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The Biological Neuron 
 

§ 1. The Diversity of Voltage-Gated Channels 
Although the importance of the original Hodgkin-Huxley model can hardly be overstated, it is 

nonetheless a model of the giant axon of the squid. With the benefit of hindsight, today it does not 

seem very surprising that the whole neuron is a much more complicated object. Experimental 

research carried out in the 1960s eventually showed the two types of voltage-gated ion channels 

(VGCs) described by Hodgkin and Huxley were not the only types in existence. It was discovered 

that potassium channels came in many flavors. Sodium channels, too, were found to be of 

multiple types. Voltage-gated calcium channels were likewise discovered and rounded out the 

collection of major contributors to voltage-gated ionotropic current flows in the neuron cell. Even 

voltage-gated chloride channels have been documented [JENT].  

The axon has a relatively simple task, namely the propagation of an all-or-nothing action 

potential. The principal signal processing tasks are carried out by the soma and dendrites of the 

neuron. The fast, transient Na+ channel and the slower, persistent K+ channel first described by 

Hodgkin and Huxley are adequate for the former, but inadequate to describe the latter. What is 

impressive, however, is the range over which the Hodgkin-Huxley modeling schema has been 

extended to take into account the whole neuron. Early work in extending Hodgkin-Huxley to the 

whole neuron appeared in 1971 in a series of papers by Connor and Stevens, leading to the 

Connor-Stevens model of the gastropod soma [CONN1]. Extension of the basic H-H schema is 

accomplished by identifying and characterizing VGC channel types and adding them in parallel 

to the other VGCs in the basic H-H circuit model. As Connor and Stevens remarked in a later 

paper,  

 The strategy in this study has been to make justifiable changes in an existing system, the 
Hodgkin-Huxley equations, rather than pursue a competing analysis . . . We have chosen this 
formal and, we hope, more general approach for the following three reasons. First, we are unable 
at this time to justify a novel and adequate kinetic description of current carried by potassium ion 
in the repetitive-firing preparation and hence have tried to remain as close as possible to an 
existing scheme. Second, despite specific shortcomings of the Hodgkin-Huxley equations in 
fitting all of the available voltage clamp data from axons . . . they remain the commonly used 
formulation in which to cast voltage-clamp data and form the basis of the standard conceptual 
framework for interpreting complex electrical events in excitable cells. Third, the considerable 
literature on the repetitive characteristics of the equations should serve as a useful basis for 
criticism of this or any other analysis of repetitive activity in excitable membranes [CONN2]. 

Time and experience has given testimony to the soundness of the Connor-Stevens strategy and 
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thus far has vindicated their treatment of H-H as a modeling schema. Today we know of what has 

been called a "veritable zoo" of voltage-gated ion channels. Let us look at the denizens of this 

zoo.  

§ 1.1 K+ Channels 

K+ channels are found in all living cells and are a core feature of cellular life. In higher 

animals they are classified in three major groups identified by the specific "architectures" of 

membrane-spanning proteins [HILL4: 135]. These are named the 2TM, 4TM, and 6TM 

topologies, where the numerical designation identifies the number of transmembrane regions in 

the protein. The principal voltage-gated K+ channels belong to the 6TM group. There are 

currently 24 recognized sub-families of K+ channels, of which 16 belong to the 6TM family. 

Genetic analysis indicates that all 16 sub-families trace back to a common ancestral protein more 

than 2.4 billion years ago. Nine of the sixteen sub-families are called "delayed rectifiers" and the 

original K+ channel in the Hodgkin-Huxley model belongs to this group.  

At least two sub-families in the 6TM group, the "mslo" and "SK1" sub-families, are 

modulated by concentration levels of cytoplasmic free Ca2+. Some of these (the "BK" group of 

the mslo sub-family) are also voltage-dependent. Their single-channel conductances, gp, range 

from as low as 4 pS to as high as 250 pS [HILL4: 144].  

The seven sub-families in the 2TM group are called "inward rectifiers." These have the 

interesting property that they stop conducting under membrane depolarization and increase 

conduction under hyperpolarization. This is the precise opposite of behavior we saw for the K+ 

VGC in the squid axon. The membrane voltage at which they open and begin conducting is a 

function of the extra-cellular K+ concentration, generally increasing (getting closer to 0 volts) as 

[K+]o increases. They are also characterized by at least two time constants, one very fast (less than 

1 ms) and the other ranging from milliseconds to 0.5 seconds, depending on the particular 

channel protein. Because glial cells are thought to regulate the levels of [K+]o here is one 

speculative mechanism by which it might be possible for glia to participate in biological signal 

processing. Some (the Kir6 sub-family, also called KATP) open and hyperpolarize the cell when 

the level of ATP (adenosine triphosphate, a molecule responsible for powering the metabolism of 

a cell) falls low. One could say this channel "shuts down" neurons that are low on energy. Some 

K+ channels, belonging to the Kir8 sub-family, are regulated by metabotropic signaling processes 

and can be opened in response to hormone or neuromodulator signaling.  

Exploration of the 4TM family is not yet very far along. It has currently not been divided into 

sub-families, although future research is expected by many to reveal a rich sub-family tree similar 
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to those of the other two families. The 4TM channels that have been studied have not shown any 

strong voltage dependency and their presently known role seems to be that of "leakage" channels 

that help determine the membrane resting potential. Some are known to be closed by 

metabotropic signaling processes, and these would appear to constitute another mechanism by 

which the activity of a neuron can be modulated.  

The various K+ channels play significant roles in modifying how a basic H-H-like circuit 

responds to different stimuli. For example, McCormick and Huguenard identified four distinct 

types of K+ channels, one of which is a leakage channel, present in single thalamocortical relay 

neurons in the dorsal lateral geniculate nucleus (LGN)1 of rodents and cats [McCO]. McCormick 

has described some of the effects these channels have on cell signaling properties in [McCO1]. 

The list of known distinct types of K+ channels is long and impressive. We will not do an in-depth 

review of the specific channel types in this book. Extensive reviews are provided by Rudy 

[RUDY] and by Storm [STOR].  

§ 1.2 Na+ Channels 
Na+ VGCs are much less diverse than the K+ channels and belong to a different genetic 

"family tree." They descend from a 24TM protein "architecture." Na+ channels are classified into 

9 different channel types. Interestingly, the Na+ channels appear to have branched off from one 

line of Ca2+ channel proteins about 800 million years ago [HILL4: 721]. They are classified 

according to amino acid sequences and bear the rather simple names Nav1.1 through Nav1.9. The 

closer numerically the last digit is to another channel, the more similar are their amino acid 

sequences.  

Functionally, Na+ channels are divided into two groups, typically called Na(fast) and Na(slow) but 

also called Nat (for "transient") and Nap (for "persistent"). The former is the class described by the 

H-H model (that is, it is an "inactivating" channel). In the case of the latter, it is often not 

altogether clear if the channel is non-inactivating or if it is merely an inactivating channel with a 

very large inactivation time constant. Functionally, this latter fine point seems to make no known 

important difference insofar as biological signal processing is concerned since if it is "slowly 

inactivating" rather than non-inactivating, the neuron’s signaling response seems the same in 

either case. That is one reason for calling them "persistent" rather than inactivating vs. non-

inactivating.  

Transient ("fast") Na+ channels typically have an activation threshold around about –50 mV. 

They are the VGCs responsible for generation of the action potential. Persistent channels 
                                                 
1 The LGN is part of the thalamus, which is the main "switchboard" for sensory information en route to the 
neocortex from the peripheral nervous system.  
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typically have an activation threshold of around –65 mV, and thus some number of them may be 

open already at the neuron’s resting potential [JoWu: 208]. If these really are non-inactivating (as 

opposed to extremely slowly inactivating), they would constitute a form of "leakage" channel for 

the neuron at rest if the neuron’s resting potential is Vr > –65 mV. Nonetheless, they are still 

VGCs. McCormick and Huguenard [McCO] described their persistent Na channel using an 

expression of the form INap = gmax⋅(Vm – ENa)⋅m.2 Unlike the H-H model, m was given as a direct 

function of the membrane voltage and not from a differential equation describing a rate process. 

Thus their m does not have an interpretation in terms of gating kinetics. Rather, it is obtained 

based on experimental findings by French et al. [FREN].  

