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Chapter 1 

Introduction, Definitions, and Overview 
 

§ 1. The Science of the Nervous System 
For centuries humankind has been fascinated by how the brain and the rest of the nervous 

system work. Only in the twentieth century did we truly begin to develop the sort of scientific 

understanding of this topic detailed enough to permit a quantitative treatment of the many 

questions this study raises. Whatever one's philosophy may be over the question of "mind" vs. 

"brain" – and there are many diverse opinions on this – the simple fact is that wherever we find 

"mind" there also we find "brain." This makes the study of brain, spinal cord, and the peripheral 

nervous system arguably the most human, and in some ways the most personal, of scientific 

topics.  

Wherever we find "mind" we find "brain"; but is the reverse true? Where we find "brain" do 

we also find "mind"? This question is presently very problematical. An ant has a brain, but would 

one be willing to say an ant has a mind? Until we reach a generally accepted scientific definition 

of what is to be meant by "mind," this question is unscientific. An ant exhibits behaviors, and the 

relationship of brain and behavior can be studied. Reber's Dictionary of Psychology warns us, 

This term [mind], and what it connotes, is the battered offspring of the union of philosophy and 
psychology. At some deep level we dearly love and cherish it and see behind its surface great 
potential but, because of our own inadequacies, we continuously abuse it, harshly and abruptly 
pummeling it for imagined excesses, and occasionally even lock it away in some dark closet 
where we cannot hear its insistent whines [REBE: 436].  

In this book we will not avoid talking about the psychological manifestations of the 

phenomenon of human mind, but our primary focus will always be on the science of the nervous 

system. Where we introduce psychological concepts, it will be with an emphasis on how 

neuroscience treats these questions and on the biological questions science does feel a 

competency to address. Our treatment will therefore be mechanistic and functional rather than 

metaphysical, and it will be given with due regard to where scientific understanding of fact ends 

and speculation begins.  

Neuroscience is the name we give to a relatively young science born of a coalition of biology, 

psychology, and system theory. It is a highly interdisciplinary science in which numerous other 

specialties, such as pharmacology and genetics, also play a vital part. Neuroscience is such a 

young discipline – barely into its scientific adolescence – that its different practitioners have not 

yet come to share a common stated definition of the term. Some describe it as the science of 
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brain-mind. Some call it the science of brain and behavior. Others call it the science of the central 

nervous system (brain and spinal cord, and their relationship to behavior). How one looks at 

neuroscience depends in large measure on what one's background discipline and training is in. 

For example, Nobel laureate Eric R. Kandel uses the term "neural science" in the following way: 

 The last frontier of the biological sciences – their ultimate challenge – is to understand the 
biological basis of consciousness and the mental processes by which we perceive, act, learn, and 
remember. In the past two decades a remarkable unity has emerged within biology. . . The next 
and even more challenging step in this unifying process within biology . . . will be the 
unification of the study of behavior – the science of the mind – and neural science, the science of 
the brain. . . Such a comprehensive approach depends on the view that all behavior is the result 
of brain function. What we commonly call the mind is a set of operations carried out by the 
brain. . . The task of neural science is to explain behavior in terms of the activities of the brain 
[KAND1: 5].  

While Dr. Kandel's focus is clearly on the biological and psychophysical aspects of 

neuroscience, others – most notably mathematicians and system theorists – tend to focus on the 

formal and quantitative theory of brain and its relationship to physiological and psychological 

phenomena. This specialty-within-neuroscience is called "theoretical neuroscience" by some and 

"computational neuroscience" by others, although "mathematical neuroscience" might be a more 

accurately descriptive term. Dayan and Abbott describe it this way:  

Neuroscience encompasses approaches ranging from molecular and cellular studies to human 
psychophysics and psychology. Theoretical neuroscience encourages crosstalk among these 
subdisciplines by constructing compact representations of what has been learned, building 
bridges between different levels of description, and identifying unifying concepts and principles 
[DAYA: xiii].  

Sejnowski and Poggio tell us,  

Computational neuroscience is an approach to understanding the information content of neural 
signals by modeling the nervous system at many different structural scales, including the 
biophysical, the circuit, and the systems level. Computer simulations of neurons and neural 
networks are complementary to traditional techniques in neuroscience [ibid., pg. xi].  

Finally, according to T.P. Trappenberg, 

Computational neuroscience is the theoretical study of the brain to uncover the principles and 
mechanisms that guide the development, organization, information processing, and mental 
abilities of the nervous system [TRAP: 1]. 

Other descriptions and provisional definitions of computational neuroscience exist as well. We 

can see from these examples that even very noted researchers in the field look at this young 

science in slightly different – but still different – ways. To some it is merely "an approach." To 

others it is a theoretical undertaking on par with the biology, psychology, and other disciplines 
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involved with neuroscience generally. This diversity of viewpoints is characteristic of a young 

science just finding itself and its place in the scientific world.  

Definitions are important in every field of science. Definitions set up the language used by the 

scientists and make it possible for researchers to communicate with one another. Antoine 

Lavoisier, the great 18th century chemist, wrote  

 The impossibility of separating the nomenclature of a science from the science itself is owing to 
this, that every branch of physical science must consist of three things: the series of facts which 
are the objects of the science, the ideas which represent these facts, and the words by which 
these ideas are expressed. Like three impressions of the same seal, the word ought to produce the 
idea, and the idea to be a picture of the fact. And, as ideas are preserved and communicated by 
means of words, it necessarily follows that we cannot improve the language of a science without 
at the same time improving the science itself; neither can we, on the other hand, improve a 
science without improving the language or nomenclature that belongs to it. However certain the 
facts of any science may be and however just the ideas we may have formed of these facts, we 
can only communicate false impressions to others while we want words by which these may be 
properly expressed. 

In this book, we will use the following definition: Computational neuroscience is the scientific 

discipline that applies the techniques of system theory, signal processing theory, and 

information theory to develop quantitative theories of brain and spinal cord organization, 

activities, and functions in order to understand the role of the central nervous system in 

biological systems.  

What is a "biological system"? Biologists define the term thusly: A biological system is a 

physico-chemical system of sufficient complexity for the term "living" (or "dead") to be applied; 

biological systems are usually cellular in organization and are identifiable from two basic 

properties – 1) storage and replication of molecular information in the form of nucleic acid, and 

2) the presence of enzyme catalysts. ٱ The two identifying properties called out in this definition, 

nucleic acids and enzyme catalysts, allow biologists to avoid the numerous philosophical and 

scientific problems historically associated with attempts to put precise definitions to the terms 

"life" and "living organism." Until well into the 19th century, scientists regarded "life" as a 

mysterious "something" – perhaps a "vital force"; perhaps some sort of "spirit" – that 

distinguished "living things" from "non-living things." This attitude was called vitalism, and it 

proved to be a hindrance to the life sciences because it implied that nothing could be learned 

about "living things" from the study of "dead tissue."  

That this attitude changed was due primarily to one man, Claude Bernard, who revolutionized 

the approach taken by the life sciences. In his epoch work, An Introduction to the Study of 

Experimental Medicine, Bernard wrote:  
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When an obscure or inexplicable phenomenon presents itself, instead of saying "I do not know," 
as every scientific man should do, physicians are in the habit of saying, "This is life," apparently 
without the least idea that they are explaining darkness by still greater darkness. We must 
therefore get used to the idea that science implies merely determining the conditions of 
phenomena; and we must always seek to exclude life entirely from our explanations of 
physiological phenomena as a whole. Life is nothing but a word which means ignorance, and 
when we characterize a phenomenon as vital, it amounts to saying that we do not know its 
immediate cause or its conditions. Science should always explain obscurity and complexity by 
clearer and simpler ideas. Now since nothing is more obscure, life can never explain anything. 

The significance of the biologists' definition of biological systems in terms of nucleic acids and 

enzyme catalysts is this: In everything we know that all of us agree to call "living," nucleic acids 

and enzyme catalysts are present. Jointly, their actions provide a mechanistic account for 

explaining locomotion, nutrition, reproduction, respiration – in short, all the observable 

phenomena which have been taken to be the "signs of life" since the time of Aristotle. 

