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Results: Building the Comparation network and generation of equivalence relation. 

Qualitative Modelling (Comparation Network showing a relationship). 

One view of building a neural network performing the process of comparation is to 

find a network exhibiting the relation properties: reflexive, symmetric and transitive. This is 

the view we take. This is because at the stage of the process of comparation in the 

Verstandes Actus it performs logical comparison with obscure (not conscious) parástase. 

Comparison made by identifying particular equivalence classes implies the process is 

working with conscious parástase. Thus the first postulate is, 

Proposition 1: Comparation in the synthesis of equivalence relation exhibits the reflexive and 

symmetric relations. 

 

Such a network is said to synthesize a compatibility relation. As was discussed earlier, 

comparison always involves a minimum of two items or objects. Thus, 

Proposition 2: The comparation process in Verstandes Actus involves a minimum of two 

inputs. 

 

Thus, the basic model will involve logical comparison of two inputs. For convenience 

of illustration let each input appear as a retinal-map of pixels as shown below. 

NN
Comparand 1

Comparand 2

(a) (b)

 

Figure 5.1. The basic model (a) receiving two comparands, each represented as retinal-map 

matrix sized 5 x 5. 

rwells
Typewritten Text
B. Lungsi Sharma



94 
 

The comparation process is in facet-B and hence is in the mathematical domain. The 

neural network behavior determines the relationship but does so without any a priori 

objective knowledge. Hence, the determination (relationship or not) is made by feature 

definer and detector which is automatically generated. We do not build them into the model. 

Hence the third postulate is, 

Proposition 3: Comparation compares features that are dynamically generated axiomatic 

features. 

 

It was mentioned earlier that the comparation process works with obscure parástase 

(input) and its determination (output) is also an obscure parástase. TRJ (teleological 

reflective judgment) judges expedience. This gives us, 

Proposition 4: The process of comparation is judged expedient when the act is not contrary to 

the categorical imperative, which regulated to achieve a state of equilibrium. 

 

During the process of comparison when the neural network model reaches a 

reverberating or resonant state, we will say the model is in steady-state condition. We will 

consider a neural network in such a state to be in equilibrium and hence may be judged 

expedient. 

In embedding field theory (EFT) there is a family of known and also yet to be 

discovered neural networks which can reach a resonant state [Wells, 2010]. They are called 

adaptive resonance theory (ART) networks. A typical anatomy of an ART resonator (ART-

R) is shown in figure 5.2a. Based upon this basic anatomy the network model has two 

resonators, such that each receives a respective input element. Hence, the model receives two 
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comparands (Fig.5.2b). However, for the process of comparation the two basic anatomies 

must interact and hence cannot be isolated subsystems (Fig.5.2c). Thus, 

Proposition 5: The sub-processes for respective comparands are united within the process of 

comparation. 

 

 

Figure 5.2. Illustration of the evolution from the basic ART-R (a) to the minimal neural 

network (d). 

The basic ART-R (a) has a normalizer layer which then sends normalized inputs to the v1 

layer. The v1 and v2 layers interact such that the nodes in v2 layers receives instar weights 

(W) and send out outstar weights to v1 layer. The interaction therefore plays a major role in 

achieving resonance. 

Each ART just receiving respective comparand input (b) is insufficient. (c) Shows one 

approach to interaction between the two sub-networks. Here, the outstar-weighted output of 

the v2 layer of a sub-network feeds into the v1 layer of the other sub-network. 

The comparation network is judged for expediency by interacting with M layer. Thus, this 

addition in the network proxies for part of TRJ. This also means that nous-soma connection 

is made. It should be noted that MA and MB are not motor responses but thought of as pre-

motor images. 

 

An obvious question for the above model is “how do we know that the process of 

comparation is expedient?” The model must have this property for at least two reasons. 

Firstly, since expediency is a judicial imperative the determination (relationship) by 
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comparation will have no practical purpose if it is not expedient. Secondly, this is judged by 

TRJ which is a mediator between nous and psyche co-organizations. This means that the 

model must have link to motoregulatory expression. Thus, 

Proposition 6: The process of comparation is judged by TRJ (teleological reflective 

judgment). 

 

In the model (Fig.5.2c) the judgment for resonance and hence expediency is evaluated 

by the addition to two more fields (Fig.5.2d). These additions are proxies for motoregulatory 

emotivity such that when they reach steady-state the process of comparation may be judged 

expedient. It should be noted that there is no longer a clear distinction between the process of 

comparation and the ability to judge expediency (a functional part of TRJ). 

