representations or undertake MOR into higher levels of noetic representations until reaching the 
behavioral level studied by psychology.  

V. Critical Psychophysics     

The point of conjunction between biology and psychology is semantic topological embedding 
field theory and its coordinated connections to the ladders on either side of it in figure 9. This 
arena of research is what is properly called Critical psychophysics. The psychophysicist need not 
be a master of all science; the empirical details of corporal Existenz belong to biology and the 
empirical details of mental Existenz belong to Critical psychology. The psychophysicist must, 
however, take psyche as his logical object of research and know enough about biology, 
psychology and mathematics to be a synthesizer. In this, the focal point is the sensorimotor idea 
(the applied metaphysic of psyche), which grounds the types of functions that must be employed 
for objective validity in semantic constructs. On the side connecting to biology is the judicial-
sensorimotor idea (J-SMI) [Wells (2011d)]. On the side connecting to psychology is the 
theoretical-sensorimotor idea (T-SMI) [Wells (2009, 2011f)]. The J-SMI and T-SMI combine to 
form the applied metaphysic of psyche. The combined structure is a 3LAR providing 6,561 
general synthetic functionals for the Critical expression of nous-soma reciprocity. Figure 10 
illustrates the 3LAR structure of the sensorimotor idea.  
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Figure 10: General 3LAR structure of the sensorimotor idea of psyche. 

The twenty four momenta in figure 10 have been explained elsewhere [Wells (2011d), (2011f) 
and (2009), chap. 4 §3]. In this paper I speak to the homeomorphic functions f and g of figure 1. 
The first (and practically most fundamental18) task is to represent the semantic Nature of signals 
and signaling on the side of soma in a somatic state space model along with a homeomorphic 
image of this, the semantic Nature of noetic representation on the side of nous in a noetic state 
space model. In both cases, topological embedding field theory is the mathematical doctrine 
required. The empirical Object of psychophysics is the adaptive psyche [Wells (2009), chap. 4].  

Representation theory for nous has been and is being developed. It is an integral part of mental 
physics. Still left to be filled is a doctrine for knowledge representation in soma, and this brings 
us back around to the subject where Part I of this series left off: signals and signaling.  

In Critical metaphysics, root explanations for objects of Critical ontology always reduce to 
explanations of abilities, processes and functions because it is the manifestations of these in the 
homo phaenomenon aspect of organized being that are the aliments for the possibility of real 
experience as human beings come to know experience. As was deduced in Part I, understanding 
of signals and signaling reduces to understanding the Nature of signaling ability. We have now 
come to the point where the Critical answer to the question, "What is the Nature of signaling 
ability?" can be obtained.  

Part I reached the stage where it could be concluded that signaling is the nexus of signals. It 
also noted the defining characteristic of the logical essence of what it means for some appearance 
to be a signal. For an object of appearance to be a signal it must be regarded as an outcome or 
consequence of some action. We can now specify what kind of action this must be. It must be a 
change in accidents of appearance understood as a physical phenomenon in which temporal 
variations are reciprocally connected in understanding with concepts of semantic objects. This is 
Critical signaling action. To make this idea distinct and usable in practice, we must present it in 
                                                 
18 By "practically fundamental" I do not mean "almost fundamental." When I use the term "practically" it is 
as an adjective that refers to reduction to practice. A science that cannot be reduced to practice has no uses 
and is, therefore, a useless science. A theory that cannot be reduced to practice has no uses and is a useless 
theory. Platonic theories are always useless unless one wishes to practice fantasizing.  
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terms of a 2LAR of an ability, namely, signaling ability.  

Composition of an ability in general is called a power (Kraft); therefore the matter of signaling 
ability is appropriately called signaling power. Nexus of an ability is the form of that ability 
regarded as an idea of a potential power (Vermögen) of organization, i.e. the potential power to 
organize, and this idea in Critical terminology is called a faculty. Faculty depicts how an ability is 
exhibited in experience; Kraft depicts what matter-of-ability is exhibited. A signal is an object of 
appearance understood as the outcome of the action of realizing (making actual) a moving power 
that stands combined with a signaling faculty. To understand an object as a signal is to 
understand a signaling power (Kraft of a signaling ability); to understand an object as an act-of-
signaling is to understand the signaling faculty of a signaling ability.  

Now, there are two contexts for this, one of which is superfluous to the aim of this paper and 
the other of which is the constituted aim of the series. The superfluous context is the context of an 
observer observing some phenomenon and naming it a signal. Here the connection between the 
phenomenal object and its meaning as a signal is made in the judgment of the observer in context 
with whatever his purpose for observing might be. This is always an inference of analogy with the 
object of the second context. If the second object is understood (with objective validity) then the 
object of the analogy is understood in the context of the observer's purposes. For example, I 
understand a frog to-be-an-animal because I understand myself to-be-an-animal. The frog is: (1) 
presented (to me) as an appearance of something that is biologically organized; my corporal self 
is presented as biologically organized appearances of me; (2) the phenomenon of the frog appears 
to exhibit spontaneity of locomotion; I exhibit spontaneity of locomotion; (3) the frog eats things; 
I eat things (property of taking nourishment); (4) frogs biologically reproduce; I can biologically 
reproduce; & etc. An inference of analogy is an inference of judgment by which marks of one 
object concept are made part of the representation of the concept of another object [Wells 
(2011e)]. Analogy proceeds under the rule of the principle of specification: things of one genus 
that agree in many marks agree in all marks as they are known in one object but not in the other. I 
put the frog in the same genus as myself ("animal") because the frog's appearances sufficiently 
resemble my own in specific contexts.  

Thus, to properly judge by analogy that some physical phenomenon is a "signal" or is 
"signaling" we must first understand these ideas in the context of the Organized Being. This is the 
second context mentioned above, in which anything to be regarded as a signal or as signaling 
must be subsumed in judgment. This second context of signaling ability provides the empirical 
basis for signaling ability in contexts other than that of an Organized Being19.  

As one might possibly expect from the fact that the applied metaphysic of psyche (the sensori-
motor idea) is understood as a 3LAR structure, understanding of signaling ability likewise calls 
for a 3LAR structure. Figure 11 illustrates the skeleton of this 3LAR. The remaining task at hand 
for this paper is, in a manner of speaking, to put some flesh on the bones.  