French and his colleagues were able to demonstrate the existence of a voltage-activated and 

persistent Na+ channel in rat hippocampus. The French model is a curve-fit to measured data, and 

they were able to fit their results to a function of the form 

   ( )[ ]kVV
gG

m
Na −+

=
50

max

exp1
 .        (4.1) 

An equation of the form of (4.1) is called a Boltzmann equation, named after the Boltzmann 

distribution function in classical statistical mechanics. Here V50 is the membrane voltage at which 

50% of the peak value of conductance occurs, Vm is the membrane voltage, and k is a constant. 

They reported the best fit to their experimental data for V50 = –50 mV and k = 9 mV. Their gmax 

averaged 7.8 ± 1.1 nS for the whole neuron and 4.4 ± 1.6 nS for dissociated cell bodies (neurons 

that had their dendrites removed, leaving only the soma and some dendrite "stubs"). This pair of 

findings led them to conclude the majority of Nap channels were located on or near the soma. By 

estimating the cell’s surface area from measurements of its capacitance and assuming 1.0 µF/cm2, 

they estimated the specific gmax at 1.7 ± 0.6 pS/µm2.3 This compares to a measured specific 

maximum conductance for the transient Na+ channels of 113 ± 11.6 pS/µm2. Thus either the gp 

for the persistent channel is some sixty times smaller than that of the transient channel pore 

(which seems unlikely), or the pore density is some sixty times less, or some combination of 

lower maximum conductance and lower density characterizes the persistent channel.  

The nature of the experimental technique used by French et al. did not permit them to 

characterize the gating kinetics of the persistent Na+ channel because these kinetics were masked 

by the large-amplitude action potentials the neurons produced in response to stimulus. All that 

                                                 
2 A negative current in their model denotes current flow into the cytoplasm. This has become a more or less 
standard convention among physiologists today. 
3 A "specific" gmax is defined as gmax per unit area. 
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can be confidently concluded from their experiment is that the activation gate of the persistent 

channel opens no more slowly than the inactivation gate of the transient channel closes. When 

gmax in (4.1) is set to 1 we obtain the m variable used by McCormick and Huguenard. It still 

ranges from 0 to 1, and can still be interpreted in terms of the fraction of available channels that 

are open. It does not, however, have an associated time constant. This does not mean the 

physiological channel has no time constant; it merely means we do not know what it is.  

It is not inappropriate to mention here that some channels not belonging to the Na+ family also 

conduct Na+ currents along with K+ currents. These are usually vaguely referred to as "cation 

channels." In addition, some of the hyperpolarized K+ slow inward-rectifier channels also conduct 

some amount of Na+. As remarked upon in chapter 1, the "leakage circuit" part of a H-H-like 

circuit model can hide some rather interesting physiology.  

§ 1.3 Ca2+ Channels 

Calcium ions are one of the most potent metabotropic chemical "messengers" known. Free 

Ca2+ ions in the cytoplasm are responsible for a vast range of effects, including long-lasting 

changes currently thought to be the biological basis for learning and memory. Free Ca2+ levels 

within the neuron are kept very low, on the order of 50 to 100 nM, by the action of various 

internal cell structures that capture and "warehouse" calcium, and by the action of calcium 

pumps. In most neurons a structure called the endoplasmic reticulum (ER) serves as the primary 

"warehouse" for stored calcium. A typical [Ca2+]o concentration is on the order of about 2.0 mM 

and so a Nernst potential for Ca2+ at 290 kelvin would range from +124 to + 132 mV.  

There are two major divisions of Ca2+ channels, called the high-voltage activated (HVA) and 

low-voltage activated (LVA) Ca channels. The HVA group is further divided into two branches, 

called the L branch and the "second branch." The L branch of the HVA group contains four sub-

families of channels (called Cav1.1 through 1.4). These channels are slow, persistent ion channels. 

Their activation threshold is about –30 mV. Although called "persistent" channels, they do have 

an inactivation range (about –60 to –10 mV) but their inactivation time constants are greater than 

500 ms [HILL4: 117]. They deactivate rapidly in the range from –80 to –50 mV and have a single 

channel conductance gp of about 25 pS.  

The second HVA branch contains three sub-families (called Cav2.1 through 2.3, and also often 

called the P/Q, N, and R channels). These are transient channels with an activation threshold of 

about –20 mV. Their inactivation range is from –120 to –30 mV with inactivation time constants 

in the range from 50 to 80 ms. They deactivate slowly in the range from –80 to –50 mV and have 

a single channel conductance gp of about 13 pS [HILL4: 117]. Both branches of HVA channels 
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are found in presynaptic terminals, and they are responsible for triggering neurotransmitter 

exocytosis in response to action potentials. Their activation thresholds account for the value of Ω 

stated in chapter 3 for the model of synaptic LGC conductance. HVA channels have also been 

found outside the presynaptic terminal, although their role here is not certain (owing to their high 

activation threshold).  

The LVA channel branch contains three sub-families, denoted Cav3.1 through 3.3. These are 

also often called T-channels. As the name implies, their activation threshold is low, about –70 

mV. They are transient channels with an inactivation range from –100 to –60 mV. Thus, for the 

typical neuron at its resting potential these channels are inactivated. Hyperpolarization rapidly 

deactivates them, and then their low activation threshold causes them to re-open briefly. One 

interesting consequence of this is a phenomenon called post-inhibitory rebound. In some 

neurons, inhibitory synaptic signals are followed, after cessation of inhibition, by the generation 

of a single action potential spike. This phenomenon is thought to be due to the T-channels re-

activating after deep hyperpolarization. A typical value for gp in these channels is about 8 pS 

[HILL4: 117].  

Genetic analysis suggests both branches of Ca2+ channels stem from a common ancestral 

protein, probably about 1.8 billion years ago. In turn, this common ancestor is thought to have 

descended from an earlier 6TM ancestor more than 2.4 billion years ago. It is possible that this 

common ancestor might also have been the ancestor of the 6TM line of K+ VGCs [HILL4: 721].  

§ 2. Extending and Augmenting the Hodgkin-Huxley Model 
The presence of so many different kinds of VGCs, each with differing gating kinetics and 

voltage dependencies, makes it necessary to extend the basic Hodgkin-Huxley model. 

Furthermore, the presence of Ca2+ channels poses an additional consideration. While the battery 

potentials ENa and EK are not changed significantly by their respective ion flows (because the ion 

concentrations in the cytoplasm and extracellular region do not change by a large enough amount 

to significantly affect the Nernst potential), the situation is quite different in the case of calcium. 

The normal concentration of cytoplasmic free Ca2+ for the cell at rest is quite low, and so the 

influx of Ca2+ via calcium VGCs is sufficient to register an effect on ECa.  

Physiologists usually account for this effect by replacing the relatively simple expressions for 

ion current flow we have been using with the Goldman-Hodgkin-Katz current equation (which 

will be presented later). Furthermore, the calcium-dependent family of K+ channels also has a 

conductance that explicitly depends of the concentration of cytoplasmic free calcium. In order to 

properly model both effects, the cytoplasmic concentration of free Ca2+, which we will denote 
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using the symbol [Ca]f , must be explicitly accounted for. Thus, [Ca]f must be made an additional 

state variable in the model of the neuron. This is called augmenting the Hodgkin-Huxley model. 

§ 2.1 Extending the Ion Channel Model 
We will begin with the method for extending a VGC model for one particular ion, say K+ or 

Na+, to account for the variety of membrane-spanning proteins that conduct the overall ion 

current. It has previously been noted the total conductance of a channel is the sum of the 

conductances of the individual open pores. If these pores have different gating kinetics and 

different voltage dependencies, we must divide the total channel conductance, G(t), into a sum of 

conductances for the different channel types. For example, suppose we have two distinct types of 

K+ channel proteins. Since each would have the same EK potential, we would write the total 

channel conductance as the sum of two terms, i.e. G(t) = G1(t) + G2(t). This is illustrated by 

Figure 4.1 below. The circuit at the left in this figure is called a Thévenin equivalent of the circuit 

on the right. This equivalence method can be extended to include as many different species of ion 

channels for a particular ion as necessary. For example, McCormick’s and Huguenard’s thalamo-

cortical relay neuron model [McCO], [HUGU] contains two types of Na channels, four types of K 

channels, two Ca channels, a sodium leakage channel, and a potassium leakage channel for a total 

of ten specific channels.  