Furthermore, in all things we all agree to call "non-living" (save only those things said to have 

died), one or the other or both of these ingredients are absent. Thus, by taking nucleic acids and 

enzyme catalysts as the signposts of biological systems, biology is able to avoid the thorny issues 

attending the literal question of life and death. The biological definition leaves only the 

classification of viruses in a problematic state. The virus stands on the boundary line between 

things we call 'living' and things we call 'non-living.'  

However, there is another factor that attends the practical definition of a biological system and 

which is not brought out clearly in the biologists' definition cited above. Biological systems are 

organized, i.e., they are said to be "organisms." If we merely dump nucleic acids and enzyme 

catalysts into a test tube and stir, we do not get a living thing; we merely get a test tube full of 

chemicals. This is the significance of the word "system" used in the biologists' definition.  

Although it seems a strange and curious omission, the term "organism" does not appear in 

Thain's and Hickman's Dictionary of Biology. To what, then, does the term "living organism" 

refer? Sir John Arthur Thomson, writing for Encyclopædia Britannica, described it this way:  

 It is first essential to understand what is meant by a living organism. The necessary and 
sufficient condition for an object to be recognizable as a living organism, and so to be the subject 
of a biological investigation, is that it be a discrete mass of matter with a definite boundary, 
undergoing continual interchange of material with its surroundings without manifest alteration of 
properties over short periods of time and, as ascertained either by direct observation or by 
analogy with other objects of the same class, originating by some process of division or 
fractionation from one or two pre-existing objects of the same kind. The criterion of continual 
interchange of material may be termed the metabolic criterion, that of the origin from a pre-
existing object of the same class, the reproductive criterion. 

When we come to our definition of the word "system" in the next section, we will see that this 

definition takes in the "organism" as described by Thomson.  
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Figure 1.1: Roadmap of the scope of computational neuroscience 

Neuroscience generally, and computational neuroscience in particular, does not attempt to deal 

with the whole organism. Rather, it attempts to deal with parts of the organism – specifically 

those which involve cells known as "neurons" and other biological factors that directly interact 

with them. These objects constitute "systems within the system" at some level of scientific 

reduction. The scope of computational neuroscience is quite large. It ranges, in order of lowest to 

highest scales of application, from molecules, to synapses, to neurons, to neural networks, to 

maps (networks of neural networks at a scale on the order of about 1 cm) to network systems 

(networks of maps) to the central nervous system as a whole. It is a testimonial to the science of 

system theory that this discipline is capable of spanning such a vast panorama of objects 

encompassing physical scales ranging over ten orders of magnitude in size. However, no matter 

the scale at which we work, one must never lose sight of the fact that the objects of our 

investigations belong as parts to a larger system, namely the organism as a whole.  

Figure 1.1 depicts a "roadmap" of the scope of computational neuroscience. Within this scope 

we can identify two particular divisions: the "component modeling" division and the "system 

modeling" division. As we proceed in the direction of the solid arrows shown in this diagram, we 

ascend the ladder of scientific reduction, moving from smaller, simpler systems to progressively 

more complex phenomena. The points along the way name some specific models of current 

interest that we will be examining in this book. With each different model represented in the 

figure we also find different kinds of experimental data that theory attempts to explain.  
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§ 2. Systems, Signals, and Information 

§ 2.1. Systems and Models 
The science of system theory in its modern form came into being in the late 1950s, primarily 

from the works of T.R. Bashkow, R.E. Bellman, and R.E. Kalman. Obviously, this science is 

directed at things called "systems," but what is a system? As we might expect from a science with 

the scope claimed by system theory, the definition is both broad and abstract. Webster's 

Unabridged Dictionary gives us the following definition: A system is any set or arrangement of 

things so related or connected as to form a unity or an organic whole.  

Many people find a definition as broad and abstract as this to be unsatisfying because, as 

stated in Webster's, the definition of a system would seem to suit almost anything. There is much 

truth in the old saying, "That which explains everything explains nothing," and so we often find 

various specialists within system theory applying more specialized definitions. Some of these 

definitions are hardly any less abstract than the one just given. For example, A.D. Hall and R.E. 

Fagen define a system as, 

A system is a set of objects together with relationships between the objects and between their 
attributes [HALL].  

If we take the word "object" to mean "thing" and assume that "relationships" implies these things 

are related, this definition adds nothing to our previous definition except the idea that the things 

making up the system have attributes, and that these attributes are also related to one another.  

A great many system theorists – probably the majority – are engineers or work in an 

engineering environment. Because engineers are usually concerned with being able to build 

things, they prefer a tighter definition than either of those given so far. For example, Robert A. 

Gabel and Richard A. Roberts defined a system this way:  

A system is a mathematical model or abstraction of a physical process that relates inputs or 
external forces to the output or response of the system. Input and output share a cause-effect 
relationship [GABE: 2].  

What we see added here to the definition of a system is the idea of how to describe it. We also see 

something else coming into play here, namely a distinction between "the description of a physical 

process" (the system) and the thing being described. Here a system is a "model" rather than the 

thing being modeled. The earlier definitions were ontological (definitions of "things"); the Gabel-

Roberts definition is epistemological (definition in terms of one's knowledge of a thing).  

Although this might seem like a mere difference in semantics or only a philosophical 

distinction, the definition one chooses to use has an important bearing on how one thinks about a 
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scientific problem. A definition like that of Gabel and Roberts explicitly confesses that there are 

things about the object being studied of which we remain ignorant, and implicitly suggests that 

those things of which we are ignorant are also things with which we are unconcerned. The 

obvious objection one might raise to this viewpoint is, "How do we know that the things of which 

we are ignorant in our study of an object are things we can be unconcerned with?" This is the 

perennial question that always comes up where mathematical science interfaces with physical 

science.  

Immanuel Kant, the great 18th century philosopher, recognized this issue in science more than 

a century and a half before the birth of modern system theory. There is, he tells us, two sides to 

the issue which, while distinct, are inseparable. These are: the epistemological side of the issue 

and the practical side of the issue. Kant therefore bequeaths to us a two-pronged definition of 

"system." Seen from the perspective of epistemology, a system is the unity of various knowledge 

under one idea, and the object which contains this unity is called "the" system. But seen from a 

practical perspective, a system is a set of interdependent relationships constituting an object 

with stable properties, independently of the possible variations of its elements. If we are to call 

what we do "science," we cannot separate what we know (or think we know) from the object of 

our inquiry. A system, then, consists of both the object of our study and our representation 

(model) of that object, and the first criterion of truth in system theory can then be seen to be the 

congruence of the object with our representations of that object. This, of course, is the point 

where observation and experiment enter in to science. A system theorist is not granted a license to 

engage in free mathematical speculations independently of facts emerging from the laboratory. 

Thus, while it is true that system theory is a largely mathematical science, it is at the same time 

no less an experimental science. Its theories must have testable consequences.  

 

Figure 1.2: The definition of a system 
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We can illustrate this two-fold definition of a system as shown in Figure 1.2. Standing under 

our idea of a system we have both the object we are studying and the specific and technical 

descriptions by which we understand that object. The system is the unity of both taken together. 

If we compare this working definition of a system with the previous description of an 

organism, it is easy to see how the latter fits comfortably with the former. The system theoretic 

concepts of "unity" and "interdependent relationships" which "constitute stable properties" in the 

object accords nicely with the biological ideas of a "discrete mass of matter with a definite 

boundary, undergoing continual interchange of material with its surroundings without manifest 

alteration of properties over short periods of time" provided we take into account (in our model) 

the "surroundings" that affect, and are affected by, the organism.  

The term "model" has been introduced into the discussion, and here it is only fair to point out 

that some people are uncomfortable with the idea of using models. To some the word seems to 

convey an impression of "unreality" or "disconnection with the thing." To be sure, it is sometimes 

quite a sticky point to convince another person that a merely mathematical description of an 

object can claim anything but a coincidental agreement with the thing "itself." While to some 

degree such an objection overlooks the practical fact that the model is made to agree with the 

observable properties of the object, the question, "How does a model relate to the thing 

modeled?" is a fair question. To understand the answer, we must ask: What is a model?  