Signaling faculty is the more straightforward part of the idea. Nexus of signaling ability is the 
representation of manifold of heterogeneous things that combine together "because of the nature 
of Nature." In our specific context, this is the organization of objects said to generate signals.  

                                                 
19 This is one of the consequences of Kant's Critical philosophy that ontology-centered thinkers have the 
most difficulty grasping or accepting. "It is too subjective," they might protest. "Real things cannot depend 
on subjectivity like this." But ask them what they mean by "real thing." An ontology-centered person can 
not ground an answer to this on the human side of the horizon of possible experience. Critical epistemology 
defines what it means "to be real." This definition is practical, not ontological. Again, as Protagoras wrote 
long ago, "Man is the measure of all things, of things that are that which they are, and things that are not 
that which they are not" [Diogenes Laertius (Lives of Eminent Philosophers), vol. II, IX. 53]. If you can't 
say what you mean then you don't mean what you say and you can't communicate anything meaningful.  
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Figure 11: Skeletal outline of the 3LAR structure of signaling ability. SA denotes signaling ability; SP 
denotes signaling power; SF denotes signaling faculty; m denotes matter; f denotes form. 

Now, such an object requires a complete context in terms of object appearances and in terms 
of objective semantic implications. The former pertains to composition of signaling faculty, 
which is Quantity and Quality in this 2LAR substructure of signaling ability. The latter pertains to 
the nexus of signaling faculty (Relation and Modality in the SF sub-2LAR). As the idea of the 
organization of signaling ability, SF Quantity is understood by the primitive category of totality, 
i.e., as the entirety of a signaling complex of objects regarded as generating a signal. The 
composition in Quality is judged by the category of limitation because we are considering the 
organizational faculty that is regarded as generating a specific signal. In terms of physical nexus 
(SF Relation), the idea of signaling faculty is understood by the category of community because 
saying a physical phenomenon stands in a semantic relationship is equivalent to saying it is 
homeomorphic to some noetic representation. The SF Relation is an idea of the form of nous-
soma reciprocity. Finally, because we wish to understand somatic signals as somatic events that 
actually depict something, the idea of SF Modality is judged by the category of necessity since 
signaling theory is the theory of a system of signaling, thus unity of its metaphysical manifold is a 
unity made necessary by the purpose of the theory. This is the Critical Logic of signaling faculty.  

The synthesis of every objective idea of a signaling faculty is governed by the momenta of the 
theoretical-sensorimotor idea = {physiological idea, seeming, emergent properties, sensorimotor 
meaning} (refer to figure 10)20. The first three momenta are functions of the theoretical data of 
the senses, the last a function of the transcendental sensorimotor idea. The objective functions 
(Quantity, Quality and Relation) pertain to "spanning the gap" between empirical science and 
rational science (because that is the role of the T-DOS momenta in the applied metaphysic of 
psyche). The Modality function falls under the transcendental sensorimotor idea in the theoretical 
Standpoint as the subjective function pertaining to how the object concept is held-to-be-true in 
meaning implications (rational grounding of empirical understanding). In terms of mathematical 
object representation, these momenta correspond to representation of {integration, subcontrarity, 
transitive Relation, determining factor} [Wells (2011c)].  

This is the metaphysical context for a faculty of signaling. Now we must turn to the more 
subtle context of signaling power, which must explain the context in which a phenomenal object 
can be regarded to be the manifestation of a signal. We are inquiring into "what is signal-matter?"  

                                                 
20 For the technical explanation of these momenta refer either to Wells (2011f) or Wells (2009), chap. 4.  
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This inquiry, though, is inquiry into epistemologically correct context. The essential context of 
signaling power is semantic context, i.e., context deduced from the judicial sensorimotor idea. To 
realize (make actual) a semantic content requires construction of structures of self-organizing 
transformations that in combination constitute the performances of:  

• in Quantity – acts of aggregation assimilating somatic activities into the form of a 
specific topology ℑ in some subspace X of the universe X of somatic places;  

• in Quality – acts accreting or dissipating somatic activity fields such that locally 
path connected trajectories are formed in some topological space (X, ℑ);  

• in Relation – acts of constitutive somatic place coordinators that effect a union of 
topological structuring and order structuring through coordinations among activity 
fields in such a way that homeomorphism between somatic state space and noetic 
state space is possible;  

• in Modality – acts constituting systematic global coordination of somatic spatio-
temporal activities that effects a somatic marking of empirical apperception.  

That these four 2LAR headings of synthetic combination derive from the J-SMI sub-2LAR in 
figure 10 is not immediately obvious but it is inherent in the applied metaphysic of the J-SMI 
[Wells (2011d)]. That these acts are the somatic substratum (or, better put, co-substratum) of 
noetic context is likewise not immediately obvious although, again, this is inherent in the Critical 
idea of context when this idea is subsumed under the Critical principle of thorough-going nous-
soma reciprocity21. Perhaps the best way to explain this Realerklärung of signaling power is to 
present and discuss in concreto some of its specific manifestations that have emerged from 
researches in mathematical neuroscience, empirical psychology and neurobiology.  

A. Manifestations of the Quantity Transformations. Functions of Quantity always pertain to 
aggregations and, indeed, Critical Quantity grounds the mathematical notion of sets. In the 
context of general physics (that is, "physics" in the ancient Greek connotation of φψσικησ), the 
functions of Quantity pertain to Kantian phoronomy [Kant (1786), 4: 480]. As mathematic, the 
functions pertain to the constituting of topological spaces. Empirical psychology, too, has been 
able to unearth a somewhat unexpected linkage to this otherwise quite abstract context. Biologists 
tend to remain unaware of the Quantity function, presumably because historically the study of 
biology has employed little or no mathematics beyond elementary algebra and the bare rudiments 
of calculus and statistics. I find no concretely useful illustrations of concepts of Quantity in the 
principal biological literature22 and only abstract mathematics making hypothetical reference to 
biological structures in the literature dedicated to mathematical biology. Biologists' intuitions of 
Quantity, though, are manifested by those biological concepts called anatomy and organelle.  