§ 2.2 Calcium Channels 
Levels of free calcium in the cytoplasm are always extremely low. Typical concentrations of 

free Ca2+ in the cytoplasm are in the range of 50 to 100 nM. (1 M = 1 mole per liter). This is six 

orders of magnitude less than the concentration level of free Na+ in the cytoplasm. This low level 

of free Ca2+ is caused and maintained by physiochemical processes in the cell for transporting and 

 

 

Figure 4.1: Extending an ion channel into two components. 
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storing calcium and for returning Ca2+ to the extracellular region [HILL4: 269-306]. The 

immediate consequence of this is that it is rather meaningless to try to assign a Nernst potential 

for calcium channels. Even if the membrane potential Vm becomes positive, either due to action 

potential generation or because of voltage clamp measurements, the cytoplasm contains so few 

free Ca2+ ions relative to the extracellular region that no outward flow of calcium current results. 

Physically, a Nernst potential is the representation of a condition of thermodynamic equilibrium, 

but calcium channel current flow is an inherently non-equilibrium thermodynamics phenomenon.  

For this reason, and for the practical reason that attempts to describe Ca2+ currents in the same 

way Na+ and K+ are described do not work, models of calcium VGCs are based on another 

theoretical approach, called constant-field theory, originally developed in 1939 by Nevill Mott 

for describing electron conduction in a copper/copper oxide rectifier. D.E. Goldman introduced 

the method to biology in 1943 [GOLD], and the theory was further polished up and developed by 

Hodgkin and Katz in 1949 [HODG7]. The result is the Goldman-Hodgkin-Katz (GHK) current 

equation.  

The GHK current equation4 models the current density (current per unit area) flowing through 

a permeable membrane as a function of membrane voltage and ion concentrations. We will only 

consider Ca2+ currents here, but the GHK current equation applies equally well to other kinds of 

ion flux. Flux density is defined as the number of particles flowing per unit area of cross section 

per unit time for a group of particles moving in an organized manner. (The integral of flux density 

taken across the entire surface area is called the particle flux). When the number of particles is 

expressed in moles (1 mol = Avogadro’s number of particles), the flux density is called the molar 

flux density (which is usually expressed in units of mol/cm2⋅s). The permeability constant P of 

the membrane (often just called its "permeability") is defined to be the ratio of the molar flux 

density to the difference in ion concentrations on the two sides of the membrane. When the 

concentrations are expressed in units of moles per cm3 (moles per milliliter) and the molar flux 

density is expressed as before, the permeability constant has the units of cm/s. Formally, P is 

merely a mathematical quantity meant to convey in some sense how "easy" or "hard" it is for an 

ion to penetrate through the membrane. At our present state of knowledge we cannot derive P 

from more fundamental considerations, and its quantity is experimentally determined. In making 

this determination it is not unusual for the measured quantity to actually be the product of this 

mathematical permeability constant and the surface area of the cell, p = PA. P is then determined 

by dividing out the surface area.  

                                                 
4 There is also a GHK voltage equation. It is often used by theoretical biologists, but we will have little 
need of it in this text.  

73 



Chapter 4: The Biological Neuron 

Armed with these ideas, the GHK current equation is derived from the Nernst-Planck 

equation for electrodiffusion, which describes ion motion [HILL4: 312-319]. The final result can 

be written5 as 
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where Vth = kT/ze is called the thermal equivalent voltage, Vm is the membrane potential (relative 

to the extracellular region), F = 9.6485⋅104 coulomb/mole is Faraday’s constant, z = 2 is the 

valence of Ca2+, and iGHK is the current density. s is a scale factor that depends on the units used to 

express the concentrations and the permeability. When P is in cm/s and the concentrations are 

expressed in moles per milliliter, s = 1 and iGHK has units of amperes/cm2. If the concentrations 

are expressed in nM (10-9 moles/liter) and s is set to 1000, then iGHK is in nA/cm2.  

To obtain the Ca2+ channel currents for the whole cell, we factor in the gating dynamics of the 

voltage-dependent calcium pores and either multiply iGHK by the surface area A (in cm2) or, 

equivalently, replace P by p = PA in (4.2). This gives us 
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where mCa and hCa are the activation and inactivation gate factors. A typical empirical value for 

L-type Ca2+ and T-type Ca2+ channels is j = 2. pmax is called the maximum permeability factor and 

has units of cm3/s. If the cell’s internal mechanisms for clearing out free Ca2+ (called "calcium 

buffering") are efficient, then q = 0 and the channel is non-inactivating6. As an example of the 

activation gate kinetics, McCormick and Huguenard used the following expressions for the high-

voltage L-type channel in thalamocortical relay neurons: 
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with Vm expressed in mV. As always, these three quantities are dimensionless.  
                                                 
5 Biologists and chemists are accustomed to seeing the GHK current equation in a different form from this. 
To obtain this expression we make use of the identity R/F = k/e, where k is the Boltzmann constant. 
6 It is known that for calcium channels h is a function of [Ca2+]i. If something interferes with the calcium 
buffering mechanisms, allowing a large rise in free cytoplasmic calcium, the channel is inactivating. 
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Biologists usually do not express the calcium channel in terms of a conductance, although by 

noting that (4.3) is in the form of something times the membrane voltage, we are perfectly free to 

regard this expression as a conductance, i.e.,  
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Doing this is equivalent to saying the calcium battery potential is ECa = 0. This GGHK is, however, 

a rather exotic conductance. First we note that it is calcium dependent as well as voltage 

dependent. The extracellular calcium concentration can be regarded as constant (typically with a 

value of about 2 mM), but the free cytoplasmic calcium concentration is not. Therefore, in 

simulations this expression must be augmented by a model component describing the 

concentration of free [Ca2+]i. Second, note that for Vm = 0, the denominator of (4.5) goes to zero, 

meaning GGHK is infinite (like a "short circuit"). However, (4.3) remains finite because 
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and so ICa remains finite and well-defined. For Vm < 0, GGHK is positive (because the extracellular 

calcium concentration is so much larger than the free cytoplasmic calcium concentration). But for 

Vm > 0 there is a range of membrane voltages for which GGHK is negative. Electrical engineers are 

used to dealing with negative resistances and negative conductances – they are a commonplace 

occurrence in feedback circuits containing active gain elements such as transistors – but the 

occurrence of negative conductance in a biological model severely clouds the issue of making any 

sort of interpretation of the physical significance of GGHK. Certainly we lose the comfortable 

mental picture of channel conductance as the simple conductance of a pore in a membrane. What 

one should bear in mind is that constant-field theory is at best an approximate theory and makes a 

number of simplifying assumptions that do not stand up under close physiological scrutiny. As 

Bertil Hill has remarked,  

 The GHK theory is a superb tool for reporting results, but is less useful as a guide to the 
physical structure of channels. Two quite different concepts of solubility-diffusion theory – the 
partition coefficient and the mobility – are blended into one permeability parameter. The channel 
is assumed to be homogeneous. The ions are assumed not to interact either physically or electro-
statically. But these assumptions are wrong, so the predictions cannot be right in detail. Indeed, 
the deviations from GHK theory . . . have stimulated the major advances since 1970 [HILL4: 
449]. 

If we bear this in mind and understand that GGHK is a mathematical creature, we can go ahead and 

use (4.5), understanding we are not to read into it things that are simply not there.  
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Figure 4.2: ICa and GGHK steady-state curves with [Ca2+]i held constant for an L-type Ca2+ channel. 

Although there is no particular physiological value to doing so, it is instructive to plot (4.3) 

and (4.5) as functions of membrane voltage with [Ca2+]i held constant and with m = m∞. This is 

done in Figure 4.2 using pmax = 1 cm3/s, [Ca2+]i = 50 nM, [Ca2+]o = 2 mM, T = 297 kelvin, j = 2, 

and q = 0. The McCormick-Huguenard expressions (4.4) were used to calculate m. (4.3) was 

scaled to give ICa in nA, and Vm and Vth are in mV. GGHK is in µS.  