Comparation is a process within sensibility but sensibility does not judge, does not 

confuse and does not deceive [Kant, 1798]. Recall that the synthesis in sensibility is 

transcendental, i.e., necessary for the possibility of experience. Thus the activities of the 

motor end of the network do not represent motor response of the OB but are akin to pre-

motor activities. We may therefore consider that if the steady-state values of the pre-motor 

responses are within a solution set, the comparands have a relationship. Thus, 

Proposition 7: The relationship determined by comparation is practical in the sense that it is 

not contrary to the OB’s categorical imperative. 

 

Thus meaning of the determined relationship is purely practical. 
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Figure 5.3. A more detailed view of the minimal neural network (Fig.5.2d). The illustration 

shows the connection of a single node in each layer. Given a retinal-map matrix sized 2 X 2, 

the first pixel excites (solid line) the first GN2 node but inhibits (dashed lines) other nodes (of 

respective sub-network). The first v1 node (SNI4) then receives excitatory inputs from the 

first normalized input and outstar-weighted output of all v2 nodes (other sub-network) with 

gain γ (solid blue line). The inhibition (dashed line) is the sum of these un-weighted v2node 

outputs. 

The first v2 node (SNI3) receives excitatory inputs from instar-weighted output of all v1 

nodes (same sub-network), outstar-weighted output of all M nodes within the same sub-

network (solid blue line) and from itself passed through the activation function (f( · )). The 

rest of the v2 nodes within the same sub-network passed through f( · ) are added to form the 

inhibitory input to the first v2 node. 0-1 distribution is enforced for v2 layer. 

The first M node is the same kind of SNI3 as the v2 nodes but without 0-1 distribution. Thus, 

its excitatory and inhibitory inputs follows a similar pattern as above but with different 

connectivity. The node does have any excitatory input from outstar-weighted output. 

Note that x’s and weights w’s or z’s are labeled the same for each layer for simplicity. 

However, they are quantitatively different and hence don’t represent for instance the same 

excitation. 
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Quantitative Model (Comparation) 

The quantified (detailed) view of the figure 5.2d is shown in figure 5.3. The ART 

network has nodes which in general are called shunting node instars (SNI). There are 

numerous types of SNI’s, each having a different behavior from another [Wells, 2010]. This 

is consistent with EFT and MMA. The general description is given above (Fig. 5.3). Below 

are the mathematical expressions specific to the model. 

The inputs or comparands are first normalized by normalizers called a Grossberg 

Normalizer-2 (GN2) [Wells, 2010]. The practical importance of having a normalizer in ART 

networks is elaborated in Wells’ text [Wells, 2010]. The ith GN2 node is given by the 

differential equation, 

𝑥̇𝑖
GN = −𝐴𝑜𝑥𝑖

GN + (𝐵𝑜 − 𝑥𝑖)𝐼𝑖 − (𝐶𝑜 + 𝑥𝑖
GN)∑ 𝐼𝑘∀𝑘≠𝑖 , 

 

where, 𝐴𝑜, 𝐵𝑜 and 𝐶𝑜are non-zero parameters such that, 𝐵𝑜 = (𝑛 − 1)𝐶𝑜. As mentioned 

above the comparand is a retinal-map and hence they are matrix of 𝐼𝑖 pixels. There is a 

corresponding GN2 node for each pixel. This means there will be a total of n GN2 nodes for a 

retina matrix of a rows and b columns (n = a · b). In the above equation, 𝐼 =  ∑ 𝐼𝑘∀𝑘  and 

𝜔𝑖 =
𝐼𝑖

𝐼
.  

The normalized inputs are then received by respective v1 layer. Like the normalizer 

layer the v1 layer has n nodes. This layer is comprised of SNI’s called SNI4 [Wells, 2010]. 

It’s ith node is given by, 

𝑥̇𝑖
v1 = −𝐴1𝑥𝑖

v1 + (𝐵1 − 𝑥𝑖
v1)𝐽𝑖

+ − (𝐷1 + 𝑥𝑖
v1)𝐽−, 
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where, 𝐴1, 𝐵1 and 𝐷1 are non-zero parameters. The excitatory 𝐽𝑖
+and inhibitory 𝐽− inputs are 

given by, 

𝐽𝑖
+ = 𝑥𝑖

𝐺𝑁 + 𝛾𝑍v2 to v1[𝐱⃗ 
v2]+   and    𝐽− = ∑ [𝑥𝑘

v2]+∀𝑘 , 

 

where, γ is a non-zero parameter. The Heaviside extractor [ ∙ ]+is given by, 

[𝐻]+ = {
𝐻 𝑖𝑓 𝐻 ≥ 0
0 𝑒𝑙𝑠𝑒         

. 
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Figure 5.4. Illustration of instar (W) and oustar (Z) weights. Notice that the first row 

elements of W matrix corresponds to instar weights going into first v2 node (blue). But first 

column elements of Z matrix corresponds to outstar weights going out of the first v2 node. 