Mathematically, the self-organizing transformations of Quantity are those which construct 
topological spaces. I think the first thing that must be emphasized here is that these acts of self-
construction by the OB are not acts initially leading to the construction of just one topological 
space but, rather, of a multiplicity of topological spaces. It falls as a task to the functions of the T-
SMI and the signaling faculty to eventually construct the coordination of these divers spaces. The 
empirical evidence of topological construction capacity by the OB was unearthed in studies of 

                                                 
21 Context is the sphere of concepts, combined by judgment with the concept said to have the context, 
which delimits the applicable scope involving that concept in Reality [Wells (2011e)].  
22 In my own opinion, biological science severely handicaps the discipline by the widespread aversion 
almost every biologist I know displays towards mathematics. However, I also am of the opinion that this is 
not the fault of the biologists. It is the fault of the dreadfully bad pedagogy used to teach mathematics. If 
mathematics education taught mathematics productively, I have no doubt biologists would use it more.  
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developmental psychology. Piaget and Inhelder reported,  
[Abstract] geometrical analysis tends to show that fundamental spatial concepts are not 
Euclidean at all, but 'topological'. That is to say, [geometrical concepts are] based entirely 
on qualitative or 'bi-continuous' correspondences involving concepts like proximity and 
separation, order and enclosure. And, indeed, we shall find [in this book] that the child's 
space, which is essentially of an active and operational character, invariably begins with 
this simple topological type of relationship long before it becomes projective or Euclidean. 
[Piaget and Inhelder (1948), pg. vii]  

It is also quite obvious that the perception of space involves a gradual construction and 
certainly does not exist ready-made at the outset of mental development. . . The first two 
stages of development are marked by an absence of co-ordination between the various 
sensory spaces, and in particular by lack of co-ordination between vision and grasping . . . 
The most elementary spatial relationship which can be grasped by perception would seem 
to be that of 'proximity', corresponding to the simplest type of perceptual structurization, 
namely, the 'nearby-ness' of elements belonging to the same perceptual field. . . A second 
elementary spatial relationship is that of separation. Two neighboring elements may be 
partly blended and confused. To introduce between them the relationship of separation has 
the effect of dissociating, or at least providing the means of dissociating them. But once 
again, such a spatial relation corresponds to a very primitive function; one involved in the 
separation of units, or in a general way, the analysis of elements making up a global or 
syncretic whole. . . A third essential relationship is established when two neighboring 
though separate elements are ranged one before another. This is the relation of order (or 
spatial succession). It undoubtedly appears very early on in the child's life . . . A fourth 
spatial relationship present in elementary perception is that of enclosure (or surrounding). . 
. Lastly, it is obvious that in the case of lines and surfaces there is right from the start a 
relationship of continuity. [ibid., pp. 6-8]  

The research of Piaget and Inhelder established as conclusively as empirical research ever can 
that: (1) the infant's earliest perceptual capacities are topological in nature; (2) that in the infant 
there is initially not just one construction of topological space manifested but, on the contrary, 
more than one; and (3) that these divers initial topological constructions gradually become more 
and more coordinated and unified with the growth of experience during mental development. 
Thus we have the necessary evidence in real experience for concluding with objective validity the 
Dasein of the topological construction capacity of the OB.  

There is an additional bit of interesting evidence for concluding that the innate capacities of an 
OB include innate capacities for constructing mathematical structures. Note with care that the 
capacity is for constructing them, and I am not saying the structures themselves are innate (they 
are not). This bit of evidence came out of an accidental meeting between Piaget and the Bourbaki 
mathematician J. A. Dieudonné. Piaget described the discovery:  

 As you know, the aim of the Bourbaki was to find structures that were isomorphic among 
all the various branches of mathematics. . . This search led to three independent structures 
that are not reducible to one another. By making differentiations within each one of these 
structures or by combining two or more structures, all the [other mathematical structures] 
can be generated. For this reason the structures were called the mother structures. . . The 
first is what the Bourbaki call the algebraic structure. The prototype of this structure is the 
mathematical group. . . The second type of structure is the order structure. This structure 
applies to relationships, whereas the algebraic structure applies essentially to classes and 
numbers. . . The third type of structure is the topological structure based on notions such as 
neighborhood, borders, and approaching limits. . .  

 A number of years ago I attended a conference outside Paris entitled "Mental Structures 
and Mathematical Structures." This conference brought together psychologists and 
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mathematicians . . . Dieudonné gave a talk in which he described the three mother 
structures. Then I gave a talk in which I described the structures that I had found in 
children's thinking, and to the great astonishment of us both we saw that there was a very 
direct relationship between these three mathematical structures and the three structures of 
children's operational thinking. We were, of course, impressed with each other, and 
Dieudonné went so far as to say to me: "This is the first time that I have taken psychology 
seriously. It may also be the last, but at any rate it's the first." [Piaget (1970), pp. 24-26]  

Now let us look at a precise mathematical definition of a topological space [Baum (1964), pp. 
20-21]. The basis of the set membership equivalent of a mathematical "point" in the somatic 
universe X of "points" x is the somatic place. Any topological space is a subspace in terms of a 
subset X ⊂ X combined with a specific topology ℑ. This is formally symbolized by writing it as a 
pair (X, ℑ) for each topological space construction. Let Ux denote a system of neighborhoods of x. 
Let Ux and Vx denote different specific neighborhoods of x (recalling that a somatic neighborhood 
of a somatic place is a somatic activity field; for an illustration see figure 12). A system of 
neighborhoods Ux is defined by three conditions:  

1. if any Vx is such that Vx ⊇ Ux for some Ux ∈ Ux then Vx ∈ Ux;  
2. if Ux and Vx ∈ Ux then Ux ∩ Vx ∈ Ux;  
3. if Ux ∈ Ux and there is some Vx ∈ Ux containing a somatic place y ∈ Vx, then Ux ∈ Uy.  

The topology ℑ = { Ux such that x ∈ X} is an assignment of neighborhood systems. (X, ℑ) is the 
topological space. Note that a topology contains a multiplicity of neighborhood systems. The acts 
of Quantity constitute the neighborhood systems and assign them to specific topologies.   