Here we do not run into the sort of philosophical sticking points that can attend understanding 

what a system is. A model is a representation that mirrors, duplicates, imitates, or in some way 

illustrates a pattern of relationships observed in data or in nature. Models can be broadly 

classified into two types. A qualitative model is a model resulting from an analysis of the 

identity of the constituents of a system. It gives us the "pieces" making up the "set of objects or 

interdependent relationships" that in composition constitute the parts of the system as an "organic 

whole." Qualitative models in computational neuroscience often come from the laboratories of 

other scientists. They are frequently non-mathematical in nature and generally tied quite closely 

to directly observable phenomena. Many biological models are of this sort, as are a number of 

psychological models.  

Qualitative models are by no means to be despised by the computational neuroscientist 

because they are the starting point for quantitative models. A quantitative model is a model 

resulting from an analysis of the estimation of the amount or numerical value of each of the 

constituents of a system. These models are inherently mathematical and are aimed at saying very 

precise things about the system. They do so by augmenting the qualitative model with precise 

relationships that apply to and among the pieces uncovered in qualitative modeling. Indeed, this is 
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where specific relationships are introduced into a system. The vehicle by which these 

relationships are introduced is called the structure of the system.  

What is meant by this term? One of the best definitions given for this term was put forward by 

the great twentieth century psychologist, Jean Piaget: A structure is a system of self-organizing 

transformations such that: (1) no new element engendered by their operation breaks the 

boundaries of the system; (2) the transformations of the system do not involve elements outside 

it; and (3) the system may have sub-systems differentiated within the whole of the system and 

have transformations from one sub-system to another. The obvious question raised by this 

definition is: What is a "transformation"? That is what we will take up next. 

§ 2.2 Signals, Information, and Transformations 

To understand the quantitative concept of a transformation we must first understand what a 

signal is. A signal is any physical quantity that can be represented as a single-valued function 

of time and that is said to carry information. The idea of a "physical quantity" is clear enough. 

By "single-valued function of time" we mean that at any particular moment in time the signal 

must have a unique numerical or symbolic determination. But what does this word "information" 

mean? That is a somewhat trickier question.  

As it is used in the physical and mathematical sciences, the word information is employed in a 

more restrictive sense than we use in everyday language. Indeed, it is used in a sense much closer 

to its Latin root, informatio (a representation, an outline or sketch). The notion of information was 

introduced into physics by Boltzmann in 1894, who described the thermodynamics concept of 

"entropy" as a measure of "missing information." John von Neumann introduced it into quantum 

mechanics and particle physics in 1932. It received a formal and rigorous treatment in the hands 

of Claude Shannon in 1948 in his now classic work, "The Mathematical Theory of 

Communications" (a two-part paper that appeared in The Bell System Technical Journal in 1948). 

The idea was imported to biology applications by Norbert Wiener.  

To appreciate how the term "information" is used here, and to clear away some of the possible 

metaphysical sources of confusion that can otherwise attend its usage, let us start with the main 

dictionary definitions of the verb "inform" and the noun "information."  

inform, vt. [ME. informen; OFr. enformer; L. informare, to shape, fashion, represent, 
instruct; in, in, and formare, to form, from forma, form, shape.] 

1. (a) to give form or character to; to be the formative principle of; (b) to give, imbue, 
or inspire with some specific quality or character; to animate. 

2. to form or shape (the mind); to teach. [rare] 
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3. to give knowledge of something to; to tell; to acquaint with a fact, etc. 

information, n. [OFr. information; L. informatio (-onis), a representation, an outline, sketch, 
from informare, to give form to, to represent, inform.] 

1. an informing or being informed; especially, a telling or being told something. 

2. something told; news; intelligence; word. 

3. knowledge acquired in any manner; facts; data; learning; lore. 

When specialized to its technical use, the word "information" takes on a connotation of how 

"unexpected" or "surprising" the occurrence of a physical event is. Suppose we are measuring the 

electric potential of the membrane of a neuron, and let us further suppose we observe that at any 

particular moment in time this potential is either a static value of, say, -65 mV (the "resting 

potential") or else it briefly pulses up to a value of, say, +20 mV (the "action potential"). The 

science of information theory would then say that this neuron, viewed as an "information source," 

conveys at most 1 unit of information (the unit of measure is called a "bit"; this stands for "binary 

digit") because the neuron displays only two possible activities ("rest" and "action"). More 

generally, if something is capable of N distinct activities, it is said to represent at most log2(N) 

"bits" of information. 

An information theorist, particularly one who is interested in the theory of communication 

systems, typically calls the distinct possible activities of an information source its "symbols" or 

its "messages." Warren Weaver, one of the first researchers to get involved with Shannon's new 

science, described "information" in the following way:  

The word information, in this theory, is used in a special sense that must not be confused with its 
ordinary usage. In particular, information must not be confused with meaning. . . To be sure, this 
word information in communication theory relates not so much to what you do say, as to what 
you could say. That is, information is a measure of one's freedom of choice when one selects a 
message. If one is confronted with a very elementary situation where he has to choose one of 
two alternative messages, then it is arbitrarily said that the information, associated with this 
situation, is unity. Note that it is misleading (although often very convenient) to say that one or 
the other message conveys unit information. The concept of information applies not to the 
individual messages (as the concept of meaning would), but rather to the situation as a whole, 
the unit information indicating that in this situation one has an amount of freedom of choice, in 
selecting a message, which it is convenient to regard as a standard or unit amount [SHAN: 8-9]. 

The information said to be "carried" by a signal is thus a measure of the number of observable 

unique ways in which that signal can behave over time. This is what is meant when one speaks of 

the "degrees of freedom" an observed signal activity exhibits. (We would not say that a neuron 

"chooses" what signal it is going to exhibit at any particular moment in time, and so "degrees of 

freedom" is a more appropriate description than "freedom of choice"). The principal challenge in 
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applying information theory to biological signal processing lies in determining what constitutes 

the "message" or "symbol" said to be represented by the signal. This is because information 

theory is utterly silent on the topic of the "meaning" of a signal.  

Any physical quantity said to constitute a "signal" always, by implied definition, is one that 

conveys or produces a physical relationship between two or more of the objects that make up the 

system. Specifically, this relationship is one of causality and dependency. The object that 

generates (produces) the signal is called the source of the signal, and the object or objects upon 

which this signal acts to produce some kind of physical change is called the destination of the 

signal. The source is said to be a "cause" of activity (in the case where there are multiple sources 

sending signals that converge on a common destination, a particular source is called a "partial 

cause"). The way in which a signal affects the destination object is called its "effect." We may 

note that this way of using the otherwise metaphysical terms cause and effect constitutes a 

practical "working definition" of these terms in biological signal processing. (As Kant put it, this 

kind of definition is one "which makes a concept useful in practice").  

Now because a signal produces a change of some kind in the destination object, the way this 

object responds to that signal, or to other subsequent signals it "receives," is called a 

transformation, and the signal is said to effect a transformation in the behavior of the system. 

When the signals involved are internal to the system (that is, the signals are regarded as neither 

impinging upon the system from without nor merely leaving the system to serve as 'inputs' to 

another system), the transformation effected is called a self-regulating transformation (because 

we are dealing with a situation where the system is said to 'act upon itself'). Because there can be 

many ways in which a system can 'act upon itself,' there can be many different transformations 

possible within the system. The formal mathematical description of all these transformations, 

subject to the other two constraints given earlier, is the mathematical structure of the system.  

§ 2.3 System Modeling  

Making the model of a system is called modeling the system. It is a necessary first step in 

obtaining a quantitative description of the object being studied. Development or identification of 

the mathematical structure of the system is always done first. The usual procedure is to begin 

with the qualitative model deduced from experiments (either biological or psychological), and 

then re-cast this model in a mathematical description. This will typically result in some set of 

mathematical equations relating the various objects within the system.  

In addition to the logical and mathematical relations and functions contained in this 

description, the model equations will also contain two other distinguishable constituents: 
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variables and parameters. A mathematical variable represents something that can change in time 

and which often represents a signal. A parameter is some quantity that describes the system but 

which is typically not regarded as being representative of the activity of the system. Rather, it is 

regarded as a quantity which determines how system activity is related to the signal variables. For 

example, in Newton's famous F = m⋅a equation, F (force) and a (acceleration) are variables 

whereas m (mass) is a parameter.  