 

𝑍v2 to v1 is the outstar weight matrix from v2 layer to v1. They go hand in hand with the 

instar weight matrix from v1 to v2, 𝑊v1 to v2 (Fig.5.4). They are given by the form, 

𝑊v1 to v2(𝑡 + 1) = 𝑊v1 to v2(𝑡) − 𝜂 ∙ [(𝑊v1 to v2(𝑡) − [𝐱⃗ 
v1T]+) ∙ [𝐱⃗ v2]+] and 

𝑍v2 to v1(𝑡 + 1) = 𝑍v2 to v1(𝑡) − 𝜂 ∙ [(𝑍v2 to v1(𝑡) − [𝐱⃗ 
v1]+) ∙ [𝐱⃗ v2]+], 

 

where, η is the adaptation parameter. The property of outstar weights in an ART network is 

that, the weights from the winning v2 nodes is an exemplar of the input. 

The nodes in the v1 layer interact with v2 layer nodes. But unlike the v1 layer, the 

number of nodes in v2 is not restricted by the size of the retina matrix. This also means that 
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the number of nodes in the succeeding M layer is unrestricted. SNI3 was chosen for the v2 

nodes. They are expressed by, 

𝑥̇𝑖
v2 = −𝐴2 + (𝐵2 − 𝑥𝑖

v2)𝜉𝑖
𝐸𝑥 − (𝑥𝑖

v2 + 𝐷2)𝜉𝑖
𝐼𝑛, 

 

where, 𝐴2, 𝐵2 and 𝐷2 are non-zero parameters. The excitatory 𝜉𝑖
𝐸𝑥 and inhibitory 𝜉𝑖

𝐼𝑛 inputs 

are given by, 

𝜉𝑖
𝐸𝑥 = 𝑊v1 to v2 ∙ [𝐱⃗ 

v1]+ + 𝑍M to v2 ∙ [𝐱⃗ 
M]+ + 𝑓(𝑥𝑖

v2) and 

𝜉𝑖
𝐼𝑛 = ∑ 𝑓(𝑥𝑘)∀𝑘≠𝑖 . 

 

It has been observed that adaptation in most ART networks necessitates a 0-1 distribution in 

the v2 layer [Wells, 2010]. Therefore, a 0-1 distribution is enforced for the vector, 𝐱⃗ v2 and 

the winning v2 node controls network adaptation. 

The function 𝑓( ∙ ) is called the activation shape function. It is given by, 

𝑓(𝑦) =  

{
 
 

 
 0        𝑖𝑓 𝑦 < 0

𝜆 ∙ 𝑦      𝑖𝑓 𝑦 ≤ 𝑢(1)

𝑔𝑚𝑎𝑥 ∙ 𝑦           𝑖𝑓 𝑢
(1) < 𝑦 ≤ 𝑢(2)

𝑔𝑚𝑎𝑥 ∙ 𝑢
(2)                   𝑖𝑓 𝑦 > 𝑢(2)

. 

 

where u(1) and u(2) are parameters for the activation shape function. The contrast enhancement 

capability of some ART networks may attenuate the absolute levels of xi signals. Proper 

scaling will not alter the performance of the network apart from limiting the attenuation of 

the absolute levels [Wells, 2010]. Using the 𝐵 parameter as the reference this is done here as, 

𝑔𝑚𝑎𝑥 = 𝐵 ∙ 𝑔𝑚𝑎𝑥
𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑, 

𝑢1 =
(𝐵−

𝐴

𝑔𝑚𝑎𝑥
)

(1−
𝐴

𝑔𝑚𝑎𝑥
)
∙ 𝑢𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑

1 , 
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𝑢2 = 𝐵 ∙ 𝑢𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑
2   and 

𝜆 =
𝑔𝑚𝑎𝑥

𝑢1
. 

 

where, 𝑔𝑚𝑎𝑥
𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑, 𝑢𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑

1  and 𝑢𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑
2  are the unscaled parameters. 

The nodes for the M layer use SNI3 and hence is similar to the v2 layer. However its 

parameters may be different and because the connections are different the expression of 

excitatory and inhibitory input are different. 