B. Manifestations of the Quality Transformations. In order to more clearly explain the concept 
of somatic neighborhoods, figure 12 presents a cartoon illustration of a neighborhood sequence in 

 

Figure 12: Illustration of a trajectory of locally path connected neighborhoods Ut(x) in objective time t. 
Hexagons denote somatic places in universe X. The darkened hexagons denote somatic place x. Colored 

circles denote measurable activity in the somatic place containing them. Hexagons without colored circles 
denote places with zero-measures of activity. The illustrations are meant to be analogous to, e.g., brain 

images obtained by, e.g., PET scan or fMRI scan. The center and rightmost figures also illustrate a second 
somatic place, y, and these two neighborhoods are also neighborhoods of y, denoted as U2(y) and U3(y). 
Since both neighborhoods contain x as an active somatic place, U2(y) and U3(y) both also belong to the 
neighborhood system Ux of place x. The amount of activity at an active place is topologically irrelevant. 
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objective time t. The temporally-ordered neighborhoods Ut(x) are locally path connected because 
active somatic place x is contained in all three and all three belong to a neighborhood system of x, 
Ux. Refer to the figure caption for explanation of the figure symbols.  

In the metaphysics of Kantian dynamics [Kant (1786), 4: 496-500], non-zero measurable 
activity at a place is regarded as a moving power. This means it is regarded as having a capacity 
for diminishing activity at other somatic places. In graph theoretic terms, this is what is 
represented by an arc yxv (refer to figure 7) from place x to another place v where the activity at x 
has a dissipating effect. The moving power at x is also regarded as having a capacity to accrete 
other activities (i.e., cause activity at other places), and this, too, would be represented by an arc 
in a graphical depiction. Quality transformations of signaling power are transformations that 
coalesce formation of a locally path connected trajectory through a topological space ordered in a 
succession in objective time. Possible trajectories that might be stimulated due to activity at x can 
be either assisted or opposed by accretion or dissipation actions of other active somatic places. A 
graph theoretic representation of this is often called a competitive network in the lexicon of neural 
network theory and frequently takes the form of what are called on-center off-surround network 
structures [Grossberg (1978), §14-15].  

Biological manifestations of neuronal organizations exhibiting competitive network action and 
on-center off-surround structures are legionary. Figure 13 provides a schematic illustration of 
competition among neurological networks in the thalamic-neocortical interface in the brain. 
Similarly, competitive neurological networks are found to exist in abundance in the ventral horn 
anatomy of the spinal cord. There competition serves to coordinate flexor and extensor muscle 
activation and relaxation during skeletal muscle movements.  

 

Figure 13: Schematic illustration of cross-coupled first order thalamic relay nuclei showing thalamical-
neocortical connections in the brain. The figure was developed from neurological material presented in 

Sherman and Guillery (2006), chapters 3 and 6. Red lines denote inhibitory connections (dissipation) while 
black lines denote excitatory (accreting) connections. The two thalamic relay nuclei compete with each 
other via projections from the thalamic reticular nucleus in establishing neuronal action in the system. 
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The formation of accretion and dissipation arcs in a graph theoretic representation of the 
topological space performs an association function (which is a type of coalescing action; Quality 
pertains to coalescence of intensive magnitudes). Empirical psychology recognizes association as 
an important psychological phenomenon, and one that has proved challenging for theoretical 
psychology to tightly grasp. Reber provides us with the following psychology definition:  

association 1. Most generally, any learned, functional, connection between two (or more) 
elements. Identifying precisely what these elements are (e.g. ideas, acts, images, stimuli 
and responses, memories) and specifying the mechanisms underlying their connection is a 
theoretical exercise that has occupied many a philosopher and psychologist for many a 
year. [Reber (2001)]  

It reflects the importance of the idea that Reber's Dictionary devotes three and one-half pages to 
technical terms used in psychology pertaining to the phenomenon of mental association. The 
topological semantics methodology I am discussing in this paper provides an organized schematic 
approach to psychological association as well as to neurological association.   

C. Manifestations of the Relation Transformations. The performances that transformations of 
Relation manifest are acts constituting the somatic basis of the psychological phenomenon of 
context dependent choice in the execution of sequences of sensorimotor actions [Grossberg 
(1978), §1.B-F]. Suppose a network graph contains two embedded paths that branch from a 
common vertex as illustrated in figure 14. Further suppose different sensorimotor actions result 
from propagating activity down the different paths and that these different paths denote different 
somatic manifestations of meaning implications. The possibility of soma-syntactical generator 
functions then requires the graph to contain other vertices (p2 and p3 in figure 14) that perform the 
task of selecting which path is activated by common vertex p1. In figure 14 the trajectory paths 
are denoted by blue colored associational strength arcs while the soma-syntactical generator 
transformations are denoted by green arcs, here called non-specific arousals. This network 
schematic was used in the first neural nets demonstrating the capacity of spatio-temporal learning  

 

Figure 14: Embedding fields manifesting context-dependent choices of trajectories. The capacity for 
context-dependent choice functions is due to the Relation transformations called non-specific arousals. 
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action in 1969 [Grossberg (1969a,b, 1970, 1978)]. We may call networks of the type shown in 
figure 14 avalanche networks. A computer engineer would call the two different types of arcs 
illustrated in figure 14 by the names data flow path and control signal.  

The non-specific arousal schematism illustrated in figure 14 has known neurological 
counterparts. One example is provided by the reticular formation [Felten and Józefowicz (2003), 
pp. 170-172]. Metabotropic processes in sub-cellular biology similarly stand as neurological 
manifestations of this "control function" schematism [Levitan and Kaczmarek (2002), chap. 12]. 
One simple yet particularly vivid example of metabotropic Relation transformations performing 
what Malsburg calls "dynamic links" is provided by the stomatogastric ganglion that controls 
muscles in the stomach [ibid., chap. 19, pp. 512-519].  

Empirical psychology likewise has its analogous correspondents to Relation transformations. 
It seems likely that Piaget would call these "pre-operations" or, perhaps, "proto-operations" 
because the a priori psychological structures that reflect Relation transformations do not innately 
provide for all the behavioral capabilities that define full "operations" in the Piagetian context 
[Piaget (1953), pp. 8-22]. Piaget et al. discovered four basic and apparently innate types of 
compensation behaviors, which they called constitutive coordinator functions because these 
functions "constitute" (build) more complex learned behavior functions. Mathematically, these 
constitutive coordinators require the Relation transformation for the possibility of their 
sensorimotor expression. The four Piagetian functions are called the association coordinator, the 
repetition coordinator, the permutator coordinator and the identifier coordinator [Piaget et al. 
(1968), pp. 172-173]. Somatic transformations of Relation are the co-substrata necessary for the 
possibility of homeomorphism functions f and g in figure 1.   