This seemingly simple description is often made more complicated by the fact that in many 

systems (including the ones we deal with in this book), the parameters are not necessarily time-

invariant. For example, a rocket in flight uses up its rocket fuel as its engines burn, and the 

consumption of this fuel causes the rocket's mass to be a function of time. Nonetheless, the mass 

is regarded as a parameter of the rocket-system rather than a signal variable. In modeling a 

system, what is to be regarded as a "variable" and what is to be regarded as a "parameter" 

depends on the purpose for which the modeler has constructed his model. If I want to fly a rocket 

to the moon, force and acceleration are signals (to me) and mass is a parameter. But if I want to 

match up pairs of wrestlers for a tournament, the mass of each wrestler is a "variable" I use to 

determine how the wrestling meet will be "structured." We can see that the structure of a model 

depends on the reason for making the model, and this is where modeling embeds some of the 

character of an art in with the science that goes into making a model. It is also the reason why 

there is no one unique prescription for how to build a model.  

In many scientific problems, one takes advantage of a body of known facts to guess what the 

structure of an accurate model might look like. There are two ways to proceed with this guessing 

(which scientists call "making an hypothesis"). One is to pre-select one particular model structure 

that one has reason to think is probably "an accurate description" for the system being modeled. 

This is perhaps the most common approach used in the sciences, and it is based in one part on the 

qualitative model from which one begins, and in another part on what one knows generally of the 

anatomical, physiological, or psychological principles (in the case of computation neuroscience) 

thought to govern this particular class of systems in general. This approach works best when the 

scientist making the model has a good deal of experience with, and well-founded training in, the 

topic at hand. It works less well when one is inexperienced or lacks adequate background training 

and/or knowledge of the literature in the field. Also worthy of note, because it is something not 

infrequently overlooked, is that the modeler's decisions of what to leave out of a model are 

sometimes just as important as the decisions about what to put in. It is impractical to "put 

everything in" and absurd to "leave everything out"; good model-makers learn how to strike the 

appropriate balance between these extremes.  
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Sometimes, though, not enough is known about the object under study to come up with just 

one specific model structure for turning a qualitative model into a quantitative one. Rather, one 

might come up with a whole class of possible structures, each of which cannot be ruled out a 

priori through one's knowledge of the object. In this case, it is usually possible to use additional 

experimental outcomes to narrow down the possible structures. In system theory this is called the 

structure identification problem, and system theorists have developed a number of specialized 

techniques for accomplishing this. Indeed, there is within system theory an entire sub-discipline 

of specialists devoted to finding better practical techniques to carry out structure identification. 

One could say these people are "the model-maker's model makers."  

Once a structure has been identified – by whatever means – the next step in model-making is 

the estimation of the parameters of the model. Naturally, this is called the parameter estimation 

problem, and a number of practical techniques for efficiently accomplishing this task from 

experimental data have also been developed. Not infrequently, scientists who specialize in 

structure identification are also experts in parameter estimation since the two tasks are, in a 

practical sense, joined at the hip.  

Some models – particularly ones for relatively simple systems – can be deduced from first 

principles. Such models are widespread, for instance, in engineering. But more often – and in the 

case of biological signal processing and computational neuroscience this is always the case at our 

present level of knowledge – it is not possible to deduce the correct model starting with 

fundamental laws of physics. The systems are simply too complicated to permit this. In these 

cases, the models employed are typically either based on arguments for plausible forms of 

mathematical expression – based on physical arguments, not deductions – or on arbitrary 

equations with parameters chosen so that the equations "fit the data." Models of this second class 

are called statistical models. They are "curve fits." Such models aid in the analysis of a system 

but do not contribute to making theoretical predictions about the system.  

Models of the first class, although they usually also involve some curve-fitting, are expected 

to have something statistical models usually do not, namely predictive power. They achieve this 

predictive power (when they achieve it) because of the physical arguments that go into 

postulating the mathematical form of the structure. These models are called phenomenological 

models. A phenomenological model with an established track record of making good predictions 

is called a theory. One of the most important theories in neuroscience, the justly famous 

Hodgkin-Huxley model, is none other than a phenomenological model. Its discoverers, Alan 

Hodgkin and Andrew Huxley, won the 1963 Nobel Prize in medicine for this model.  
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§ 3. Neurons and Glial Cells  

From the viewpoint of the computational neuroscientist or the biological signal processing 

theorist, the central nervous system is composed of two types of cells, called neurons and glial 

cells. There is, of course, more to the brain than this – e.g. blood vessels and fluid-filled cavities – 

but the arena of interest for these scientists is focused on neurons and glia. It is not an equal 

partnership; neurons receive far more attention than glial cells in research by computational 

neuroscientists. The reason for this is mainly traditional. Neurons have long been supposed to be 

the "instruments" for signal processing in the brain and spinal cord, whereas glial cells were 

supposed to provide merely mechanical support and nutrition for the neurons, and to provide 

"electrical insulation" for the "wiring" that interconnects neurons.  

One interesting fact about the brain is that neurons have no direct input connection from the 

blood vessels. This is known as the "blood-brain barrier." Glia, on the other hand, do have a 

direct connection from the blood vessels. Since oxygen and nutrients are blood-borne, and since 

neurons do require both an oxygen supply and a supply a nutrients to support their metabolism, it 

is fair and rather safe to conclude that glia do indeed carry out this "support function." The term 

"glia" is derived from a Greek word that means "glue," and for a long time no one doubted that 

glia were merely the glue that held the brain together.  

Today we are not so sure. It has long been known that glia regulate the levels of various ions 

in the fluid-filled spaces surrounding neurons, and it has likewise been known for a long time that 

the electrical properties of neuronal behavior are determined in part by this "ion bath." Still, that 

regulative function carried out by glial cells can be regarded, using electrical engineering 

terminology, as a "bias function." This would make the vast network of glial cells a kind of 

biological "biasing circuit." Since "bias" is not usually regarded as being part of signal processing 

(the "bias variable" is said to carry no "information"), there was and is no reason, strictly on this 

account, to regard glia as part of the signal processing system.  

However, there have been experimental findings reported over the past decade that indicate 

glial cells might have a signal processing role after all. Much of this is very speculative at this 

time. However, there are some facts about glial cell activity that are very well established. One of 

the most important of these (in the opinion of your author) is the finding that glial cells transfer 

calcium ions (Ca2+) to various locations in the brain, and seem to do so in response to signaling 

activities. Ca2+ is a very, very important chemical involved in the signal processing functions of 

neurons, and the fact that glial cells transport it around implicates for them some important role in 

the large scale behavior of neural network activity. Unfortunately, it is still far from clear just 
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what, precisely, the role of this "calcium signaling" might be. Still, it is not too bold to speculate 

that the coming years will bring major changes in the way we look at and model biological signal 

processing in the central nervous system (CNS).  

The signal processing role of neurons is definitely far better established. The membrane of a 

neuron cell is excitable – a term that means an electric potential is developed across it, and this 

potential responds dramatically to input signals the neuron receives from other neurons. A typical 

membrane potential, referenced to the fluid surrounding the neuron, is on the order of about –65 

mV in experiments done in vitro. There is a great deal of variance in this value for different kinds 

of neuron cells in vivo and in different regions of the CNS. The value of this potential difference 

between the inside ("cytoplasm") and the outside ("extracellular region") of the neuron, in the 

absence of activity at the neuron's inputs and outputs, is called the resting potential of the cell. 

Most (but not all) neurons can be stimulated by their inputs into producing a large change in the 

membrane potential – typically the potential shoots up to on the order of about +20 mV – for a 

brief period of time (on the order of about 1 ms). This is called the action potential. Other 

neurons, which do not produce an action potential "spike" in response to stimuli, nonetheless do 

show a lesser but still significant (tens of mV) change in their membrane potential; in their case 

this is called a graded response.1  

Biologists estimate there is on the order of about ten thousand different species of neurons, 

and within each species there are many variations. Nonetheless, from a functional point of view 

most neurons can be represented in terms of a single general model composed of four basic signal 

processing components. This is illustrated in Figure 1.3. The four components of the model 

neuron are: (1) the input component; (2) the integrative component; (3) the conductile 

component; and (4) the output component.  