Therefore, the minimal neural network is given by, 

𝑥𝑖
M6(𝑡 + ℎ) = [1 − ℎ ∙ (𝐴M + 𝜉𝑖

𝐸𝑥_M6 + 𝜉𝑖
𝐼𝑛_M6)] ∙ 𝑥𝑖

M6 + ℎ ∙ (𝐵M ∙ 𝜉𝑖
𝐸𝑥_M6 − 𝐷M ∙ 𝜉𝑖

𝐼𝑛_M6), 

𝑥𝑖
M5(𝑡 + ℎ) = [1 − ℎ ∙ (𝐴M + 𝜉𝑖

𝐸𝑥_M5 + 𝜉𝑖
𝐼𝑛_M5)] ∙ 𝑥𝑖

M5 + ℎ ∙ (𝐵M ∙ 𝜉𝑖
𝐸𝑥_M5 − 𝐷M ∙ 𝜉𝑖

𝐼𝑛_M5), 

𝑥𝑖
v2_4(𝑡 + ℎ) = [1 − ℎ(𝐴2 + 𝜉𝑖

𝐸𝑥_4 + 𝜉𝑖
𝐼𝑛_4)]𝑥𝑖

v2_4 + ℎ(𝐵2𝜉𝑖
𝐸𝑥_4 − 𝐷2𝜉𝑖

𝐼𝑛_4), 

𝑥𝑖
v2_3(𝑡 + ℎ) = [1 − ℎ(𝐴2 + 𝜉𝑖

𝐸𝑥_3 + 𝜉𝑖
𝐼𝑛_3)]𝑥𝑖

v2_3 + ℎ(𝐵2𝜉𝑖
𝐸𝑥_3 − 𝐷2𝜉𝑖

𝐼𝑛_3), 

𝑥𝑖
v1_2 =

𝐵1𝐽𝑖
+−𝐷1𝐽

−

𝐴1+𝐽𝑖
++𝐽−

    and 

𝑥𝑖
v1_1 =

𝐵1𝐽𝑖
+−𝐷1𝐽

−

𝐴1+𝐽𝑖
++𝐽−

. 

 

Rather than numerically solving difference equations, steady-state solution is used for 

the v1 layer. This is because the v1 layer in ART is considered to be faster than v2 layer. The 

weights (instar & outstar) for interaction between v1 – v2 and v2 – M are adaptive. The 

respective expressions for the excitation and inhibitory inputs are, 

𝜉𝑖
𝐸𝑥_M6 = 𝑊v2_4 to M6 ∙ [𝐱⃗ 

v2_4]+ + 𝑓(𝑥𝑖
M6),     𝜉𝑖

𝐼𝑛_M6 = ∑ 𝑓(𝑥𝑘
M6)∀𝑘≠𝑖 ; 

𝜉𝑖
𝐸𝑥_M5 = 𝑊v2_3 to M5 ∙ [𝐱⃗ 

v2_3]+ + 𝑓(𝑥𝑖
M5),     𝜉𝑖

𝐼𝑛_M5 = ∑ 𝑓(𝑥𝑘
M5)∀𝑘≠𝑖 ; 

𝜉𝑖
𝐸𝑥_4 = 𝑊v1_2 to v2_4 ∙ [𝐱⃗ 

v1_2]+ + 𝑍M6 to v2_4 ∙ [𝐱⃗ 
M6]+ + 𝑓(𝑥𝑖

v2_4) ,     𝜉𝑖
𝐼𝑛_4 = ∑ 𝑓(𝑥𝑘

v2_4)∀𝑘≠𝑖 ; 

𝜉𝑖
𝐸𝑥_3 = 𝑊v1_1 to v2_3 ∙ [𝐱⃗ 

v1_3]+ + 𝑍M5 to v2_3 ∙ [𝐱⃗ 
M5]+ + 𝑓(𝑥𝑖

v2_3) ,     𝜉𝑖
𝐼𝑛_3 = ∑ 𝑓(𝑥𝑘

v2_3)∀𝑘≠𝑖 ; 
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𝐽𝑖
v1_2+ = 𝑥𝑖

GN_P2 + 𝛾𝑍v2_3 to v1_2[𝐱⃗ 
v2_3]+,    𝐽v1_2− = ∑ [𝑥𝑘

v2_3]
+

∀𝑘    and 

𝐽𝑖
v1_1+ = 𝑥𝑖

GN_P1 + 𝛾𝑍v2_4 to v1_1[𝐱⃗ 
v2_4]+,    𝐽v1_1− = ∑ [𝑥𝑘

v2_4]
+

∀𝑘 . 

 

Finally the normalization is done only once for a given pattern. Thus its steady-state 

form is, 

𝑥𝑖
GN_P1 =

𝑛𝐶𝑜𝐼

𝐴𝑜+𝐼
(𝜔𝑖 −

1

𝑛
)   and    𝑥𝑖

GN_P2 =
𝑛𝐶𝑜𝐼

𝐴𝑜+𝐼
(𝜔𝑖 −

1

𝑛
). 

 

The synthesis of sensibility is the noetic process that synthesizes apprehension in 

consciousness. Thus the OB has no conscious experience of these acts of synthesis. In other 

words, comparation does not have memory. Weight changes in W and Z are elastic 

modulations. This implies, 

Proposition 8: The process of comparation does not remember its past actions. 