D. Manifestations of the Modality Transformations. Modality transformations pertain to the 
constituting of somatic signaling ability that corresponds to (is the reciprocal phenomenon of) 
empirical apperception. Empirical consciousness is, functionally, "the representation that another 
representation is in me and is to be attended to" [Kant (1783), 29: 878]. The soma-phonological 
coordinator function is constituted by Modality transformations.  

Empirical consciousness and its descriptive adjective ("conscious") are ideas where empirical 
psychology labors with great difficulty and a pronounced lack of community agreement. Reber 
provides the following usages of these terms in psychology:  

conscious 1. adj. In its most general sense the term is used to characterize the mental 
state of an individual  who is capable of (a) having sensations and perceptions, (b) reacting 
to stimuli, (c) having feelings and emotions, (d) having thoughts, ideas, plans and images, 
and (e) being aware of (a) to (d). [Reber (2001)]  

consciousness 1. Generally, a state of awareness: a state of being conscious (1). This is 
the most general usage of the term and is that intended in a phrase such as "he lost 
consciousness." [ibid.]  

Most (likely, all) psychologists agree with these connotations of the terms. Beyond that the 
science shatters into a rainbow of ad hoc nominal definitions by fiat and clashing mini-theories of 
consciousness, almost all of which are ontology-centered speculations with no real grounding. 
Critical epistemology distinguishes between empirical consciousness and apperception, which we 
are discussing here, and the faculty of pure consciousness, which is the organized capacity of 
nous [Wells (2009), chap. 4].  

The neurology of the somatic co-substratum of empirical consciousness is far from understood 
but there is essentially no doubt of its Dasein. The many speculative disputes about the subject 
center upon the Nature of its Existenz, i.e., its appearances in soma. One illustration of reasonable 
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and evidence-based speculation regarding the neurology of consciousness has been provided by 
Damasio. He conjectures that brain structures including the reticular formation, the intralaminar 
nuclei of the thalamus, the cingulate cortex and the superior colliculi are foundationally involved 
in the phenomenon of empirical consciousness [Damasio (1999), pp. 234-276].  

Piaget also found it necessary to posit consciousness-producing transformations to ground his 
empirical conclusions concerning what he called interaction structures [Piaget (1975), pp. 42-77], 
although it is not-unfair to say his description of these structures was far too vague to do more 
than supply a rather equivocal idea of equilibration processes. Piaget posited a more primitive 
(Type I) and a less primitive (Type II) schematic of interaction structures. These are illustrated in 
figure 15. In these schematics, the functions a and b denote consciousness functions pertaining to, 
respectively, awareness of resistance to the subject's actions and awareness of success/failure in 
comparisons of outcome appearances of the action in relationship to the subject's anticipations of 
these outcomes. Process OS denotes an awareness function of the insufficiencies or adequacies of 
the subject's actions. The point I wish to emphasize here is that the Dasein of something like 
these awareness transformations were found to be necessary for explaining Piaget's empirical 
observations of the actual behaviors of young children.  

Mathematical neural network theory also finds it necessary to posit constructs pertaining to 
awareness transformations within, e.g., ART networks [Carpenter and Grossberg (1987)]. In ART 
terminology, these are referred to as attentional and orienting subsystems. Grossberg has provided 
an excellent thematic overview of the issues of consciousness, learning and attention and their 
role in mathematical modeling in Grossberg (1999).  

These sorts of considerations carry implications for somatic activity fields. The most specific 
implication of import for this paper is this: within any activity field we must find some active 
somatic place where activity is indicative of soma-phonological Modality transformations at work 
in the overall functioning of the somatic system. For example, the reticular formation is deeply 
implicated in OB actions that are characterized in terms of consciousness and so we must expect 
reticular formation activities to be found within any activity field that can be regarded as 
semantically relevant. A greatly simplified illustration of this is provided in figure 12 by the 
somatic place denoted by the green activity indicator. Two or more active somatic places are 
necessary in every activity field association regardable as manifesting signaling power.   

 

Figure 15: Schematic illustrations of Piaget's interaction structures. (A): Type I interaction. (B): Type II 
interaction. Detailed explanation of these structures is superfluous to the purposes of this paper (the 

interested reader can consult the Piaget (1975) citation). The pertinent idea contained in these schematics is 
the presence of necessary transformations pertaining to consciousness functions as integral parts of these 

interactions. In the specific, functions a and b in (A) denote functions of the subject's awareness of 
resistance to its actions (a) and awareness of success/failure comparisons of the actual outcome of the 

action vs. the subject's anticipation of the outcome (b). Process OS in (B) denotes a transformation function 
of the subject's awareness of the insufficiencies or adequacies of his actions. 
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Signaling ability represented in somatic topological space is necessary for regarding that 
topological space in the context of Critical semantics and somatic coding. This puts us in a 
position to now present the Realerklärung of what a somatic signal is regarded from the judicial 
Standpoint of Critical metaphysics: A biological signal is a spatio-temporal biological event 
insofar as, and only insofar as, that event is understood as a delimited spatio-temporal trajectory 
in a system of activity field neighborhoods. With this explanation, one of the fundamental 
questions raised in Part I [Wells (2011c)] has now been addressed with objective validity. 
Although the patient reader might well wonder if all the development that has transpired between 
the posing of the question in Part I and its answer now was really necessary, the need for this 
lengthy development is easily grasped when one remembers that the idea of a "signal" is treated 
as a mathematical primitive in theories of brain-object function and in theories of knowledge 
representation. If the primitive being employed is to have real objective validity and is to be 
suitable to stand as a principal quantity of Critical mathematics (the linkage point between 
mathematical theory and actual experience), then the metaphysical rudiments of the idea of 
"signal" must be rigorously established and linked without gap or saltus to the Critical 
foundations of science. Only then can the real organic unity of the homo phaenomenal and homo 
noumenal aspects of an Organized Being be understood as natural science.  