Our first observation is that ICa is negative (denoting current flowing into the cytoplasm) for 

all values of Vm. The peak occurs just slightly above Vm = 0, and the half-maximum current first 

occurs at around Vm = –15 mV. This illustrates why the L-type Ca2+ channel is called a high-

voltage-activated (HVA) channel. GGHK is positive for all Vm < 0. It has a singularity at Vm = 0 

and is negative throughout the range of Vm > 0 shown in the plot. These plots are instructive for 

the purpose of gaining a qualitative "picture" of the properties of the calcium channel, although 

the artificial constraint of keeping the calcium concentrations constant prevents us from making 

serious quantitative judgments of how the channel will behave in simulation. Their usefulness is 

akin to the steady-state activation variable and time constant plots in chapter 3 for the Hodgkin-

Huxley model. Note, too, the singularity at Vm = 0 is a feature of GGHK that is independent of 

calcium concentrations for any physiological numerical values for these concentrations.  

LVA calcium channels are also usually modeled using the GHK current equation method, 

although there are exceptions to this in the modeling literature. The two principal differences 

between LVA curves and HVA curves are these: (1) the activation voltage for the LVA channel 

shifts dramatically to the left, from about –15 mV to around –40 mV; (2) the LVA channel is a 

rapidly inactivating channel (q = 1) and requires Hodgkin-Huxley-like expressions for the 

voltage-dependent inactivation factor h. This is often in the form of a Boltzmann equation (V50 on 

the order of about –80 mV, the Boltzmann equation k factor on the order of about –4 mV). It is a 

peculiarity of the LVA T-type channel that its time constant function is often biphasic, i.e, the 

curve fit equation for Vm < V50 and that for Vm > V50 are often different. An example of this is 
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provided by [HUGU].  

§ 2.3 The Linvill Modeling Schema 
Models of cytoplasmic Ca2+ concentration in neurons are usually fairly simple, direct, and to 

the point. Nonetheless, there is something to be said in favor of having a general and versatile 

modeling schema for particle accumulation, transport, chemical reaction, and storage in the cell. 

A general schema is an aid for transforming qualitative models into quantitative ones and for 

developing relationships descriptive of more complex physiological processes. After all, if the 

Hodgkin-Huxley schema is useful in part because it provides a guide for dealing with the 

complexities of VGC and LGC signaling, is it not also likely that a similar schema might prove 

useful for dealing with cellular biochemical signaling processes?  

In this text we resurrect and adapt to our purposes a modeling schema originally developed in 

1958 by John G. Linvill [LINV: 17-48] and extended to application in neuroscience by his former 

student, Wells, in 2007. The Linvill model was developed to represent carrier transport, storage, 

and generation-recombination phenomena in semiconductors in terms of carrier densities and 

current flows. The model had never previously been applied to biological signaling processing 

models. After all, the neuron is not a transistor or a diode. Nonetheless, with only a few minor 

adaptations of the Linvill model, we can apply its as a schema for representing ion flux and 

concentration in the cell. This section introduces the basic modeling elements and their 

mathematical description. The next section applies it to the relatively simple task of modeling 

cytoplasmic free Ca2+ concentration.  

The Linvill modeling schema allows us to represent the model as a network of elements, each 

of which is characterized by a specific element law. Figure 4.3 illustrates the five basic Linvill 

network elements.7 Ion or molecule concentration is denoted by the symbol ν. Ion or molecule 

flux is denoted by the symbol φ. Flux is positive in the direction denoted by the arrows. 

 

Figure 4.3: The five basic network elements of the Linvill modeling schema. 

                                                 
7 The notations and variables used here are modified from Linvill’s original form. Linvill was concerned 
with modeling charge densities and currents, whereas we have broader and more diverse needs. 
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Particle (ion or molecule) motion in space is formally describable in terms of partial 

differential equations with boundary conditions. While such a description is mathematically 

rigorous and precise, it is also rather cumbersome and computationally difficult to deal with in all 

but the simplest cases of physical geometries. This issue is often overcome in the various sciences 

through the introduction of the lumped element approximation. For example, electric and 

magnetic phenomena are rigorously described by Maxwell’s equations, a set of partial differential 

equations. Circuit theory is the lumped element approximation of these equations, applicable 

when electromagnetic radiation (a consequence of Maxwell’s equations) is not an important 

factor. (Neglect of radiation effects is called the quasi-static approximation). Similarly, the 

Linvill model is a lumped element approximation to the partial differential equation description 

of particle transport, storage, and accumulation.  

The storage element ("storance") represents the accumulation of particles in a region due to 

influx from some other location or source. Its ν-φ relationship is based on the mathematical form 

of the divergence theorem which, in nontechnical language, merely states, "What goes in must 

come out or else remain inside." The element law merely states that the net influx of particles into 

the storage element is proportional to the time rate of change of concentration, 

   φνν
==

∆
&C

dt
dC            (4.6) 

Dimensional analysis shows C has units of volume. C reflects the fact that a region of greater 

volume builds up particle concentration less rapidly than a region of smaller volume for the same 

amount of flux. We may at once note the similarity between (4.6) and the element law for a 

capacitor in circuit theory. φ is analogous to electric current and ν is analogous to voltage. There 

are, however, limits to this electric circuit analogy. The accumulation of ν in a storage element 

does not induce the accumulation of some other particle elsewhere (no equivalent to charge on 

one plate of a capacitor inducing the opposite charge on the other plate), and there is nothing 

analogous to the "displacement current" through a capacitor which is a consequence of the 

Maxwell equations. Likewise, there is no "Kirchhoff’s voltage law" for this network. Particle flux 

is not required to flow in a closed circuit path (hence the model is a "network" model rather than 

a "circuit" model). Particle conservation, however, is required for the first four network elements 

because only the reactance element represents a chemical reaction, e.g. a + b → c.  

The flux source element represents influx/efflux from some exterior source. Our most 

common use for this element will be to convert electric currents obtained from the H-H model to 

particle flux. The current I due to a flux φ of particles with valence z is simply I = zeφ when φ is 
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expressed in particles per second. It is more convenient, however, to express flux in units such as 

moles/second. In this case we would write I = zFφ, where F is Faraday’s constant. (If we had a 

current density – amperes per unit area – we would replace flux by flux density). Letting β = 1/zF 

we obtain the element law as φ = β⋅I with I in amperes and β in moles/coulomb. For z = 1, β is 

numerically equal to 10.3643⋅10–6 moles/coulomb; it is one-half this value if z = 2. Note that the 

sign of the valence is irrelevant to flux (since this is merely the sign of the electric charge 

carried). Therefore if one is modeling the flux of a negative-valence particle, the absolute value of 

z would be used.  

The transporter symbol is our generalization of an element Linvill called a "combinance" 

[LINV: 25]. In his original model this element was used to model charge generation and 

recombination in semiconductors. That is a process by which bound charge is converted to free 

charge and vice versa. The analog to this within the cell (not including chemical reactions that 

produce new compounds) are the processes by which free particles are introduced or removed by 

various transport processes, such as the transport process by which free Ca2+ is removed from the 

cytoplasm and stored in the endoplasmic reticulum [HILL4: 269-273]. In effect, these are 

pumping processes in which the average flux is determined by the amount of particle transport 

per cycle of the pump and the concentration of the particle being transported. Thus, the simplest 

form of an element law for the transporter is the relationship 

   νρφ ⋅=              (4.7) 

where ρ is an empirically-determined transport parameter with units of volume/second. Note that 

this expression is unidirectional. The concentration variable in (4.7) is placed at the "boxed" end 

of the network element, and whatever the concentration may be at the other terminal is irrelevant. 

The transporter does not represent a passive diffusion process. That dynamic is modeled by the 

fourth network element.  

The diffusion element ("diffusance") represents particle flux due to concentration differences. 

Flux is positive in the direction from higher concentration to lower concentration. In its simplest 

form, the diffuser element law is merely 

   ( 21 )ννφ −⋅= D            (4.8) 

where D is an empirically-determined parameter with units of volume/second.  

If C, ρ, and D are represented by simple constants we have a linear model of transport and 

storage. Making these variables functions of ν, and possibly other variables, produces a nonlinear 

model. At our present state of knowledge of neural physiology no nonlinear model of the 
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neuron’s internal processes is in widespread use and, consequently, most neuron modeling work 

has used a linear model of the cytoplasmic Ca2+ transport and storage processes.  