 
Figure 1.3: Model Neuron 

                                                 
1 It is worth noting that glial cells also have a non-zero membrane potential and also exhibit a graded 
response when their nearby neurons are active. However, the magnitude of this response is much, much 
less than that of a neuron (typically only a few millivolts). For this reason, glia are said to not be excitable. 
It is a relative terminology. 
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The input component is the part of the neuron that receives signals from other neurons. The 

actual point of signal connection between the source neuron and the destination neuron is called a 

synapse (the word is derived from a Greek word that means "to connect").2 Typically a synapse is 

characterized by at least two parts, a part that is physically part of the source neuron (called the 

"presynaptic component" of the synapse) and a part that is physically part of the destination 

neuron (called the "postsynaptic component" of the synapse). Thus, a synapse is a biological 

structure that "belongs" communally to both neurons. In biological terminology, the source 

neuron is called the presynaptic cell, and the destination neuron is called the postsynaptic cell. 

On the average, a typical neuron may have on the order of about 20,000 synapses (in the monkey 

neocortex), although some neurons have far fewer than this and some have far more. (The 

Purkinje cell in the human cerebellum is thought to have on the order of about 200,000 synaptic 

inputs, and a typical motor neuron in the spinal cord has on the order of about 50,000 synaptic 

inputs).  

The integrative component, as the name implies, sums the postsynaptic signals resulting from 

synaptic activity. Biologically, the quantities being summed are typically ion currents that were 

produced by the postsynaptic cell's response to synaptic inputs. Positive ions flowing into the cell 

(such as Na+ or Ca2+) and negative ions flowing out of the cell (such as Cl -) are said to be 

excitatory because these currents tend to stimulate the neuron into producing and transmitting its 

own signal to the output component. Positive ions flowing out of the cell (such as K+) are said to 

be inhibitory because these currents tend to prevent the neuron from generating its own output 

signal. Different types of synapses are characterized by the types of ion currents they produce, 

and are thus called excitatory or inhibitory synapses. The integrative component also contains a 

variety of membrane-spanning proteins (called voltage-gated channels) that open or close in 

response to the electric potential induced by the ions currents entering and leaving the integrative 

region of the neuron. When open, these proteins conduct additional ion currents into or out of the 

cell. Thus, they act like a kind of electrically-stimulated valve. The region of highest 

concentration of these voltage-gated channels (VGCs) is called the trigger zone because it is in 

this region that the neuron's output response to its synaptic inputs is generated. In neurons that 

generate an action potential response (called spiking neurons), the trigger zone is often an easily-

                                                 
2 We are speaking here of the usual case. There is evidence that some neuron-to-neuron signaling takes 
place when one neuron produces and emits small molecules, such as nitrous oxide (NO), that easily pass 
through the cell membranes. In this case, there is no observable direct connection between the neurons and 
no synapse transmitting the signal. This is called "non-synaptic transmission" and we can think of it as the 
neuronal equivalent of "broadcasting." In neuroscience there is almost no statement we can make that is 
always true without exception, and this is something the non-biologist must get used to when reading the 
literature on neuroscience.  
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identifiable region of the cell. In neurons that produce a graded response (which we will call 

graded neurons), the VGCs tend to be more widely distributed and the trigger zone is more 

difficult to define. Some scientists would say that a graded neuron has no trigger zone, preferring 

to reserve this term for spiking neurons only.  

The conductile region, as the name suggests, conducts the neuron's response signal from the 

integrative component to the neuron's output component. In many neurons, the conductile 

component is an easily-identifiable part of the neuron called an axon. In neurons that have an 

axon, the method of signal transmission is often very interesting. Rather than acting merely like a 

cable that passively conducts current and voltage from one place to another, the axon acts more 

like a repeater network. VGCs are spaced at intervals along the axon and regenerate the action 

potential. (This is called saltatory conduction; the word saltatory comes from the Latin word 

saltus, which means "jump" or "leap"). This is the primary means by which signals are 

transmitted over long distances in the CNS. For example, some neurons in the motor cortex 

region of the brain (located in the brain region nearest the top of the head in humans) project 

axons that run to the bottom segments of the spinal cord. Some motor neurons in the spinal cord 

project to the muscle tissue in the toes. Some axons are on the order of 1.5 meters in length, and 

signal transmission in these cases would not be possible without this "repeater action" of the 

conductile component.3  

The output component is the part of the neuron that connects to other neurons (or, in the case 

of motor neurons, to the muscle tissue these neurons stimulate). Graded neurons typically connect 

to other neurons via a class of synapse called a gap junction. A gap junction synapse basically 

acts like a valve that opens and allows direct ionic current flow to take place between neurons. In 

most cases this current can flow in either direction and the gap junction can be modeled as a 

simple electric resistor. Networks of neurons interconnected by these gap junctions effectively act 

like one gigantic neuron. This kind of network is sometimes called a syncytium, although many 

biologists dislike applying this term to neural networks.4 Networks of glial cells are also 

interconnected by means of gap junctions. In some cases, a gap junction might conduct ion 

current in only one direction. These are called rectifying gap junctions, and they are modeled as a 

resistor in series with a diode.  

In mammals, by far the most common type of output component converts the incoming 

electrical signal to a chemical signal. This type of synapse is called a chemical synapse. The 

                                                 
3 Neurodegenerative diseases such as multiple sclerosis kill the glial cells that insulate the axon. This 
eventually results in failure of the saltatory conduction mechanism.  
4 This dislike stems from a great controversy that took place at the end of the nineteenth and beginning of 
the twentieth century between what was known as the reticular theory and the cell theory. 
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arrival of an action potential at the presynaptic terminal of the source neuron stimulates the 

secretion of chemicals into a tiny gap (called the synaptic cleft) that separates the presynaptic and 

postsynaptic neurons. This process is called neurotransmitter exocytosis. These small molecule 

neurotransmitters bind to receptor proteins in the postsynaptic cell, and thereby trigger a response 

in that cell. This response is called the postsynaptic response. The action of a chemical synapse is 

sometimes puckishly described as "communicating by smoke signals," which is, interestingly 

enough, not too bad a metaphor.5  

Despite the great variety in neuron types, most neurons can be placed in one of two general 

classes. The first class is called the projection neuron class. Projection neurons are also 

sometimes called principal neurons or relay neurons. The second class is called the interneuron 

class (also called the intrinsic neuron class). Projection neurons are characterized by possession 

of a well-defined single long axon that makes distant connections. The axon will also usually give 

off branches, as suggested by the output section depicted in Figure 1.3. Large axons and their 

branches are often (but not always) wrapped in a myelin sheath of covering glial cells, which 

insulate the axon and improve signal propagation along it.  

Interneurons have either a very short axon or no axon at all. In the latter case the neuron is 

called an "anaxonal" or an "amacrine" (a, no, and macrine, long projection) or a "granule" cell. 

Like the projection neuron, most interneurons do express other projections away from the cell 

body. These projections are called dendrites. In a projection neuron dendrites are part of the 

anatomical structure of the cell that serve the input function. In interneurons dendrites serve both 

the input and the output functions. All neurons have a cell body, called the soma, that contains the 

cell's nucleus. Thus, the soma, dendrites, and axon  (when it has one) make up the anatomy of the 

neuron. Some appreciation for the great variety of neurons can be gained from Figure 1.4, which 

illustrates some of the various types of neurons found in the cerebral cortex of the monkey.  

Neurons are also broadly classified as either excitatory or inhibitory cells. Excitatory cells 

produce output signals that tend to either evoke or promote the generation of an output response 

(typically an action potential) from their target destination cells. For the cells illustrated in Figure 

1.4, the pyramidal cells (A) and the spiny stellate cell (B) are excitatory cells. All the others are 

inhibitory cells. Inhibitory cells produce output signals that tend to inhibit the destination cells 

from producing an output response.  