 

Hence, the states of the instar and outstar weights of the above minimal neural network are 

not stored for succeeding acts of logical comparison. Therefore this network does not have 

the problem of stability-plasticity trade-off encountered in some ART networks [Wells, 

2010]. 

Behavior of the proposed minimal neural network. 

A set of uppercase English letters was used for observing the behavior of the network 

(Fig.5.5). The parameters used in the simulation are shown in figure 5.6. The set-membership 

paradigm was employed to consider whether the network determines a relationship between 

alphabets (or patterns). Thus identification of feasible set solutions rather than a single 

“point” solution is considered. 
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Figure 5.5. Set of upper-case English letters used for observing the network behaviors. Each 

alphabet is represented by the respective placement of 1’s in a background of 0’s. 
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Figure 5.6. Parameters for the simulation. For a particular pattern-combo, the two desired 

patterns are chosen by entering their indices ranging from [1, 26] (Fig.5.5). The respective 

parameters are then entered. Note that g in v1 stands for gamma (Fig.5.3) and the activation 

function parameters are the unscaled values. The scaling is done as described above within 

the main code. Both the sub-networks have same parameter values. 

Though the weights of the network are not stored they are initialized for each run of pattern-

combo. This is done by setting the outstar weight matrix elements at zero but the elements of 

the instar weight matrices are set at some very small (non-zero) random real number. The 

latter amount is given by initialization scale. 

As governed by the functional principles of ART networks [Wells, 2010], weight adaptation 

occurs after resonance of the network. 

Finally, the time-step for the difference equations was chosen to be 0.01 and simulation was 

done for 10,000 iterations. 
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Network testing involved pattern-combos (two patterns in a combo such that each 

pattern is picked from the set of letters (Fig.5.5)). It was found that the network determined 

relationships between some patterns and not for others. We say that the network determines a 

relationship between the patterns if the steady-state value (final iteration) of the M layer 

outputs fall within the same solution set. 

Figures 5.7 and 5.8 show that relationship was found between patterns H and I. The 

first figure, with same graduation on the ordinate, demonstrates the relative difference in the 

activity of a particular node of respective layer. The shape of each activity is accentuated in 

the second figure, which no longer has the same graduations along the ordinate (unscaled). 

However determination of relationship depends on the expediency judged by TRJ and so the 

region of interest is the steady-state levels of the M-layer outputs. The output level in both 

figures indicate that they fall within the solution-set. This is confirmed further in the table 

inset of figure 5.8 showing the magnitude of the steady-state node activity for all the four 

nodes in respective M-layer. 

Figure 5.9 shows that the network has the ability of finding no relationship between 

patterns (B and R in this particular case). Notice that the plots have different graduations 

along the ordinate.  The inset table confirms that the steady-state M-layer outputs are not 

within the solution-set. It shows that the steady-state M-layer output for the right sub-

network (receiving pattern R) is about 2 x that of the left sub-network (receiving pattern B). 

For the sake of consistency the time-series figure will show plots with different 

graduation scales along the ordinate. The determination of whether the M-layer outputs fall 

within a solution-set may be confirmed from the inset table. 
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Figure 5.7. Time-series (scaled) plot for patterns H (left sub-network) and I (right sub-

network). Scaled implies that the plots have same graduation in the ordinate. This plot shows 

the response magnitudes between layers in the top (left column) an bottom (right column) 

sub-networks. 
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Figure 5.8. Time-series (unscaled) plot of Fig.5.7. Notice that the graduation in the ordinate 

are no longer the same. This shows the plot of 1st v1 nodes, 2nd v2 (winner, left sub-network), 

1st v2 (winner, right sub-network) and 1st M nodes. The table in the bottom sub-plots shows 

the steady-state (at 10,000 iteration by entering it in the edit box) of the 4 nodes in respective 

M layer. 
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Figure 5.9. Time-series (unscaled) plot for patterns B (left sub-network) and R (right sub-

network). This shows the plot of 1st v1 nodes, 2nd v2 (winner, left sub-network), 1st v2 

(winner, right sub-network) and 2nd & 1st M nodes. The table in the bottom sub-plots shows 

the steady-state (at 10,000 iteration by entering it in the edit box) of the 4 nodes in respective 

M layer. 
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Figure 5.10. Normalized patterns (A to M) of Fig.5.5. 
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Figure 5.11. Normalized patterns (N to Z) of Fig.5.5. 
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The network can therefore demonstrate relationship between some patterns and non-

relationship for others. But how does it do it? In other words, what is it that the network 

considers “features” and thereby recognizes a common feature among patterns shown to have 

a relationship? 