The general problem of knowledge representation has also now been supplied with a doctrine 
of an objectively valid schema for knowledge representation in natural science. This is not to say 
that all knowledge representation problems are solved in the specific by this series of papers. 
What is presented here is the objectively valid schematization method in general. To apply it to 
any specific Object in Nature, one must incorporate the special properties and appearances that 
distinguish that Object from other Objects in Nature. Because these are precisely the factors that 
are not a priori, the specific task rightly belongs to empirical-rational natural science and cannot 
belong to metaphysics. The metaphysical rudiments presented in this series pertain to the 
epistemological pre-conditions for objective truth in natural science properly so-called.  

VI. A Few Closing Metaphysical Observations and Remarks      

In bringing this series of papers to a close, a few final remarks and comments are in order with 
regard to a few of some more detailed specifics of the implications in this theory that are easy to 
overlook. These implications become very visible during the practice of this methodology. I wish 
to deal here with the more predictably troublesome of these.  

First, let us settle a potential question glossed over earlier. The activity of a somatic place was 
defined in terms of measurement capability. Now, only a moment's reflection should suffice to 
understand that what is measurable by scientific instrumentation and what is perceivable by an 
Organized Being are not equivalent ideas, nor is there any objectively valid ground to expect the 
lowest degree of measurable activity to correspond to any sort perceptual thresholds in the 
empirical apperception of an Organized Being. The practice of science employs instruments to 
extend the horizon of possible experience. Before the invention of the microscope bacteria were 
not objects of possible experience. Afterwards they were and the Dasein of bacteria and other 
microorganisms is no longer a matter of mere speculation. The same is true of the use of scientific 
instruments to measure somatic activity. What is the implication of this relatively obvious fact?  

I deem it likely that a biologist reading this series greeted the definition of somatic activity 
with a feeling of ridicule. "Doesn't this guy know that of course there will always be metabolic 
activity in a cell?" he might have thought, "Otherwise the cell would be dead." There is one very 
well known criterion for distinguishing between "living" and "no-longer-living" cells, namely the 
presence or absence of cellular respiration. Viewed in this context, any "living" cell and any 
association of "living cells" represented by a somatic place will by definition have some non-zero 

33 



On Critical Representation in Brain Theory, Part II  Richard B. Wells 
June 30, 2011 

metabolic rate. The issue isn't that. The experimental issue lies in the determinability of intensive 
magnitudes of metabolic rates in an aggregation, a factor that is always limited by the 
measurement range of the instrumentation involved. Furthermore, there is no absolute gauge by 
which metabolic rate, or any other empirical appearance, can be absolutely determined23. In 
science this is known as the gauge issue. It is a matter of scientific practice, not of ontology.  

More pertinent is the issue of measurement uncertainty vs. perceptual threshold. Viewed from 
the homo phaenomenon aspect of organized being, the Organized Being's biophysical sense 
apparatus can be viewed with objective validity as merely another kind of recording instrument 
for physical appearances. From the homo noumenon side of nous, noetic representations fall 
generally into two logical divisions, namely obscure representations (non-perceptions) and 
perceptions. "Perceptual threshold" is an object of nous, not soma. Probably no one did more than 
Freud to establish the theoretical fecundity of dividing "the unconscious" (obscure representation) 
and "the conscious" (perception = representation with consciousness). Piaget wrote,  

 In general, when a psychologist speaks of a subject being conscious of a situation, he 
means the subject is fully aware of it. The fact that he has become aware of it neither 
modifies nor adds anything to the situation . . . Freud even compares consciousness to an 
"organ of the internal senses," it being understood that for him a sensation can only receive 
and not transform an external matter. However, no one has contributed more than Freud to 
make us consider the "unconscious" a continually active dynamic system. The findings of 
this book lead us to claim analogous powers for consciousness itself. In fact, and precisely 
insofar as it is desired to mark and conserve the differences between the unconscious and 
the conscious, the passage from one to the other must require reconstructions and cannot be 
reduced simply to a process of illumination. [Piaget (1974), pg. 332]  

Hence we conclude that somatic matters must be measured with measurement instruments (with 
the attendant gauge considerations) and not by noetic acts, and so this first issue is in fact merely 
a minor confusion over transcendental place. Somatic activity must be assayed by physical 
instrumentation and here noetic objects such as "perception thresholds" have no transcendentally-
valid part to play in it.  

A second issue, this one of a purely mathematical character, is raised by the distinction in 
figure 1 between somatic state space and noetic state space. That state variable representations are 
not unique and that two different homeomorphic systems are functionally equivalent even though 
in appearance they have markedly different depictions is, I trust, already clear enough. There is, 
nonetheless, an issue of function vs. mechanism that sooner or later tends to intrude upon the 
reflections of a researcher. Grossberg stated the issue very clearly many years ago:  

 The distinction between a network's emergent functional properties and its simple 
mechanistic laws also clarifies why the controversy surrounding the relationship of an 
intelligent system's abstract properties to its mechanistic instantiation has been so enduring. 
Without a linkage to mechanism, a network's functional properties cannot be formally or 
physically explained. On the other hand, how do we decide which mechanisms are crucial 
for generating desirable functional properties and which mechanisms are adventitious? 
Two seemingly different models can be equivalent from a functional viewpoint if they both 
generate similar sets of emergent properties. . .  

 In summary, the relationship between the emergent functional properties that govern 
behavioral success and the mechanisms that generate these properties is far from obvious. 
A single network module may generate qualitatively different functional properties when 
its parameters are changed. Conversely, two mechanisms which are mechanistically 

                                                 
23 not even the "absolute zero" of the Kelvin temperature scale. Absolute cessation of atomic motion is not 
physically observable. Therefore the zero-point of the Kelvin scale is a speculative and mathematical 
destination (a secondary quantity) and is not a possible principal quantity of Critical mathematics.  

