Traction Control

Nick Carter
Brian McConnel
Kellee Korpi

Background
- Annual FSAE competition
- UI team placed 54th out of 123 in 2003
- 2003 winning team implemented a traction control system

Objectives
- Improve acceleration at start up
- Maintain control when exiting corners
- Decrease race time
- Improve race standing

Procedure
- Select allowable slip percent
- Measure wheel velocities
- Compare velocities to analyze slip
- Determine if action is required
- Cut engine power if appropriate
System Overview

- Sensor
- User Control
- Data Acquisition Unit (DAU)
- Engine Control Unit (ECU)
- Wheel Velocities
- Engine Micro Controller

User Control

- System Override (On/Off)
- Adjustable Slip Percentage
- Indicator lights

Graph:

- Friction u vs. Slip ($\%$)
- Speed: 30km/h

- Lines:
 1. Dry, Tread Depth 2mm
 2. Wet, Tread Depth 2mm
Inductive Sensors

- Measure wheel velocity
- Durable: vibrations, etc.
- Perform in dirty environment
- Non-contact
- Preferably run on DC voltage
- Tolerate angular velocities of approximately 20 rev/sec

Inductive Sensors

- Inductive vs. photoelectric and capacitive sensors
- How inductive sensors work

Inductive Sensors

- Measure wheel velocity
- Durable: vibrations, etc.
- Perform in dirty environment
- Non-contact
- Preferably run on DC voltage
- Tolerate angular velocities of approximately 20 rev/sec

Inductive Sensors

- Inductive vs. photoelectric and capacitive sensors
- How inductive sensors work
Inductive Sensors
- Toothed wheel (to be made)
- Tire diameter: 20 in.
- Teeth: 6–10

Microcontroller
- Easy to program
- Real time control
- Expandable
- Modifiable functionality
- Operate in a harsh environment
- Analog outputs
Microcontroller

- Rabbit RCM3110
 - Clock Speed: 29.4 MHz
 - Memory: 256k (Flash)
 - I/O ports: 54
 - Inputs: 5V tolerant
 - PWMs (built in): 4

Operating temperature:
- -40°F – 185°F
- Humidity: 5 – 95% (non-condensing)
- Battery backup
- Power: 3.3V DC

Microcontroller

- Control algorithm
 - User control
 - Input signals: 4
 - Possible methods of control: 3
 - Real time response
 - Analog output
Power Supply

- Input Voltage AC/DC
- Rectifier Circuit
- 5V Switching Regulator
- Power Filter Circuit
- Linear Regulator
- 5V DC
- 3.3V DC

Engine Control Unit

- Performance Electronics, Ltd.
 - PE-ECU-1
- Inputs: 3 (analog); 2 (digital)
- Input voltage range: 0–5V

- Cut Fuel
 - + Does not emit raw fuel
 - – fuel lining evaporates
 - – possible lean burn
- Cut Spark
 - + no lean burn
 - – oil lining stripped
 - – raw fuel in exhaust
Engine Control Unit

- Adjust spark timing
 - precise control
 - no lean burn
 - no raw fuel in exhaust
 - linings are not compromised
 - only works for slight slippage

Data Acquisition Unit

- Pi System 1
 - Monitors: 6 analog inputs
 - Memory: 512k
 - Possible uses: record wheel velocity; control output; slippage

System Protection

- Circuit buffers
- Vibration isolation
- Enclosure
Budget

<table>
<thead>
<tr>
<th>Part</th>
<th>Price</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>$66</td>
<td>4</td>
<td>$264</td>
</tr>
<tr>
<td>Microcontroller</td>
<td>$210</td>
<td>1</td>
<td>$210</td>
</tr>
<tr>
<td>Packaging</td>
<td>$30</td>
<td>N/A</td>
<td>$30</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$135</td>
<td>N/A</td>
<td>$135</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$639</td>
</tr>
</tbody>
</table>

Schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Scheduled Time Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Purchase</td>
<td>3/1 - 3/31</td>
</tr>
<tr>
<td>Program Development</td>
<td>3/15 - 4/30</td>
</tr>
<tr>
<td>Program Testing</td>
<td>4/7 - 5/5</td>
</tr>
<tr>
<td>Working Model</td>
<td>4/26 - 4/30</td>
</tr>
<tr>
<td>Packaging Development</td>
<td>4/22 - 10/15</td>
</tr>
<tr>
<td>System Integration</td>
<td>9/22 - 10/30</td>
</tr>
<tr>
<td>System Testing</td>
<td>10/15 - 11/15</td>
</tr>
<tr>
<td>System Revision</td>
<td>11/1 - 11/22</td>
</tr>
<tr>
<td>Final Product</td>
<td>11/29 - 12/3</td>
</tr>
</tbody>
</table>

The End