                                                 
5 This clean dichotomy is marred somewhat by the fact that some neurons do not fit into either class. In 
particular, some neurons express both gap junction and chemical synapses, and exhibit a small spiking 
response within a graded response. Neurons of this sort exist, for example, in the retina of the eye. As noted 
earlier, there are very few things we can say in general that do not have exceptions to the rule in neuro-
science. 
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Figure 1.4: Some varieties of cortical neurons found in monkey cerebral cortex. (A) Pyramidal cells. The structures 

projecting vertically upward are apical dendrites. The structures projecting down to the white matter (below layer 6) are 
axons. (B) Spiny stellate cell. The structure projecting into layer 2 is its axon bundle. (C) Bitufted cell. The branching 

'arcades' running vertically make up the cell's axon arborization. (D) Double bouquet cell. The long structures are axon 
fibers. (E) Small basket cell. (F) Large basket cells. (G) Chandelier cells. (H) An undesignated cell, sometimes called a 

long stringy cell. This cell transmits neuromodulators, either neuropeptides or acetylcholine. (I) Neurogliaform cell. 

With two qualifications, discussed below, a particular neuron is either excitatory or it is 

inhibitory. A single particular neuron typically does not produce excitatory reactions at some of 

its target cells and inhibitory reactions at others. 

The first qualification to this last statement is due to the fact that many neurons co-localize 

two distinctly different types of neurotransmitters at their presynaptic terminals. These are the 

small molecule neurotransmitters and the neuropeptides. So far as we know, the previous 

statement about exclusively excitatory or exclusively inhibitory action holds without exception 

for the small molecule neurotransmitters, and as these neurotransmitters account for most of the 

immediate signaling activity in neural networks, they are used as the basis for finding a neuron to 

be either excitatory or inhibitory.  

The neuropeptides, on the other hand, produce a modulation of the behavior of the target cell. 

For this reason they are often called neuromodulators instead of neurotransmitters. Furthermore, 

the modulation action produced by a neuromodulator does not depend exclusively on the 

chemical that makes up the neuromodulator. It also depends on properties of the proteins to which 

it binds on the postsynaptic cell. This type of signaling is called metabotropic signaling because 

the action of the neuromodulator changes the metabolic processing taking place inside the post-

synaptic cell. This is in stark contrast to the ion-current-producing action of the small molecule 

neurotransmitter, which is called ionotropic signaling.  

Further complicating this picture is the existence of some kinds of receptor proteins, called 

metabotropic receptors, in the postsynaptic neuron that produce metabotropic reactions to the 
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small molecule neurotransmitters. These receptors are quite distinct from the ones that produce an 

ionotropic reaction in the postsynaptic cell (which are called ionotropic receptors). The synapse 

can contain both kinds of proteins at the same site. Finally, there are some kinds of small 

molecule neurotransmitters (specifically, dopamine, serotonin, and norepinephrine6) that produce 

metabotropic reactions in the target cell. These kinds of synapses constitute the second 

qualification of our earlier statement. We presently know of no major ionotropic receptors for 

dopamine or norepinephrine in the brain and only one ionotropic receptor (5HT3) for serotonin.  

Ionotropic signaling is fast. Reactions to ionotropic signals take place on the order of about a 1 

ms time scale. They are also short duration events, their effects disappearing within a few 

milliseconds. Because of this, it is a reasonable hypothesis that ionotropic signals represent, to 

use the language of signal processing theory, "real-time data processing." Metabotropic signaling, 

on the other hand, is slower in onset and its effects last far longer. Metabotropic signals first 

begin to show their effects tens of milliseconds to hundreds of milliseconds after the metabotropic 

signal has been transmitted. Metabotropic effects can last from many tens of milliseconds, to 

hundreds of milliseconds, to seconds, to minutes, to hours. Some metabotropic effects are so long 

lasting as to be effectively permanent. These latter effects are thought to be the biological basis 

for long-term memory and learning.  

Thus, biological signal processing involves two distinct types of signaling activities. We 

may call these "data processing activities" (ionotropic signaling) and "modulation, control, and 

adaptation activities" (metabotropic signaling).  The classifications are hypothetical at our present 

 

Figure 1.5: The McCulloch-Pitts neuron model. Inputs x are excitatory input pulses. Inputs y are inhibitory input 
pulses. z is the output pulse. θ is a non-negative number called the threshold value. All input and output signals are 

binary valued. An active signal is assigned the numerical value 1; an inactive signal is assigned the numerical value 0. 

                                                 
6 Norepinephrine is also known as noradrenaline. A closely related modulator chemical is epinephrine, 
which is the principal "fight or flight" hormone. When someone speaks of having an "adrenaline rush," 
these are the typical transmitters being referred to.  
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state of knowledge. Nonetheless, this hypothesis seems to be a reasonable description of the 

probable role of these two very different signal processes. Of these two signal processes, the 

ionotropic signaling process is unquestionably the one that has received the most study. Our 

knowledge of metabotropic signal processing is significantly less advanced at present.  

§ 4. Early Neural Network Theory  

The existence of spiking neurons was known well before Hodgkin and Huxley carried out 

their epic research that led to the theory of the detailed physiology of neural signaling. In 1943 

neurologist Warren S. McCulloch and his associate Walter Pitts published the first mathematical 

model of the neuron and laid the foundations for the theory of neural networks [McCU]. Their 

subsequent work [PITT] introduced theoretical issues that are still key research topics in neural 

network theory today.  

Figure 1.5 illustrates the original McCulloch-Pitts neuron model. Input signal vectors x and y, 

and output signal z, are binary-valued pulses taking on values of either 0 (inactive) or 1 (active). θ 

is a non-negative number called the threshold. The value of the output pulse z is determined by 

the relationship between the excitatory inputs (x) and the inhibitory inputs (y) defined by  

    .        (1.1) 
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This simple model captured what was known of neurodynamics at that time. Such a simple 

model probably would not have attracted much attention except for McCulloch's and Pitts' major 

finding. They were able to prove that any finite logical proposition can be expressed by a network 

of McCulloch-Pitts neurons. This result caused a great stir because in 1943 many people were 

followers of a pseudo-philosophical attitude known as logical positivism. Among other things, 

logical positivism speculated that formal logic constituted the basic rules by which thinking takes 

place. This happy hypothesis has since been refuted by psychological research, but it was very 

influential throughout the 1940s and 50s. If neural networks could implement any logic function, 

the thinking went, then the McCulloch-Pitts theory drew the shades back from the great mystery 

of how thinking works in the brain. In the long run, the McCulloch-Pitts model proved to be more 

influential with computer scientists than with neurophysiologists, but it was nonetheless a seminal 

work. The McCulloch-Pitts model still pops up from time to time in network research.  

The work of McCulloch and Pitts soon came to the attention of one of the more remarkable 
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figures in twentieth century mathematics, John von Neumann. Von Neumann was able to prove 

that any McCulloch-Pitts neuron could be built up from a small set of simpler McCulloch-Pitts 

neurons, which von Neumann termed "organs" [NEUM1]. He used this fact in his pioneering 

work that led to the development of the digital computer. Von Neumann's "organs" are today 

known as "logic gates," and the central processing unit of the modern computer is nothing else 

than an artificial neural network constructed from McCulloch-Pitts neurons. This, by the way, had 

a lot to do with why early computers were popularly called "electronic brains" throughout the 

1950s and on into the early 1960s. Indeed, von Neumann's speculations on the relationship 

between computers and brains contain a number of remarkably prescient insights still important 

today [NEUM2-3].  

Von Neumann's early death from cancer left the task of developing the mathematical theory of 

neural networks in the hands of other, mostly younger, pioneers. Two most notable early 

explorers were psychologist Frank Rosenblatt and a young electrical engineer named Bernard 

Widrow. Working independently, Rosenblatt and Widrow introduced, at almost the same time, 

two significant and very similar extensions of the McCulloch-Pitts-von Neumann model. 

Rosenblatt called his model the perceptron [ROSE1-3]; Widrow called his the Adaline [WIDR1-

3].  