Using the first four elements we can construct network models of arbitrary complexity to 

represent various transport and storage processes excepting those involving chemical reactions 

(for which we need to represent what happens to the reaction compounds afterward). Chemical 

reactions are modeled by the reactance element, which is discussed at the end of this chapter. If 

it happens to be the case where we do not care what happens later to these reaction products, a 

transporter element (called a reactor in this case) combined with a storage element can suffice 

for representing the introduction or the removal of free particles. The next section illustrates the 

application of this modeling schema to Ca2+ augmentation of the basic H-H model.  

§ 2.4 Simple Models of Ca2+ Processes in the Neuron 
The simplest and most common model of Ca2+ buffering in the neuron represents the gross 

influx of Ca2+ from calcium channels and the removal of free Ca2+ from the cytoplasm by a 

transport process. Figure 4.4 illustrates the model network. The endoplasmic reticulum is 

regarded as having infinite volume and so the time rate of change of [Ca2+] at this node is zero. ICa 

is obtained from the electrical model of the neuron and its numerical value is negative or zero. 

Thus, the network of Figure 4.4 receives an influx of Ca2+ into node ν. Summing the effluxes 

from this node, we obtain the dynamical equation 

   ( )tI
dt
dC Ca⋅−⋅−= βνρν  .         (4.9) 

We convert (4.9) to difference equation form by the same method used previously. 

 

 

Figure 4.4: Simple model of free Ca2+ buffering. ICa is obtained from the electrical model of the neuron. 
Because its numerical value is negative, the Ca network receives a Ca2+ influx. 
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Figure 4.5: Two-compartment model of a Ca2+ network. 

Most calcium buffering models incorporate a constraint that the minimum level of [Ca2+]i is 

not allowed to fall below some minimum value [Ca2+]min. This is easily incorporated into the 

network of Figure 4.4 by adding a phenomenological "calcium leakage flux" in parallel with the 

calcium flux obtained from the electrical model. Setting the derivative in (4.9) to zero, we obtain 

for this leakage flux the numerical value β ⋅ Ileak = –ρ ⋅ [Ca2+]min. The direction of the arrow for 

this flux source is the same as that of the source shown in Figure 4.4.  

McCormick and Huguenard [McCO] argued that the literature on neuron physiology 

suggested HVA calcium channels, ICa(L), and LVA T-current channels, ICa(T), are probably located 

in different regions of the neuron. They used this argument to justify making their Ca2+-dependent 

K+ VGC element depend on the contribution to [Ca2+] from the L-current only. In their model 

they kept track of the individual contributions from ICa(L) and ICa(T) while still letting their GHK 

current model depend on the sum of the two components. In effect, their model is something like 

a two-compartment model of the calcium network, although not entirely rigorous in its 

formulation. A more formal representation of two-compartment modeling is illustrated in Figure 

4.5. The schema is easily extended for representing any number of calcium compartments.  

Summing the effluxes from each node and rearranging terms we obtain a system of two 

differential equations,  
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Using Euler’s method, the corresponding difference equation representation is 
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Figure 4.6: Simplified model of metabotropic-signal-induced calcium release. 

As a final example we will consider a metabotropic signaling process in which internal Ca2+ 

stores are released from the endoplasmic reticulum to become free Ca2+ in the cytoplasm. Figure 

4.6 illustrates the model. This model is intended to illustrate the general ideas conveyed by the 

qualitative models of this process. It should be noted that our present state of knowledge of the 

quantitative details of this process is incomplete and so the model presented here is to be regarded 

as conceptual but not an established accurate representation of this process. 

The model contains two types of chemical concentrations, [Ca2+]i represented on the left by 

node variable Ca1, and cytoplasmic concentration of inositol triphosphate (IP3) represented by 

node variable IP3 on the right. Ca2 represents the concentration of Ca2+ stored in the endoplasmic 

reticulum (ER). Typical concentrations of stored Ca2+ is typically greater than 100 µM under 

normal physiological conditions and likely reaches millimolar levels. The ER’s supply of Ca2+ is 

by no means unlimited, but for normal signal processing functions we can regard the volume CER 

as effectively infinite so that concentration Ca2 may be regarded as constant. We will also assume 

flux source β⋅ICa1 includes a "leakage flux" that maintains the minimum level of Ca1 at its resting 

concentration level (on the order of 50 to 100 nM). Transporter ρ1 is the same as described 

previously. We will come back to transporter ρ2 momentarily.  

In the absence of synaptic metabotropic signaling, IP3 is normally bound in the cytoplasmic 

membrane wall. It is liberated by the action of a membrane-spanning G-protein that acts as a 

receptor for metabotropic neurotransmitters. A G-protein receptor does not itself open to produce 

a pore for ionotropic current influx into the cytoplasm. Rather, it acts as a "molecular switch" to 

turn on the production of "second messenger" chemicals, IP3 in this case. Flux source βIP3 models 

the generation of free IP3 by this mechanism. The units of βIP3 are flux (moles per second).  

Free IP3 moves to the ER and binds with Ca-release channels in the membrane of the ER. As 

IP3 again becomes bound by this process, it depletes the pool of free IP3 and we can represent the 
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rate of this depletion using transporter rIP3. Thus, the concentration IP3 is described by8  

   ( ) ( ) IP3IP3 33 β+⋅−= tIPr
dt

tdIPC .        (4.11) 

Transporter ρ2(IP3) represents the influx of free Ca2+ due to the opening of the calcium-

release channels in the ER. The kinetics of this process are complicated [MORA], but we can 

pose a few likely-seeming approximations. First, since the Ca2+ influx is zero in the absence of 

IP3, the simplest plausible model for this effect is to presume the influx is proportional to IP3(t). 

This assumption is analogous to that used in modeling calcium buffering in (4.9). Second, it is 

known that the opening probability, πo, of the ER’s calcium-release channels is strongly affected 

by the concentration level of cytoplasmic free calcium, Ca1 [BEZP], [FINC], [MORA]. 

Bezprozvanny et al. report a bell-shaped curve function for release probability vs. [Ca2+]i that 

reaches a peak of πo = 1 at around Ca1 =  0.2 µM. The bell shape of the πo dependency shows up 

on a logarithm plot of [Ca2+]i, i.e. the πo = 0.5 points on the curve occur at approximately 0.075 

µM and 0.55 µM [BEZP]. Bezprozvanny et al. report the fitted dependency as 

   ( ) ( )nnnn

nn

s kCakCa
kCa

1121

11
o +⋅+

⋅
= ππ         (4.12) 

where πs is a scale factor chosen to make πo equal to 1 at Ca1 = 0.2 µM, n = 1.8, k1 = k2 = 0.2 µM. 

Figure 4.7 graphs (4.12) as a function of calcium concentration Ca1. 

Taking these factors into account, we would write the transporter element law as 

   ( ) ( ) 222max1o2 ;3 CatIPCa ⋅=⋅⋅= ρφρπρ . 

One noteworthy property of this system is the following. For concentrations Ca1 less than 

about 0.2 µM, πo is an increasing function of Ca1, and thus there is a positive-feedback effect 

taking place inducing a strong rise in free cytoplasmic calcium. Above this level, πo is a 

decreasing function of Ca1, and so the total rise in free calcium is self-inhibited by the kinetics of 

the release probability. This has been known to produce oscillations in the concentration levels of 

free [Ca2+]i in response to metabotropic signaling. This results in calcium-mediated modulation of 

ionotropic potassium currents [HILL5]. The oscillations are spike-like and very slow, with period 

                                                 
8 There are other dynamics we are not representing accurately in this simplified model. For example, IP3 
does not remain indefinitely bound to the calcium-release channels, and this model depicts neither how 
long IP3 remains bound (thus activating the channel) nor what happens to it later. An understanding of 
these additional dynamics is necessary for a complete and accurate model of this process [MORA]. The 
example given here is intended to merely illustrate an application of the Linvill model.  
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Figure 4.7: Empirical curve fit to calcium release channel open probability. 

on the order of 12 to 20 seconds per spike for the case where IP3 is produced in response to 

metabotropic action by the neuropeptide GnRH (gonadotropin-releasing hormone). Calcium 

spikes with peaks in the range of about 1.5 to 2.5 µM have been observed. 