Figure 5.10 and 5.11 shows the normalized patterns (of Fig.5.5). They are therefore the 

normalized input to the network. The figures shows that the patterns H and I determined to 

have a relationship (Fig.5.8 & 5.7), have the same Hamming weight of 13 non-zero pixels. 

However, patterns B and R, shown not to have a relationship (Fig.5.9), have different 

Hamming weights, 17 and 16 respectively. Does this therefore mean that Hamming weights 

are a measure of feature detected by the network for considering relationships between 

patterns? 

Network output for patterns L and R shows a relationship between them (Fig.5.12). 

But, they have different number of pixel counts, 7 and 9 respectively. Let us define 

cumulative pixel value (CPV) to be the sum of normalized pixel values. It was observed that 

the network considers patterns to have a relationship if their CPV’s are equal. Table 5.1 lists 

the twenty-six patterns and their CPV’s. Patterns, J, T, V and X having same non-zero pixel 

counts (9) were shown to have relationships among themselves. The pattern L having a 

different non-zero pixel count (7) is also shown to have relationship with the four patterns. 

We can see from table 5.1 that, these five patterns have the same CPV, 0.63. 

The observation was consistent with other patterns. We can therefore conclude that if 

two patterns have equal CPV’s, then a relationship between the patterns is shown by the 

network regardless of the location of non-zero pixels and number of non-zero pixels. 
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Figure 5.12. Time-series (unscaled) plot for patterns L (left sub-network) and M (right sub-

network). This shows the plot of 1st v1 nodes, 1st v2 (winner, left sub-network), 5th v2 

(winner, right sub-network) and 1st M nodes. The table in the bottom sub-plots shows the 

steady-state (10,000 iteration) of the 4 nodes in respective M layer. 
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0.32

0.34

0.36

0.42

0.48

0.52

0.55

0.63

0.63

0.02

0.02

0.02

0.03

0.04

0.04

0.05

0.07

0.09

16

17

18

14

12

13

11

9

7

R

B, E, S

G

D, P, Q, W

A, O

C, F, H, I, M, N, U, Z

K, Y

J, T, V, X

L

Cumulative 

pixel value 

Non zero 

pixel value

Number of 

non zero 

pixels

Patterns

 

Table 5.1. Table showing the 26 uppercase English letters arranged with respect to their 

number of non-zero pixels (out of 25 pixels, 5 x 5 matrix), their normalized value (3rd 

column) and their total (4th column, CPV or cumulative pixel value). Note that for a 

particular pattern all its non-zero pixels have the same magnitude of normalized pixel value. 

 

Though CPV is a measure of feature detection by the network, are there other 

measures? In other words, can two patterns have different CPV but still be shown to have a 

relationship? The answer is yes. 

Let us consider the case such that the left sub-network receives pattern H (Fig.5.8). 

Then for the right sub-network other patterns with the same CPV (C, F, I, M, N, U, Z) are 

shown to have relationship with H. But, H (or any other patterns with same CPV) is also 

shown to have relationship with patterns with different CPV if they both have the same non-

zero normalized pixel value (Fig.5.13a). However, the network does not show relationship 

for patterns (different CPV’s) having equal non-pixel value but in the lower end of the 

normalized scale (Fig.5.13b). 
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(a)

(b)

 

Figure 5.13. Plots (unscaled) showing M layer outputs of patterns H vs. A (a) & B vs. R (b). 

The table shows that the outputs in (a) fall within a solution set while outputs in (b) differ 

amongst each other by ~ 2 x. 
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Therefore, we can conclude from observations consistent with above observations that 

the network shows relationship between patterns with same CPV. However, if the patterns 

have different CPV’s, the network may still show them to have a relationship if their non-

zero normalized pixel value is not at the lower end of the normalized scale. 

The results demonstrated above make a novel contribution of significance in ART 

network theory. The behaviors just described are emergent network properties. Nothing in 

the design of the networks explicitly inserted the relationship vs. no relationship 

characteristics just described. This means the theory did not introduce any a priori objective 

criterion for defining what the network treats as a feature for pattern matching. The 

experiments just reported are the first-ever demonstration that ART is capable of self-

defining feature sets. 

The importance of this finding must not be minimized. If a theorist deliberately 

introduces any objective character of a feature into the design of a network, this amounts to 

building objective knowledge a priori into the synthesis of apprehension. However doing so 

is a violation of an epistemological law of mental physics, which holds that human beings are 

born with no objective knowledge a priori whatsoever. It is therefore a real necessity that any 

network used in modelling the synthesis of objective perceptions (intuitions) must be capable 

of self-determining what will or will not constitute an objective feature. This work is the first 

time any neural network system has demonstrated this capacity, and this is an original 

contribution to knowledge from this research project. 