34 



On Critical Representation in Brain Theory, Part II  Richard B. Wells 
June 30, 2011 

different may generate formally homologous properties. The intellectual difficulties caused 
by these possibilities are only compounded by the fact that we are designed by evolution to 
be serenely ignorant of our own mechanistic substrates. The very cognitive and learning 
mechanisms which enable us to group, or chunk, ever more complex information into 
phenomenally simple unitized representations act to hide from us the myriad interactions 
that subserve these representations during every moment of experience. Thus we cannot 
turn to our daily intuitions or to our lay language for secure guidance in discovering or 
analyzing network models. The simple lesson that the whole is greater than the sum of its 
parts forces us to use an abstract mathematical language that is capable of analyzing 
interactive emergence and functional equivalence. [Grossberg (1987)]  

The mechanism vs. function issue Grossberg described belongs to a common issue class that 
is raised in scientific reduction as well as in model order reduction. For example, in seeking for 
knowledge "closer to mechanism" from a higher level functional starting point, SR proceeds from 
a modeling level where activity is concretely represented by real numbers (such as the cases 
graphically depicted in this paper) to a level where activity is represented by pulse-mode 
waveforms (e.g. "pulse-coded neural networks"). To date there hasn't been very much SR work of 
this sort reported in the literature, but it is an obvious route in service of the "ladder rail making" I 
discussed earlier. What can happen during this sort of SR work – and I am inclined to think it is 
likely the rule rather than the exception – is that functional interpretations, so seemingly obvious 
at the higher level as to be mistaken for mechanistic properties, are demonstrated at the lower 
level as being of only functional and not mechanistic character. That this can be so was recently 
demonstrated by Sharma (2011). As it so happens, this demonstration came quite unexpectedly 
and in manners not especially pleasing to Sharma (or, for that matter, to me) except in retrospect 
after the issue was resolved. It demonstrated that there is a great deal of context and content work 
that has to go into "building the rails" of the science ladder, i.e., a doctrine of general systems.  

But there is an even more potentially perplexing consequence of the non-uniqueness of state 
variable models that the semantics properties of knowledge representation are sure to raise in 
Critical psychophysics. This one promises to catch the Critically unprepared researcher entirely 
with his ontologically-centered mainsheets unbelayed and with the force of a gale. It is an issue 
that goes straight to the heart of Grossberg's last sentence above. The issue is objective time.  

Almost everyone, including physicists who ought to know better if they had actually studied 
Einstein's relativity papers, reifies objective time. It is treated as if it were a real-thing-in-nature 
rather than the purely mathematical object that it is. It is true that physicists, since the discovery 
of quantum electrodynamics theory, now treat objective time as an object that can just as well 
"run backwards" from "future" to "past" as in the other direction. But instead of taking this as a 
clue pointing squarely at the epistemological Nature of objective time, they instead engage in 
speculative fantasies regarding this "nature of time per se." As Einstein pointed out in 1905, 
objective time is a matter of measurement convention and not an object of possible experience. 
The Existenz of objective time is determined by clocks and practical measurement procedures.  

Objective time has no appearances other than the mathematical ones that spring from these 
conventions. The very act of making a parástase of an object named "time" brings this object 
entirely under the laws that govern objective validity in Critical epistemology. Suppose you were 
to construct a somatic state space model X as per figure 1. You would very likely incorporate 
"time" into that model in its usual "one-dimensional" form and, again most likely, make it an 
"arrow" pointing "into the future" from "right now." And there is nothing wrong with this unless 
you should happen to be working with what system theorists call the "backwards in time" 
problem. Here's what will happen when you then turn to modeling noetic state space Y in figure 
1: You will be immediately confronted with the fact that, in regard to nous, it is objectively 
necessary for objective time to be represented as a timescape; noetic objective time cannot be 
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one-dimensional because if it is so depicted then it is impossible for H. sapiens to represent 
objects of appearance in the way that we do come to know experience [Wells (2006), chap. 21]. If 
you liked Einstein's relativity of objective time, you should love mental physics' relativity of 
objective time. If not . . . well, there's always laboratory work to be done in biology.  

We are thus confronted straightaway with the fact that mathematical parameterization of order 
relationships will not be the same for the noetic state space model as for the somatic state space 
model. And this isn't even just a simple matter of "time scale." The tnous and tsoma secondary 
quantities are unlikely to have the same number of mathematical dimensions in their respective 
depictions. Principal quantities of objective time must, of course, be homeomorphic, but these 
quantities will, as Einstein said they must, come down to the processes that determine them.  

Fortunately, the possibility of concordance between the principal quantity (or quantities) of 
mathematical somatic objective time and noetic objective time is guaranteed a priori for any 
objectively valid model of somatic time. This is because all objective ideas of mathematical time 
owe their transcendental point of origin to the same source, namely the synthesis of the pure 
intuition of subjective time in the synthesis of sensibility of nous. This synthesis is the synthesis 
of mathematical ordering structures [Wells (2009), chap. 3 §3] and mathematical representation 
of noetic objective time is merely a parástase (depiction) of this process.  

Figure 16 illustrates a representative timescape structure making an objective depiction of 
order structuring in nous synthesized in the pure intuition of subjective time. Moments in time are 
specific markings of depictions of intuitions24. Multiple timelines in a timescape arise from the 
presentation in sensibility of a manifold of intuitions. Unity of this manifold is effected by the 
affective perceptions that span the multiplicity of possible timelines in the timescape. A classic 
one-dimensional "time line" is, mathematically, a set membership solution set comprised of 
timescape points spanned by their common affectivity. This guarantees the possibility of a 
homeomorphism between principal quantities of noetic and somatic objective time. The depiction 

 

Figure 16: Illustration of a timescape in the synthesis of the intuition of time in nous. The depiction is 
necessarily an objective depiction and, therefore, an illustration of objective noetic time. A moment in time 

is the marking of the perception of an intuition by the process of reflective judgment. Black dots denote 
intuitions, colored ovals denote affective perceptions spanning the multiple timelines contained in a 

timescape. The dotted box denotes a submanifold in time bounded by intuitions si and sm. A moment in 
subjective time "grows out of" its direct cover (predecessor) moment in time in the synthesis of subjective 
time. Affective perceptions have the mathematical effect of defining solution sets that stand as principal 

quantities for a classic one-dimensional objective timeline. The computer analogy here is clock distribution. 

