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Preface 

It is said by some that neuroscience is the science of the twenty-first century. This is a prediction with 
which the author of this textbook agrees. Neuroscience is a highly interdisciplinary science encompassing 
the biological, psychological, and mathematical dimensions involved in the study of the central nervous 
system. Additionally, it is a field that calls upon contributions from chemistry and biophysics. In a science 
with so many contributors from so many diverse specialty fields, it is crucial for students and researchers 
from the different disciplines to be able to communicate with one another and to understand at some basic 
level what colleagues from other disciplines do and what their findings imply globally for neuroscience. 
This book has been written with this in mind. It seeks to present to a broad audience the fundamentals of 
that mathematical wing of the science that has come to be called "computational neuroscience."  

In manuscript form, this book has been used as the primary textbook for a first-year graduate level 
course in computational neuroscience and biological signal processing. The target audience in this course is 
made up of students coming from backgrounds in biology, psychology, mathematics, computer science, 
and engineering. From time to time, the course has even had students from philosophy and biochemistry in 
attendance. Typically these students are well-versed in their home disciplines but find themselves strangers 
in a strange land when the topics turn to arenas outside their home disciplines. This presents certain 
challenges for the instructor since the purpose of the course is to deliver to all of these students a non-trivial 
understanding of what it is that computational neuroscientists do, how they do it, and what their results 
mean within the broader context of neuroscience in general. The topics covered in the course and in this 
book are mathematical in character, and this book seeks to present these topics at a level as accessible to 
biologists as to mathematicians. For this reason, the book has been written in such a way that no more than 
a first-year course in basic calculus is required as a prerequisite. But the general topic also necessarily 
brings in elements of biology and psychology and these, too, must be made as accessible to the 
mathematician, physicist, computer scientist, and engineer as they are to the biologist and the psychologist. 
Thus, it discusses fundamental concepts and models that have emerged from biological neuroscience and 
psychological neuroscience without presupposing or requiring prior coursework in either field as a 
prerequisite for this material. The material presented here does presuppose some prior experience in 
computer programming at an introductory level but does not require knowledge of any one particular 
computer programming language. BASIC is as adequate a preparation for this material as any of the more 
advanced programming languages would be. Knowledge of MATLAB is ideal for this material.  

Computational neuroscience is at root the art and science of modeling complex, nonlinear systems. The 
material presented here serves as a fundamental introduction to this topic. For almost all the author's 
students, the course is their first real exposure to nonlinear system theory, and for many of them it is their 
first exposure to system theory at any level. It is the nature of the modeling equations describing neuron 
and neural network models that these equations generally possess no known closed-form solution. The text 
is written in such a way as to turn this shortcoming into a virtue by focusing its attention on how to develop 
and set up model equations for computer solution. However, it does not presume any prior training in 
advanced numerical analysis methods. Instead, it uses the vehicle of the simple Euler approximation 
method, implicitly familiar to all freshman calculus students, to explain and develop the modeling 
techniques. The author's reasoning here is that of all the members of the target audience, only a fraction of 
the students will go on to actually specialize in computational neuroscience, and it can be presumed that 
these students will acquire more advanced training in numerical solution methods elsewhere in their 
studies.  

The pedagogical form of the material contained in this book is modern system theory, sometimes 
known synonymously as state-variable theory. Computational neuroscience and biological signal 
processing is inherently suited to this form of mathematics, and this mathematical form lends itself quite 
well to setting up the modeling equations for subsequent computer solution. It has the additional advantage 
of not requiring more advanced methods in applied mathematics, a background well beyond the usual 
preparatory training received by biologists and psychologists. The book presumes no prior preparation in 
the theory of state variables. The necessary mathematics is introduced and developed en route, as it were, 
and always within the specific context of the modeling problems at hand.  

This book is about quantitative modeling of biological and psychological phenomena. While the 
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development of models is fundamental in all sciences, it is a peculiar aspect of higher education in America 
that modeling itself, as a topic, generally receives very little treatment within any of the usual disciplines. 
This lack of treatment oftentimes makes modeling look more like an art than a science. However, to be 
useful to science, a model maker must be conscious of what he or she is modeling and, more importantly, 
what the limits of the proposed model are, the assumptions that have gone into the model, and the way in 
which the model is and can be linked to the experimental data by which the predictions of the model will 
ultimately be tested. A corollary to the latter is the on-going requirement that a useful theoretical model 
must have predictive power and not merely serve as a glorified curve fit that simply parrots back what the 
experimentalist already knows. To accomplish this, the book contains as a core topic the subject of making 
the transition from experimental facts won in the laboratory to the precise, quantitative implications of 
these facts for theoretical neuroscience. Toward that end, the book discusses such topics as "what is a 
model?" and "how may model systems be linked one to another along the successive levels of scientific 
reduction leading from psychology to biology in pursuit of our understanding of the brain?"  