Above results describes the basic behavior of the network in terms of how pattern-

combos either have relationship or not. We must now consider the three properties required 

for generating equivalence relations, that is, reflexive, symmetric and transitive. 
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It was observed that every pattern received by the network was shown to be reflexive. 

In other words, when the left and right sub-networks received the same pattern the M layer 

output always fell within the solution-set. This behavior is due to the chosen network 

configuration. Referring back to the model (Fig.5.2d & Fig.5.3), recall that the sub-networks 

have the same architecture and parameters (Fig.5.6). Since the two similar sub-network are 

coupled by reciprocal inhibition, it is understandable that the network consistently shows that 

the relationship between patterns are reflexive. By the same argument, if a relationship is 

shows between two different patterns then this relationship is always symmetric. This 

property of the network dynamics is not a hindrance to the act of comparation because 

generation of equivalence relation is the mathematical act of comparation. 

Therefore, if two patterns are shown by the network to have a relationship then the 

relationship satisfies both reflexive and symmetric properties. These two properties can be 

therefore be realized from a single pattern-combo. In other words, the network does not have 

to process another pattern-combo such that they are of same patterns or flipped patterns. If 

the network had to process other pattern-combos composed of different patterns, it would 

mean that the realization of the two relation properties would involve a logical ordering 

process. The network however requires an ordering processing for transitivity. The above 

minimal neural network does not have this capability. 

Comparation is a process in synthesis in sensibility which in turn does not have 

memory because the obscure parástase from sensory data has not yet become a conscious or 

objective parástase. The obscure parástase exists however. Therefore, comparation has a 

‘state’. This means then, if an obscure parástase is a sequence of patterns, the comparation 
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network will be in a ‘state’ whose consequence would be, a realization (or not) of 

equivalence relation. 

One of the functions of the pure intuition of time (PIT) within the OB (Fig.3.13) is 

that it determines ‘content’ in time. In practice, this means that the PIT can determine which 

pair of elements (in a sequence) is to be processed by the comparation network. Thus we 

have, 

Proposition 9: The comparation network interacts with the pure intuition of time (PIT) such 

that the PIT determines the order of sequence of pattern pairs to be processed. 

 

Since the aim of the project is to build a comparation network generating equivalence 

relation and not build other nous processes of the OB, a PIT proxy was built (Fig.5.14). The 

PIT proxy determines the content for the comparation process by picking pattern-combos one 

at a time from the pattern sequence. Using results from the above observations that a pattern-

combo shown to have a relationship is reflexive and also symmetric, the PIT proxy picks L 

unique pattern-combos, where L is the length of a pattern sequence. 
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Process Number = p

Pattern Sequence, S = {A, B,  , Z}

Sequence Length = L

p = L

Pick indices for the pattern-combo:

P1indx = p

P2indx = p+1

Pick indices for the pattern-combo:

P1indx = 1

P2indx = L

Pick a pattern-combo:

Pattern-combo = {S(P1indx), S(P2indx)}

NO Yes

 

Figure 5.14. The pure intuition of time (PIT) proxy for determining content (pattern-combo) 

for the process of comparation network (Fig.5.3). 
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If one of the pattern-combo in the sequence is shown by the comparation network not to 

have a relationship, then there is no point for comparation to process the remaining pattern-

combos. This would mean that the M layer outputs do not fall inside the solution-set. In other 

words, the M layer outputs are not in equilibrium and hence not expedient. 

Since the PIT is a sub-process within the synthesis in sensibility (Fig.3.11 & Fig.3.13), 

like comparation the PIT is also linked to the reflective judgment (TRJ). Thus, the TRJ judge 

expediency based on the two pre-motor images and then stops the comparation process if one 

of the pattern-combo in the pattern sequence is not expedient. However, TRJ does not have 

the capability to directly stop comparation but it can make PIT be known that a pattern-

combo is not expedient. Hence, 

Proposition 10: The function of PIT determining the content of the comparation process can 

short-circuit the order of pattern-combos based on non-expediency judged by TRJ. 

 

The judging of M layer outputs for expediency was performed by a TRJ proxy for this 

particular function. Since Weber and Fechner, the concept of ‘just noticeable difference’ has 

been well known psychological phenomenon [Kendel, 2000]. Based upon this notion, the 

TRJ proxy was built by comparing the arithmetic difference of steady state (last iteration) M-

layer outputs against a parameter, δ akin to difference limen or just notifiable difference. 