Summing effluxes from the Ca1 node and incorporating (4.11) gives us the system of first 

order differential equations 
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Although the equations in (4.13) appear to be uncoupled, in fact they are not. IP3 couples into the 

first equation through ρ2.   

An additional consideration not incorporated into this simplified model would account for loss 

of free calcium through binding with the calcium-releasing channels depicted by ρ2. The kinetics 

model of Moraru et al. [MORA] assumes two Ca2+ ions and four IP3 molecules participate in each 

binding event at the receptor site for the calcium-releasing channels. This, however, could be 

taken into account in an approximate fashion by the numerical value assigned to ρ2. More 

important is the absence in the simplified model of a time-dependent rate process description for 

transporters ρ2 and rIP3. In the simplest case we would have at least one additional differential 

equation, possibly similar to a rate process model such as is used in the Hodgkin-Huxley schema, 

capturing the opening- and closing-kinetics of the calcium releasing channels. Such a process 

would affect the time-dependencies of both ρ2 and rIP3. Judging from the findings reported in 
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[MORA], time constants for such a process would be on the order of a few milliseconds.  

As a final note, the model just presented is a very simplified representation of these dynamics. 

Much more elegant treatments based on diffusion theory and partial differential equation models 

have been formulated [DeSC]. A lumped model approximation for this type of sophisticated 

model would require the model of Figure 4.6 to be turned into a multi-compartment model.  

§ 2.5 Calcium-activated Potassium Channels  
An important class of channels not yet discussed is the calcium-activated K+ voltage-gated 

channel. There are at least two important signaling sub-classes of Ca2+ activated K+ channels, 

which we will denote by currents IK(Ca) and IK(AHP). The latter is further subdivided into the 

categories "intermediate channel" (IK) and "small channel" (SK). The first type, correspondingly, 

is often called the "big channel" (BK).  

Empirical models for the various denizens of the "zoo" of K+ channels are often expressed in 

terms of the steady-state activation variable, m∞, and a time constant, τm. Assuming, as did 

Hodgkin and Huxley, that channel activation follows a first-order rate process, the activation 

variable is described by the difference equation 

   ( ) ( )( ) ( )mttmmmttm τ∆−⋅−−=∆+ ∞∞ exp .      (4.14) 

m∞ is typically described either in terms of Hodgkin-Huxley rate parameters, α and β, or else in 

terms of a Boltzmann equation 

   ( )[ ]kVV
m

m−+
=∞

50exp1
1 .         (4.15) 

While the BK class of channels is both voltage- and calcium-dependent, the IK and SK classes 

are not strongly voltage dependent and therefore do not follow the form (4.15). Their primary 

effect is to produce a long-lasting hyperpolarization (the "after-hyperpolarization") following 

intense spiking activity by the neuron, but they also modulate the resting potential and excitability 

of the neuron in response to IP3-producing metabotropic signaling.  

Yamada et al. [YAMA] presented a BK model derived from the sympathetic ganglion B-type 

cell of the bullfrog. (McCormick and Huguenard also used this same model in [McCO]). The 

current equation for their model is 

   ( ) ( KmCaK EVmgI )−⋅⋅= max          (4.16) 

with the auxiliary equations 
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Figure 4.8: Steady-state activation constants and time constants for IK(ca) vs. calcium concentration. 
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In these expressions, [Ca2+]i is in mM and Vm is in mV. The time constant is in ms. Yamada et al. 

gave gmax as 1.2 µS. Figure 4.8 illustrates the dependency of the steady-state activation constant, 

m∞, and time constant, τm, on [Ca2+]i as a function of membrane potential. At normal resting 

levels of Ca2+ (around 100 nM) the calcium-dependent K channel is effectively closed at the 

resting potential (around –65 to –60 mV) and the channel time constant during action potential 

generation is slow in comparison with its values for elevated Ca2+ levels. Increasing the cell’s 

internal concentration of Ca2+ shifts the activation curve to more negative membrane potentials, 

and the maximum time constant falls dramatically. 

An IK(AHP) model was also presented in [YAMA]. This after-hyperpolarization current (that is, 

the after-hyperpolarization that occurs following the generation of an action potential) is not a 

strong function of membrane potential. Rather, it is a potassium channel current that depends on 

the internal concentration of Ca2+. Yamada et al. give the current equation as 

           (4.18) ( ) ( KmAHPK EVmgI −⋅⋅= 2
max )

with a maximum channel conductance gmax of 0.054 µS. The differential equation for m is the 

same as for the Ca-dependent BK current channel but the expressions for the calcium dependency 

are different and are given by 
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where the calcium concentration is given in mM and the time constant is in ms. At resting levels 

of calcium (around 100 nM = 10-4 mM), the time constant is on the order of 300 ms. This leads to 

very long after-hyperpolarization "tails" following the generation of an action potential, and 

therefore contributes to a longer relative refraction period for the neuron. 

§ 3. Other Modulating Currents 

The section just concluded illustrates the many ways in which various specialized voltage-

gated and calcium-dependent channels contribute to the overall activity characteristics of the 

neuron according to the Hodgkin-Huxley modeling schema. These channels, by going beyond the 

comparatively simple axon dynamics first explained by Hodgkin and Huxley, are what make the 

neuron’s signal processing characteristics far more sophisticated than those of the simple axon. 

Stepping back a bit from the details, a general theme can be formulated from what we have seen 

so far: The unique signal processing properties of specific neuron types is due to the neuron’s 

"equipment" of a suite of ionotropic channels with specific voltage-current-calcium 

characteristics. No discussion of the signal processing functions of a neuron is complete without a 

treatment of these modulating channels. 

§ 3.1 The Delayed Rectifier K Channel 
The non-inactivating K-current in the Hodgkin-Huxley axon model was responsible for rapid 

repolarization of the membrane following an action potential. Somewhat surprisingly, this current 

appears to not play this same role in the cell body of the neuron itself. Rather, in many cases this 

role is played instead by IK(Ca). In its place, another outward-flowing "delayed rectifier" current is 

often found in the neuron’s cell body. This current is a slowly inactivating K-current, usually 

called the IK current but sometimes called the IK2 current (e.g. in [HUGU]). It seems likely that 

this name is actually a label for a possibly large number of slightly different K+ VGCs. The 

primary role of this current in the neuron is likely to be the moderation of low-threshold calcium 

currents (T-currents), probably retardation of the approach of Vm to the firing threshold, and 

possibly an affect on the rapidity with which action potentials may be generated.  

Huguenard and McCormick [HUGU] and Yamata et al. [YAMA] provide different model 

expressions for this current. This is most likely due to diversity in this species of channel than 

anything else. As the Yamata et al. model is slightly simpler, it is presented here.  
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Figure 4.9: Activation and inactivation variables for the slow delayed rectifier channel. The inactivation gate 
time constant is 6000 ms for Vm < –20 mV and 50 ms otherwise. 

The expression for IK is very similar to the Hodgkin-Huxley expression except for the 

presence of an inactivation gate variable, h,  

   .        (4.20) ( KmKK EVhmgI −⋅⋅= 2
max )

They give 0.084 µS as the value for the maximum conductance gK max. The differential equations 

for the gating kinetics are described in standard form, 

   
hm

hh
dt
dhmm

dt
dm

ττ
−

=
−

= ∞∞ ; .        (4.21) 

The activation gate is described in terms of Hodgkin-Huxley-like rate variables, αm and βm, with 

   
( ) ( )

( )( )
( ) ( )( )30147exp

11212exp
120047.0

+−=
−+−

+⋅−
=

mmm

m

m
mm

VV
V

VV

β

α
 .       (4.22) 

The activation gate time constant is given by the usual expression, τm = 1/(αm(Vm) + βm(Vm)). 

What is interesting here is that the steady-state activation, m∞ , uses a shifted membrane potential, 

   ( ) ( )2020 −⋅−=∞ mmmm VVm ατ . 

This is, of course, equivalent to subtracting 20 mV from the constants added to Vm in (4.22). As 

usual, the unit of Vm is mV in these expressions.  