The perceptron and the Adaline both extended the capabilities of the McCulloch-Pitts model, 

but, more importantly, both models introduced adaptation algorithms by which they could be 

trained by examples to implement desired logic and signal processing functions. Rosenblatt called 

his algorithm the perceptron rule. Widrow's algorithm was originally known as the Widrow-Hoff 

or delta rule, but has since become more widely known as the LMS algorithm.7 Although both 

models and even both algorithms are very similar – so similar that many young researchers today 

mistakenly think the perceptron and the Adaline are one and the same8 – there are some very 

important differences in how the two models perform [WIDR3]. Early perceptron researchers 

made a number of speculations on what the perceptron was potentially capable of doing that 

turned out to be untrue. These claims were brilliantly, and somewhat harshly, refuted in a 1968 

book by Marvin Minsky (one of the early pioneers of artificial intelligence) and Seymour Papert 

[MINS]. Minsky and Papert proved a number of theorems showing that what a perceptron could 

really accomplish was, in fact, rather limited. Their work brought to an end the line of 

investigation that originated from the original perceptron concept.  

                                                 
7 LMS stands for "least mean squared." 
8 Only the adaptive threshold part of a perceptron is like an Adaline, but even here the differences are 
important. 
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The Adaline and the LMS algorithm proved to be more hardy. Although some of Minsky's and 

Papert's theorems apply equally to the original Adaline, it turned out that networks of Adalines 

(called Madaline networks; Madaline stands for "many Adalines") overcome a number of the 

limitations of perceptron networks, and later enhancements to the original Adaline overcame even 

more. Thus, the Adaline and Madaline networks are still alive and well today, particularly in the 

field of neural network modeling of psychological phenomena.9 Furthermore, the linear core of 

the Adaline (called the adaptive linear combiner) proved to have a multitude of important 

applications in adaptive filtering and adaptive signal processing extending far outside the realm of 

neural network theory. Today the LMS algorithm is probably the most widely used algorithm 

across the entire field of adaptive signal processing and adaptive image processing.10  

Minsky's and Papert's book also had an important unintended consequence. Their masterful, 

rigorous, and authoritative treatment of the perceptron's limitations convinced program officers at 

U.S. federal funding agencies that further funding of neural network research was throwing 

money down a rat hole. The funding stopped and the decade of the 1970s became a kind of dark 

age for neural network theory. Naturally, Minsky and Papert got blamed for this, and even today, 

long after the rebirth of widespread neural network research in the 1980s, some older researchers 

still bristle and snarl at the mere mention of Minsky and Papert.  

Yet although there was this mass extinction event for active neural network researchers, the 

species did not altogether die out in the 1970s. In Germany (where he was beyond the reach of 

U.S. funding agencies), Christoph von der Malsburg [MALS1] was carrying out research that led 

in time to the correlation theory of brain function, which is today one of the most important 

fields of study in computational neuroscience [MALS2]. Paul Werbos discovered the 

backpropagation algorithm [WERB]. As is not unusual for a dark age, Werbos' algorithm 

remained in obscurity until it was re-discovered by Rumelhart et al. in 1985 [RUME1]. This re-

discovery brought the 1960s perceptron and Madaline networks line of research back from the 

grave and re-populated the species of neural network theorists. The new twist in the neuron 

models used in backpropagation schemes (and other schemes developed since then) is the 

replacement of the binary-valued output of the perceptron and original Adaline models by a 

                                                 
9 Your author feels obligated to say that some of the more important issues raised by Minsky and Papert are 
probably (in his opinion) still issues even for today's modern versions of Madaline and other connectionist 
networks. The new Adaline derivatives are different enough that the conditions for the Minsky-Papert 
theorems no longer apply; but this only means there are no theorems telling us whether or not the old 
problems are still with us. It is a neglected area of mathematical neural network research.  
10 Here it must be noted that there are actually two versions of the LMS algorithm. They are called the α-
LMS and the µ-LMS algorithms [WIDR3]. It is the µ-LMS algorithm that finds the widest usage outside 
the field of neural network theory.  
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continuous-valued output function (now called the activation function). These extended models 

are sometimes called generic connectionist models, and are sometimes called firing rate models.  

But probably the most significant figure of this era was Stephen Grossberg. From his earliest 

work in the 1960s and up to the present day, Grossberg is the father of a completely distinct 

branch of neural network theory that has always been firmly rooted in neuroscience and remains 

faithful to that research mission today [GROS1-10], [ELIA]. By the mid-1970s Grossberg's work 

had led to the development of adaptive resonance theory (ART) [CARP1-5], [GROS5-6]. Every 

passing year seems to bring more evidence to light that ART touches something fundamental 

about brain function. He has from time to time been harsh and blunt in his criticisms of other 

neural network modelers and theorists for engaging in romantic speculations not anchored in 

psychophysical facts. This has not made him very popular, but his work is nonetheless widely 

recognized as among the most important in computational neuroscience.  

§ 5. Pulse-mode Neural Network Models 

One feature common to all the post-McCulloch-Pitts models just discussed is their distance 

from the individual biological neuron. Although the basic units employed in all these networks 

are called "neurons" in the literature, the fact is that few biologists would recognize them as such 

were they not told that these mathematical entities are "neurons." What these models do is 

attempt to model the large-scale behavior of groups of many neurons. They are populations-of-

neurons models rather than neuron models. There is a great deal of pragmatism in this approach 

because even very small patches of brain tissue involve hundreds to thousands of closely-

interconnected biological neurons. Current estimates place the total number of neurons in the 

human brain as being on the order of 100 billion neurons with on the order of 100 trillion 

synapses. Even relatively small areas of the brain that can be correlated to psychological 

phenomena quickly run to hundreds of thousands or even millions of neurons. The computational 

issues that attend modeling such vast numbers of neurons are staggering, and the problem of 

interpreting what such models are doing is even more staggering. Sejnowski et al. comment,  

 One modeling strategy consists of a very large scale simulation that tries to incorporate as much 
of the cellular detail as is available. We call these realistic brain models. While this approach to 
simulation can be very useful, the realism of the model is both a weakness and a strength. As the 
model is made increasingly realistic by adding more variables and more parameters, the danger 
is that the simulation ends up as poorly understood as the nervous system itself. Equally 
worrisome, since we do not yet know all the cellular details, is that there may be important 
features that are being inadvertently left out, thus invalidating the results. Finally, realistic 
simulations are highly computation-intensive. Present constraints limit simulations to tiny 
nervous systems or small components of more complex systems. Only recently has sufficient 
computing power been available to go beyond the simplest models [SEJN1].  
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Much of the challenge in computational neuroscience is attending to the dual problems of 

managing scale and connecting different levels of scale in an orderly hierarchy of scientific 

reduction (figure 1.1). Models such as those discussed in §4 are aimed at understanding larger-

scale psychophysical phenomena. Coming up from the lower level of neuron-scale physiological 

phenomena are the pulse-mode neuron and pulse-mode neural network models.  

Unlike the case of the higher-level models of §4, a well-trained anatomist or physiologist can 

look at these models and their outcomes and be able to quickly judge whether or not to believe 

the model and to see how one could go about verifying the predictions of these models in the 

laboratory. When the day arrives where we can trace an unbroken path from physiological neuron 

models all the way up to the systematic models of the type described in figure 1.1, we will know 

that neuroscience has matured to a degree matching the maturity of physics. Until that day, the 

systematic populations-of-neurons models will labor under a well-justified suspicion that they 

might be nothing more than Platonic exercises in mathematics. This is something every 

computational neuroscientist needs to clearly understand. Our goal is to make biological theory 

and psychophysical theory "meet in the middle."  

A strong case can be argued for assigning the birthday of computational neuroscience to the 

appearance in 1952 of Hodgkin's and Huxley's landmark paper [HODG], the work for which they 

won the Nobel Prize. At that time the term "computational neuroscience" was still years away 

from being introduced. Indeed, even "neuroscience" as an identifiable discipline was still years 

away from being recognized. The Hodgkin-Huxley model was, and still is, regarded first and 

foremost as a work of physiology. Computers were an expensive rarity at that time11, and there 

was no question of, or probably even the thought of, running simulations based on the Hodgkin-

Huxley model. It would not be until the 1970s that we would see an explosive growth in the 

development and use of Hodgkin-Huxley derivative models for providing theoretical explanations 

of physiological findings of neuron behavior and for simulating small neural netlets of what 

Sejnowski et al. called the "realistic models" class in the quote above.  