Figure 5.15 shows the new minimal network model based upon the previous minimal 

anatomy (Fig.5.2d) incorporated with the PIT and TRJ proxies. Notice that this function of 

the reflective judgment is not exactly the same as judging expediency of the comparation 

network which was incorporated within the model (Fig.5.2d & Fig.5.3). 
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Figure 5.15. The minimal anatomy for generating equivalence relation. Notice that this is 

based on the previous minimal network (Fig.5.2d) with the addition of PIT proxy (Fig.5.14) 

determining the content (comparands, C1 & C2) from a sequence of patterns and also 

receives report of expediency from TRJ proxy. 

 

Behavior of the proposed minimal anatomy. 

The parameters used were the same set as earlier (Fig.5.6) with the addition of δ = 10-3, 

for the TRJ proxy. The patterns comprising any desired sequence was picked from the same 

set of upper-case English alphabets (Fig.5.5). Because normalizer parameters are the same, 

the resulting normalized inputs are also unchanged (Fig.5.10 & 5.11). 

The minimal network showed equivalence relationship for some pattern sets and not for 

others. For a pattern sequence {C, F, A, O}, the network process finds relationship between 

C & F (C α F) and so it continues for {F, A}, {A, O} and finally {C, O} (Fig.5.16). On the 

other hand, for {C, A, D, G}, the network finds C α A and proceeds to {A, D} but finds       

A α D and hence stops the process (Fig.5.17a). This short-circuiting of the process is also 

seen in pattern sequence {B, D, E, P, S, G}, where the process stops at {B, D} (Fig.5.17b). 

Notice that, if the pattern sequence was composed only of either {B, E, S} or {D, P} the 

network would continue the process and find relationship among the respective patterns 

(Fig.5.18). 
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C F

F A

A O

C O

 

Figure 5.16. Plots (unscaled) showing M layer outputs for respective pattern-combos in the 

pattern sequence {C, F, A, O}. From the top, the network proceeds from {C, F} and then   

{F, A}, {A, O} and finally {C, O}. Here all the patterns are shown to have a relationship. 



122 
 

C A

A D

(a)

B D
(b)

 

Figure 5.17. Plots (unscaled for (a), scaled for (b)) showing M layer outputs for respective 

pattern-combos in pattern sequence {C, A, D, G} for (a) and {B, D, E P, S, G} for (b). In (a) 

the network finds relationship in {C, A} and {A, D} but not in {D, G} and hence stopped for 

{C, G}. In (b) the network stops after {B, D}. 
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B E

E S

B S

D P

(a)

(b)

 

Figure 5.18. Plots (unscaled) showing M layer outputs for respective pattern-combos in 

pattern sequence {B, E, S} for (a) and {D, P} for (b). Notice that the patterns in both these 

sequences are the same as the sequence for Fig.5.17b. In this case however, patterns in both 

the sequences are shown to have a relationship. 
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These demonstrations do not strictly show the complete synthesis of an equivalence 

relation. To do that transitivity would have to be demonstrated over the whole of the 

candidate set of patterns. For instance, demonstrating transitivity for the set {C, F, O, A} 

requires, in addition to the demonstration of figure 5.16, that the following pairs have the 

same relationship: 

C → O, 

F → A. 

 

However, recall that if a relationship is found between patterns then as a dynamic 

property of the network, the relationship is reflexive and also symmetric. Thus for the pairs 

that have been shown to have the same relationship (Fig.5.16), due to the property of the 

network dynamics, the following pairs will also have the same relationship: 

C ← F (since, C → F), 

F ← O (since, F → O), 

O ← A (since, A → O), and 

C ← A (since, C → A). 

 

In other words, the relationship in the pattern-combos implies that the patterns are 

interchangeable, i.e., C & F are interchangeable and F & O are interchangeable. Thus, the 

following pairs will have the same relationship: 

C → O (since, F ← O), and 

F → A (since, C → F), 

 

Simulations (figure not shown) of these pattern pairs confirm this. 
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The demonstrations provided here shows that the generation of equivalence relation by 

means of the minimal network of figure 5.15 is possible, and this is sufficient to demonstrate 

the Verstandes Actus of comparation. In this, the particular matter of equivalence is 

irrelevant, as it must be according to the laws of mental physics. 

In the OB, determination of the process of the PIT is regulated by ratio-expression from 

practical Reason acting through determining judgment (Fig.3.11). Therefore, the complete 

synthesis of objective equivalence is realized by means of the overall synthesis of 

judgmentation. 

In conclusion, the above minimal neural network (Fig.5.15) has the ability to generate 

equivalence relations. With the exception of pattern sequence length L = 2, if the network 

demonstrates relationship for the Lth process then the patterns within that sequence are 

candidates for an equivalence relation. It should be emphasized that the generation of 

equivalence relations is based on network dynamics without any ad hoc knowledge. In other 

words, the relationships are generated without introducing any a priori information about the 

patterns. 

 