The inactivation gate is interesting in that its time constant is indeed constant, although a bi-

phasic function of Vm. For Vm < –25 mV, τh = 6,000 ms (6 seconds). Otherwise, for membrane 

potentials at and above –25 mV, τh = 50 ms. IK is indeed a slowly inactivating current! The 

steady-state inactivation variable is given by a simple Boltzmann equation expression,  
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Figure 4.10: Illustration of repetitive firing in a cortical neuron. 
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The steady-state gate kinetics are shown in Figure 4.9.  

§ 3.2 The A-current K Channel 
Another potassium modulation current widely found in neurons is a rapidly-activating/slowly-

deactivating transient current commonly called the "A" current, IA. The channel is frequently 

called the KA channel. This interesting channel is activated by depolarization and then quickly 

inactivates. One of its most notable features is that it remains largely inactivated at the normal 

resting potential of the neuron. A strong hyperpolarization of the cell is required to remove the 

inactivation, after which IA causes a delay in the generation of the action potential and an increase 

in the firing threshold for subsequent action potentials until the channel’s inactivation catches up.  

KA contributes to repetitive firing in neurons that strongly hyperpolarize after an action 

potential. Hyperpolarization removes the inactivation of the KA channel, which helps to hold Vm 

at a hyperpolarized value. However, as the channel subsequently slowly inactivates, the 

membrane potential can build back up, which increases the amount of KA inactivation. If the 

other channels are capable, in the absence of IA, of charging Vm past the firing threshold, another 

action potential is generated. The subsequent hyperpolarization again removes the IA inactivation 

and the cycle begins anew. Figure 4.10 illustrates an example of this firing behavior in a model 

cortical neuron. It should be noted that this type of repetitive firing is not due to the A current 
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alone. It is sometimes mechanized by interaction between the A current and a T-type LVA Ca2+ 

current, although this is not a universal rule by any means. One can also note that the term 

"resting potential" becomes somewhat equivocal in the case of a neuron that fires repetitively 

(and is therefore never "at rest").  

Different researchers have reported different parameter values for KA channels. This term is a 

label for a species of Kv (delayed rectifier) channels, and so the diversity in the literature is not 

surprising. Huguenard and McCormick [HUGU] reported an IA model in which they were led to 

develop two independent KA channels. Yamada et al. [YAMA] and Connor and Stevens 

[CONN1-2] each reported a single KA channel, but their parametric values are considerably 

different from one another and from [HUGU]. The generic model formula for IA is  

           (4.23) ( Km
N

AA EVhmgI −⋅⋅⋅= max )

with N usually equal to either 3 or 4, although Yamada et al. reported an N = 1 model.  

Both m and h are usually described in the form of difference equation (4.14) with m∞ and h∞ 

both described by a Boltzmann equation (4.15). In [HUGU] the two A channels were fitted with 

the Boltzmann equation parameters shown in table 4.1. In their model, N = 4. 

       TABLE 4.1       

   variable   Channel A1   Channel A2  

   m∞    V50 = –60 mV   V50 = –36 mV 
       k = 8.5 mV   k = 20 mV 

   h∞    V50 = –78 mV   V50 = –78 mV 
       k = –6.0 mV   k = –6.0 mV 
                

Model expressions for the time constants also show a great deal of diversity in the literature. 

Many researchers note that measurements show a large amount of variance and deal with this by 

setting both τm and τh equal to constant values. τm values in the range from 0.5 to 2.5 ms are fairly 

typical. τh frequently appears to be biphasic with values of 50 to 150 ms below Vm = – 80 to – 63 

mV and τh in the range of 20 ms being common for Vm greater than this biphasic threshold value. 

[HUGU] did report a functional description rather than a constant value for these parameters. 

Their model values for gAmax were 0.5 to 2.4 µS with an average of 1.2 µS in [McCO].  

§ 3.3 The M-current K Channel 

Another important class of modulating potassium channel is the KM or "M-current" channel. It 

is a slowly-activating, non-inactivating (persistent) channel. Near the resting potential of the 

neuron its time constant for activation is typically a few hundred ms. Thus, this current is not 
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thought to have much affect on the generation of a single action potential, but it is thought to 

contribute to slowing down the firing rate of the neuron (accommodation of firing rate) during 

long, sustained burst-firing activity. Yamada et al. [YAMA] reported a steady state activation 

function m∞ described by (4.15) with Boltzmann function parameters V50 = –35 mV and k =  10 

mV. The time constant function was described by 

   ( )( ) ( )([ ])2035exp4035exp3.3
1000

+−+++⋅
=

mm
m VV

τ  .   (4.24) 

The expression for the M-current was 

   ( KmMM EVmgI )−⋅⋅= max          (4.25) 

with gM max = 0.084 µS.  

However, probably the most important modulation feature of the M-current is its sensitivity to 

metabotropic input signals. A variety of neuromodulators [BROW], [MARR] are known to 

inhibit the M-current, effectively taking its conductance to zero. As IM is a potassium current, this 

action tends to raise the resting potential of the cell and has been known to contribute to 

producing burst firing rather than a single action potential response to a stimulus. Figure 4.11 

illustrates this type of response activity for a cortical neuron model. Other neuromodulators are 

known to enhance the M-current, thereby producing hyperpolarization of the cell with an 

accompanying decrease in the excitability of the cell.  

 

Figure 4.11: Bursting response in a cortical neuron. 
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Responses such as that illustrated in Figure 4.11 are typically measured at the cell body 

(soma). From the discussion earlier in this text on the presynaptic threshold level mentioned in 

the context of neurotransmitter release at a synapse, it is appropriate to remark about something 

here that is potentially misleading about the action potential response of this cell. It was earlier 

stated that the threshold for neurotransmitter exocytosis is in the range of about –30 to –20 mV, 

the activation levels of HVA calcium channels found in the neuron’s presynaptic terminal. Figure 

4.11 therefore appears to imply that only the first two or three action potential responses will be 

effective in stimulating neurotransmitter release. However, one should also remember that axons 

typically have a more hair-trigger response to stimulus than does the cell body. Current flowing 

into the axon as a result of depolarization of the soma might, therefore, stimulate AP responses in 

the axon merely from the depolarization of the soma and not necessarily from only the soma’s 

action potential spikes. Detailed quantitative modeling of the soma-axon interaction requires a 

multi-compartment model, treating the soma and dendrites of the cell as one compartment and the 

axon as another with a resistive series connection between their respective Hodgkin-Huxley 

compartments. Furthermore, since current flow in an axon is generally unidirectional (owing to 

the refractory period of the axon), this resistive connection most likely would have to be a 

rectifying connection, which is to say it must allow current flow from the soma to the axon but 

not the reverse. Thus, the series connection resistance must be a nonlinear function of the 

potential difference across it, Vm soma – Vm axon. Electrical engineers call this sort of I-V relationship 

diode action. The simplest model for this is Iseries = Gseries⋅(Vm soma – Vm axon)⋅H(Vm soma – Vm axon), 

where H(•) is the Heaviside function. A slightly more complex model adds a threshold value to 

the argument of H, e.g. H(Vm soma – Vm axon – Vthresh) where Vthresh is non-negative. 

§ 3.4 Hyperpolarization-activated Mixed-cation Channels 

As the last example of voltage-gated channel diversity, we consider the hyperpolarization-

activated mixed-cation channel. These channels conduct both Na+ and K+ ions. Consequently, the 

associated battery potential is neither ENa nor EK but, presumably, a Thévenin equivalent 

potential, Vh, combining the two. These channel currents are typically called "h-currents" 

although "h" here has nothing to do with the Hodgkin-Huxley inactivation variable. However, the 

activation curve for m vs. Vm does resemble that of the H-H inactivation variable. The channel 

current is described by 

    . ( )hmh VVmgI −⋅⋅= max

The h-current is an inward rectifying current since these channels conduct current into the 
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cytoplasm readily but do not conduct outward current flows. The physiological explanation for 

this rectifying action is that the h-channel is normally blocked from the cytoplasmic side by a 

Mg2+ ion. Hyperpolarization of the membrane potential is required to remove this blocking 

particle from the channel and allow conduction. These channels can also be blocked by Cs+ and 

Rb+ [HILL4: 158]. 

Huguenard and McCormick [HUGU] modeled their h-channel in the thalamocortical relay 

neuron using a Boltzmann function (4.15) for m∞ with parameters V50 = –75 mV and k = –5.5 

mV. They obtained an expression for the time constant by fitting a bell-shaped function to their 

data, obtaining  

   ( ) ( )mm
m VV ⋅+−+⋅−−
=

0701.087.1exp086.059.14exp
1τ  . 