The scope of neuroscience is vast. It runs the spectrum from behaviors observable by psychologists all 
the way down to the molecules studied by biologists and biochemists. In the opinion of the author, the final 
goal of neuroscience is to understand the central nervous system from one end of this spectrum to the other, 
and this cannot be said to be accomplished until our theories at all levels can be linked up and down across 
what he likes to call "the ladder of scientific reduction and model order reduction." If a particular scientific 
discipline is viewed as one rung on the ladder of scientific reduction, it is not enough that we eventually 
develop only a system of different rungs. The ladder must have rails as well, else the knowledge won by 
one discipline can only float disconnected from the knowledge won by another discipline. In the author's 
view, the science of "constructing the rungs" is the real central mission of computational neuroscience.  

As one rises up from the level of molecules and cells toward the level of psychological phenomena, it is 
crucial that we have and develop methods for addressing the catastrophic increase in the cost of computing 
our models that otherwise takes place. The gulf of abstraction between cell-level modeling and neural 
network modeling is vast. Models that are perfectly adequate for describing the membrane response of a 
neuron are hopelessly inadequate, computationally, for describing brain or spinal cord function (much less 
for describing the neurological implications of behavior). A central theme recurring throughout this book is 
the theme of what is required of a modeler for producing a unified science of the brain and mind. To the 
author's best knowledge, this is a subject generally left out of today's existing textbooks on theoretical and 
computational neuroscience.  

The book is laid out to progress from the level of basic neuron modeling all the way up to the modeling 
of complex neural network systems. It spans the science from the basic membrane and Hodgkin-Huxley 
models on the biological end of the spectrum and progresses all the way to adaptive resonance theory on 
the side of modeling complex central systems. Part I of this book (chapters 2 through 6) will be of primary 
interest to the student of biological neuroscience. Part II of this book (chapters 8 and 9, 11 through 18) will 
be of primary interest to neural network theorists and psychologists. Chapter 7 of this book is a transition 
chapter, the point where the focus passes smoothly from the modeling of biological function to the 
modeling of psychological function. Chapter 10 is a chapter likely to be of primary interest to the 
mathematician; it discusses an intriguing hypothesis, suggested by findings coming out of developmental 
psychology, regarding the possibility that neurological structure may be linked at a fundamental level to the 
most fundamental structures found in pure mathematics. The material in chapter 10 is, of course, very 
speculative. However, it does present a new way of possibly exploring the long-standing problem in 
theoretical neuroscience known as "the problem of the neural code."  

Neuroscience generally, and theoretical neuroscience in particular, finds itself these days calling more 
and more upon considerations that only a few years ago were confined to the hallways of philosophy 
departments. Indeed, one very encouraging development that has occurred over the past two decades has 
been the more active role being played by philosophers in neuroscience. While this textbook is not a 
philosophy book, chapters 7, 10, part of 12, and 13 include topics of a somewhat philosophical flavor as 
these considerations are of direct significance to neuroscience.  

This book also presents for the first time to a wide audience a new modeling schema, developed in the 
author's laboratory, for linking the modeling of biochemical processes to the traditional Hodgkin-Huxley-
like models of the neuron. This new modeling schema, named the Linvill model, provides a new approach 
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for tying the actions of metabotropic processes and metabotropic signal processing to end effects registered 
at the cell level in neurons and glia.  

The book contains numerous exercises. The student is encourage to do these exercises to gain practice 
at the mechanics of constructing computer models. In the author's course, students are also required to 
undertake a semester-long term project modeling some biological or psychological neural system. The 
exercises will provide valuable experience in carrying out the term project research project.  

Finally, the author strongly believes that neuroscience and the engineering field of artificial neural 
network research each have much to gain from the other. It has long been a claim by artificial neural 
network theorists working on various engineering applications that their artificial systems are "inspired by 
biology." Brain science can and, indeed, should contribute to these engineering endeavors. At the same 
time, he also believes that discoveries made by engineering researchers hold great potential to repay the 
favor, particularly on the side of large-scale brain systems, provided the artificial neural network theorists 
aspire to take more than merely "inspiration" from neuroscience. There are opportunities for wider-ranging 
interdisciplinary collaborations, and this book does not hesitate to point some of these out along the way.  

The author wishes to thank his colleagues and his students for numerous suggestions made during the 
writing of this book. Special thanks are due to Dr. Stanley Gotshall for our many interesting and 
illuminating conversations on the topics contained in this book.  

 

Richard B. Wells 

Moscow, ID, USA 

October, 2009 
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