Although the H-H model was phenomenological, the physical reasoning upon which it was 

built gave a direction to research at the sub-neuron level. The much more recent confirmation at 

the protein level of what must have been seen in 1952 as a highly speculative hypothesis, is a 

stunning testimonial to Hodgkin's and Huxley's insight. Today Hodgkin-Huxley models set the 

standard against which the accuracy of newer and less computationally-expensive pulse-mode 

neuron models are judged. 

Pulse-mode neuron modeling research has branched out from the H-H model in two different 
                                                 
11 International Business Machines (IBM) was still a year away from announcing its first computer. 
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directions. We can more or less accurately call these two branches the physiological branch and 

the signaling branch. The physiological branch remains very closely tied to the physiologist's 

laboratory, and it focuses on providing quantitative explanations for laboratory results. The 1952 

Hodgkin-Huxley model was a quantitative model of the giant axon of the squid, not a "model of 

everything." The enduring contribution of the H-H model is in (1) the physiological insight it 

provided, and (2) its power and generality as a modeling method. (The latter is what is meant by 

calling later models H-H derivatives). Work in the physiological branch faces in one of two 

directions: either inside the neuron, to explain at a more primitive level the neuron's behavior, or 

outside the neuron, to understand the physiological properties and behaviors of small assemblies 

of neurons. Examples of the first kind are provided by the work of J.A. Connor [CONN1-2] and 

the outstanding team of D.A. McCormick and J.R. Huguenard [McCO], [HUGU]. An excellent 

representative of the second kind is provided by the work of H.R. Wilson [WILS1].  

Neuron models tied closely to physiological mechanisms are computationally expensive and 

this limits their applicability to only very small networks. The signaling branch of research 

attempts to understand the signal processing going on in biological neural networks. Here greatly 

simplified neuron models are employed, sacrificing physiological fidelity in favor of fidelity in 

signaling properties within much larger neural network models, in order to make orders-of-

magnitude reductions in the computational costs of these models. Indeed, it is often misleading to 

call the "neuron" models used in these networks "neurons" because what they often represent are 

the cooperative behaviors of groups of neurons (but at a level of scale far lower than that of the 

models of §4). The most widely used "neuron" models of this branch all belong to this class of 

abstract cell-group models.  

The simplest pulse-mode neuron model (after the McCulloch-Pitts model) is the integrate-

and-fire (IF) model [STEI], [KNIG]. This model can be derived by making many approximations 

on the Hodgkin-Huxley equations. It comes in two forms, the oldest and more realistic of which 

is called the leaky-integrate-and-fire (LIF) model (also known as the forgetful integrate-and-fire 

model). The LIF is efficient to compute and captures enough of the dynamics for many different 

types of neurons to be useful. For these reasons, it is perhaps the most widely used model for 

pulse-mode neural networks today. The LIF has been shown by Gerstner and Kistler to be a 

special case of a broader class of spiking neuron model known under the name spike response 

model (SRM) [GERS1-2], [KIST].  

Although the LIF model is efficient and useful, it does suffer from two conceptual handicaps. 

Real neurons exhibit a refractory period after firing. This refractory period is divisible into two 

phases, the absolute refractory time and the relative refractory time. During the absolute 
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refractory time no amount of biologically realistic input can induce the neuron to fire again. 

During the relative refractory time the neuron can be re-triggered into firing again, but the amount 

of input stimulus required (known as the firing threshold) is a decaying function, approximately 

exponential, of time. That is to say, the difficulty in inducing the neuron to fire again is great for 

time intervals shortly after the neuron has fired once, and decays over an interval of tens of 

milliseconds back down to (and briefly even slightly below) its original firing threshold. The 

absolute refractory time is easy to capture with the IF and LIF models, but the relative refractory 

time is not captured.  

The second drawback to the LIF model is that it is tricky to get groups of LIF neurons to 

synchronize their firing with one another. This is an issue because experimental evidence 

gathered over the past two decades has demonstrated that brain activity often takes the form of 

synchronized firing by groups of closely coupled neurons. Such cell groups are thought to be able 

to synchronize their responses to relatively poorly synchronized input stimuli. 

Neither of these drawbacks is necessarily prohibitive if one LIF "neuron" is made to represent 

the collective activity of a biological cell group. However, there are other limitations, which will 

be discussed later, to using one LIF to represent a cell group. A slightly more complex but still 

very efficient model that overcomes both limitations is the Eckhorn neuron (EN). This model 

was first proposed by Eckhorn et al. in 1991 [ECKH1] and has proven to be useful in modeling a 

number of network-scale signaling phenomena. The Eckhorn model has been used to successfully 

capture the behavior of many experimental results. However, a key part of this model, called the 

linking field, presently lacks a widely accepted biological explanation.  

The pulse-mode models described so far capture reasonably well the signaling dynamics of 

about 90% of the neuron types that have been studied to date. However, there are other types of 

neurons, generically characterized as bursting neurons, stuttering cells, and a few other types, 

that these models do not describe well. In recent years mathematicians working in the field of 

nonlinear dynamics have discovered some phenomenological models capable of mimicking these 

behaviors (as well as those of the majority of neurons). These models have no traceable links to 

physiology discovered thus far, and may indeed have none at all, but they are extremely efficient 

to compute and networks comprised of several hundred thousand of these neurons have been 

successfully constructed and simulated.12 The best known of these nonlinear dynamics models 

are Izhikevich's model [IZHI1] and Rulkov's model [RULK1].  

                                                 
12 Even larger networks, composed of millions of these neurons, have been built and run. While 
computationally this is a very impressive and unparalleled achievement, it is not at all clear that these 
networks have any real biological significance. In the opinion of this author, these simulations are more of 
a stunt than serious neuroscience.  
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This by no means exhausts all the different neuron models that have been proposed and used 

over the years. A short synopsis and comparison of many of these was recently provided by 

Izhikevich [IZHI2]. Some of these models are based on regarding "neurons" as oscillator 

functions. Others are based on examining only the details of oscillation dynamics. Still others 

successfully combine oscillator dynamics with spike production. The principal use for these 

models lies in understanding the mathematics of coupled nonlinear systems and in uncovering 

sufficient and necessary mathematical conditions for giving rise to synchronization, wave 

generation, and wave propagation in complex nonlinear networks. Excellent representatives of 

this research arena include [TERM1-2], [CAMP1-3], [MEDV], [KOPE], [COHE1-2], [ERME1-

3], [BRESS], [OSAN], [VREE], [FREE], [BUSH], and [BAZH].  

§ 6. Neurologic: An emerging new research field 

The historical connection between the McCulloch-Pitts model and von Neumann's develop-

ment of the digital computer makes it unsurprising that a great potential exists for neuroscience 

findings to make collateral contributions to engineering in the arena of computing. Indeed, the 

digital computer can be rightly regarded as the single greatest commercial contribution made by 

neuroscience to date. However, as von Neumann pointed out in the last years of his life, an even 

greater potential still exists for using neuroscience models and findings to advance the state of the 

art in the development of "electronic brains" – computing machines that better approximate the 

human ability to think, reason, and learn. Work in this field goes by the names "computational 

intelligence" and "neurocomputing." What is less recognized is a great potential for this 

engineering research to make collateral contributions to neuroscience proper.  

The reason this potential exists is simple. Large-scale brain systems are extraordinarily 

complex and the task of understanding them through a process progressing from the biological 

neuron to large-scale neural systems could best be called "horrendous." On the other hand, a great 

many methods and techniques for the design of large-scale digital systems have been developed 

over time from the 1950s running to today. All these methods developed out of the original 

McCulloch-Pitts-von Neumann model. However, there appears to be no fundamental barrier to 

extending logic design mathematics to include the vastly richer signal processing capabilities of 

modern neuron and population models. One could call this virgin and largely unexplored research 

field by the name neurologic. Neurologic, as a new discipline, has great potential for an exciting 

partnership between engineering and neuroscience proper. It is at this time a discipline waiting to 

be born.  
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