                                                 
24 An intuition is an objective perception. 
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of noetic objective time (which is a spatio-temporal depiction because it is the depiction of a 
mental object) has the logical momenta structure {universal, infinite, categorical, necessary}. It is 
interesting to compare this with the logical momenta of a mathematical depiction of the structure 
of subjective space, which is {universal, infinite, disjunctive, necessary}. The pure intuition of 
subjective space is a synthesis of topological structuring [ibid., chap. 3 §2].  

Another issue I want to touch on here is the issue of progressive coordination of different 
topological spaces to eventually put together a unitized topological somatic space-time system. 
As noted earlier, the infant's earliest mental constructions of space-time-object representations are 
initially uncoordinated, i.e., sensorimotor schemes for the different sensory modalities in external 
sense are initially developed in their own distinct semantic space-times. Thus, e.g., vision and 
prehension are initially uncoordinated by common schemes. Empirical evidence gathered from 
studies of early development of sensorimotor intelligence in children supports this theorem of 
mental physics [Piaget (1954)].  

The infant gradually comes to be able to coordinate his divers sensorimotor schemes because 
of two practical factors. The first is that different sensorimotor schemes initially involve a 
syncretic object representation, denoted Obs.OS, in which the infant's actions (S) and the object 
upon which he acts O (both as viewed by the psychologist-observer) are fused in single clear but 
indistinct objective perceptions. However, different schemes, S1 and S2, acting upon the same 
external object, O, contain materia of depictions in mental representation capable of serving as a 
minimal practical point of intersection. Mathematically, this is to say Obs.S1O ∩ Obs.S2O = 
Obs.SmO where Sm denotes whatever intuitive parástase of objective perceptions is common to 
both S1 and S2. This makes two things possible: (1) the eventual distinction of the phenomenal 
object, Obs.O in Piaget-like Type II interaction structures; and (2) the development of what 
Piaget called mobile schemes, Obs.Sm, as distinctive sensorimotor schemes that can subsequently 
be more globally applied as part of the child's practical assimilation of new objects.  

Mathematically and semantically, this process is one of coming to coordinate and integrate the 
initially diverse topological space-times of knowledge representation. The Organized Being does 
not lose any of its previous capacities for assimilation during this unitizing synthesis. The process 
of accommodation is conservative in this regard, a point Grossberg stressed using different words 
in Grossberg (1976) and which is a fundamental mathematical principle of ART research.  

Like every semantic synthesis, this synthesis process is essentially practical, i.e., is based on 
action schemes and interactions among action schemes. Within nous this corresponds to the 
process of judgmentation [Wells (2009), chap. 9] and the synthesis of the motivational dynamic 
[ibid., chap. 10]. Its appearance on the side of soma is exhibited by schemes of behavior 
indicative of the coordination of interacting Piagetian schemes [Piaget (1975)]. Figure 17 
provides a schematic illustration of how the Organized Being is able to carry out this practical 
synthesis. The OB becomes capable of coordinating two diverse semantic space-time structures 
only when each has developed to the point where interactions of the sort Piaget termed "Type II" 
are possible for it. Practical sensorimotor interactions between the semantic space-time structures 
is then and only then possible for the OB to carry out. The very same central process of practical 
equilibration that synthesizes higher and better levels of equilibrium within an individual space-
time structure is also the central process that makes this coordination and unification possible.  

This is a basic metaphysical rudiment for Critical psychophysics. Knowledge development is 
an essentially practical process that Piaget described as "proceeding from the periphery to the 
center," i.e., from pursuit of a practical goal to conceptualization and understanding (cognizance) 
[Piaget (1974), pp. 332-337]. Elsewhere Piaget described in Kant-like language the effect of this 
process as bringing on "a kind of Copernican revolution" in the child's development of 
intelligence [Piaget (1975), pp. 87-88].  
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Figure 17: Schematic illustration of the synthesis of unified semantic space-time structures through the 
practical exercise of sensorimotor scheme interactions. Isolated semantic space-times become capable of 

being synthesized into a unified topological space-time system once the more primitive space-time systems 
are developed to the point where Piaget-like Type II interaction structures have been formed in the OB's 

practical manifold of rules and supported by concepts in its manifold of concepts. 

All of this, then, is the objective for theory and model development in Critical psychophysics. 
The theory is (or, more accurately, will be) mathematical and grounded in the topology of Critical 
semantics discussed in this series of papers. There remains uncovered here only better 
clarification of methodological details of how one can carry out this empirically-based scientific 
work. That topic is beyond the scope of the present series of papers, but stating clearly a 
connection pathway to it is not. The foundation is embedding field theory supported by 
mathematical topology theory and graph theory. Practical methods employed in systematic neural 
network theory present what I see as the best presently known starting point for theory and model 
development provided that methodology is brought under the discipline of the set membership 
paradigm (a constraint necessary for producing mathematical principal quantities). There are 
numerous technical tools system theory has developed over the years, including but not limited to 
the subdisciplines of system identification theory, estimation theory and set membership based 
optimization theory, and implemented using, e.g., Hamilton-Jacobi-Bellman optimization and the 
techniques of dynamic programming [Werbos (1997)].  

As a final recommendation for pragmatic tactics, I cannot improve upon a sage method stated 
long ago by Grossberg, which he named the method of minimal anatomies:  

 The theory introduces a particular method to approach the several levels of description 
that are relevant to understanding behavior. This is the method of minimal anatomies. At 
any given time, we will be confronted by particular laws for individual neural components, 
which have been derived from psychological postulates. The neural units will be inter-
connected in specific anatomies. They will be subjected to inputs that have a psychological 
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interpretation which create outputs that also have a psychological interpretation. At no 
given time could we hope that all of the more than 1012 nerves in a human brain would be 
described in this way. Even if a precise knowledge of the laws for each nerve were known, 
the task of writing down all the interactions and analyzing them would be bewilderingly 
complex and time consuming. Instead, a suitable method of successive approximations is 
needed. Given specific psychological postulates, we derive the minimal network of 
embedding field type that realizes these postulates. Then we analyze the psychological and 
neural capabilities of this network. An important part of the analysis is to understand what 
the network cannot do. This knowledge often suggests what new psychological postulate is 
needed to derive the next more complex network. In this way, a hierarchy of networks is 
derived, corresponding to ever more sophisticated postulates. [Grossberg (1972)]  

To this practical prescription I have not one more word to add except: it must all take its basis for 
objective validity from mental physics.  
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