They reported a value of Vh = –43 mV with gmax between 10 and 30 nS for their model [McCO]. 

Because the h-current is largely deactivated for voltages near the resting potential and 

becomes fully activated for hyperpolarizations of Vm ≅ –90 mV and less, its role in signal 

processing is not entirely clear. It is usually agreed that they play a part in determining the cell’s 

resting potential. Because the time constant is large, these channels produce long, slow recoveries 

after hyperpolarization to the resting potential. They are also known to be responsive to the meta-

botropic second messenger chemical cyclic AMP (cAMP), and therefore their depolarizing effect 

is directly responsive to metabotropic signaling processes that produce cAMP within the neuron.  

§ 4. Ionotropic Synapse Channels 

Chapter 3 provided a generic discussion of channel modeling for synapses. In this section 

more specific characteristics of the principal ionotropic channels are presented. There are three 

primary channel types that take in the majority of all ionotropic synaptic signaling in the central 

nervous system. Two of these, the NMDA channel and the AMPA channel, are excitatory. The 

third, the GABAA channel, is inhibitory.  

The distribution of synaptic channel types in the neuron follows a general trend. In mammals 

all excitatory synapses (NMDA and AMPA) occur on the dendrites of the neuron. In contrast, 

only 31% of inhibitory synapses occur on dendrites, and these tend to be found near the cell body. 

The remaining 69% of inhibitory synapses occur on the cell body itself. This geographic 

arrangement places the inhibitory synapses in a position to block the effects, in whole or in part, 

of the more remote excitatory input signals. In many neurons, but by no means in all, the 

dendrites lack voltage-gated Na+ channels, and so in these cases no action potentials are generated 
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out in the dendrites. Thus, the inhibitory GABAA channels need not cope with the large-signal 

levels associated with AP production, and need only deal with the much lower-level excitatory 

postsynaptic potentials and currents (EPSPs and EPSCs) produced by excitatory synapses. 

Neurons are broadly classified as spiny and nonspiny. Examples of spiny neurons include the 

pyramidal cell and the spiny stellate cell in the neocortex and the Purkinje cell in the cerebellum. 

Pyramidal cells and spiny stellate cells are the excitatory neurons of the neocortex and make up 

roughly 85% of all neurons in the neocortex (65% pyramidal cells, 20% spiny stellate cells). In 

contrast, the cerebellar Purkinje cell is an inhibitory neuron and serves as the principal output cell 

for the cerebellum. A spine is a small protrusion from the dendrite. Spines greatly increase the 

amount of surface area on a dendrite, and the majority of excitatory synapses occur on spines. 

(This is true for all three of the cells just introduced). Inhibitory synapses occurring on the 

dendrites of spiny cells occur mainly on the dendritic shaft. Spines are dynamic structures that 

grow and disappear in response to synaptic activity and to metabotropic activity produced within 

the neuron by various chemical "secondary effectors" including Ca2+ release by the ER [LÜSC]. 

The principal neurotransmitter for an excitatory synapse is glutamate (Glu). 

Nonspiny cells make up the remaining 15% of all neurons in mammalian neocortex. The non-

spiny neocortical cells are inhibitory neurons. Their excitatory synapses form on the dendritic 

shafts. Like the spiny neurons, the postsynaptic receptors at excitatory synapses are glutamate 

receptor proteins (GluRs). In contrast to the excitatory neurons, which secrete Glu at their 

presynaptic terminals, the principal inhibitory neurotransmitter secreted by these cells is gamma-

aminobutyric acid (GABA). The principal ionotropic receptor at inhibitory synapses is called the 

GABAA receptor, to distinguish it from a metabotropic GABA receptor protein called GABAB.  

§ 4.1 The NMDA Channel 

The N-methyl-D-aspartate or NMDA channel is perhaps the most scientifically interesting of 

all the ionotropic synaptic channels. Not only does it stand in a class by itself as a signal 

processing mechanism; it is also implicated in long-term synaptic plasticity, which in turn is 

thought to be the physiological basis for learning and memory.  

NMDA channel proteins bind with glutamate and form excitatory ionotropic channels. There 

are two primary peculiarities found in NMDA channels. First, these channels are normally 

blocked from the extracellular side by Mg2+ particles and depolarization of the membrane 

potential is required to eject the Mg2+ and open the channel pore. Thus one says the NMDA 

channel is glutamate enabled – voltage activated. Its I-V characteristic is therefore a function of 

the level of extracellular Mg2+ concentration as well as membrane potential Vm. 
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Figure 4.12: NMDA channel conductance vs. time and membrane potential. 

The second peculiarity of the NMDA channel is that it conducts Ca2+ as well as both Na+ and 

K+. In the physiological range of neuron operation, the Ca2+ and Na+ currents flow into the 

cytoplasm, while the K+ current flows out of the cytoplasm. The total INMDA current is the sum of 

all three components (regarding the K+ component as being opposite in sign to the other two). It 

is known that most of the current conducted by the NMDA channel is due to Ca2+, and so this 

channel is usually referred to as a calcium channel.  

The NMDA channel slowly desensitizes following the binding of the Glu neurotransmitter. 

The time constant for deactivation of this channel is on the order of about 40 ms. The time course 

of its channel conductance is most often described by a beta-function (chapter 3, equations 3.20 

through 3.25). Because the channel is membrane-voltage-dependent, the usual beta-function 

expression must be slightly modified and the channel conductance is expressed as [GABB] 
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where H(t) is the Heaviside function and 
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as before. The extracellular Mg2+ concentration has a typical value of 1.2 mM, and the other 

parameters have the corresponding values β = 3.57 mM, α = 0.062/mV, τ1 = 3 ms, τ2 = 40 ms. 

Gabbiani et al. give a maximum conductance (per synapse) parameter gNMDA = 1.2 nS. With these 

parameter values, γ = 1.34261. Figure 4.12 illustrates Gsyn(t) using these parameters for three 
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membrane potentials. The NMDA current is given by 

   ( ) ( )synmsynNMDA EVtGI −⋅=  

with Esyn = 0 mV for this synaptic channel. In a dynamical simulation, (4.26) would be replaced 

by the difference equation calculation as discussed in chapter 3 using equations (3.20) through 

(3.25) and with γ being replaced by the modified term in (4.26). 

The distribution of locations for synapses containing NMDA receptors in the central nervous 

system is still not fully explored. Most neurons have NMDA, as well as non-NMDA, receptors. 

Most, perhaps all, excitatory synapses in pyramidal and spiny stellate cells in the forebrain 

contain NMDA receptors in their dendritic spines. On the other hand, NMDA receptors are absent 

from the spines in mature cerebellar Purkinje cells. There is even evidence that NMDA receptors 

exist in the presynaptic terminals of at least some neurons and play a role in modulating 

neurotransmitter release [COCH], [GLIT].  

Because free cytoplasmic Ca2+ is such a potent chemical messenger and is implicated in many 

biochemical reactions inside the cell, the existence of Ca2+-conducting synaptic channels has 

many profound implications. It is well established that Ca2+ is implicated in long term 

potentiation and long term depression in the response of a cell to glutaminergic signaling. It is 

also involved in phosphorylation/dephosphorylation processes that modulate the sensitivity of 

other channels, e.g. the Ca2+-dependent K+ channels. Because the NMDA channel requires a 

"voltage assist" to remove the Mg2+ blocking particle and allow current flow, the opening of 

NMDA channels is heavily correlated with signals at other non-NMDA glutamate receptors. 

Thus, the NMDA channel is often regarded as a coincidence detector that responds only when 

sufficient synaptic activity involving non-NMDA glutamate receptors exists.  

§ 4.2 The AMPA Channel 
AMPA receptors constitute the principal non-NMDA ionotropic synaptic channel responding 

to glutamate.9 The AMPA ligand-gated channel differs from the NMDA channel in three 

important respects. First, the AMPA channel conducts a Na+ current into the cell (and allows the 

passage of a lesser amount of K+ current efflux) but does not conduct Ca2+. The AMPA current is 

described by 

   ( ) ( )synmAMPAAMPA EVtGI −⋅=  

                                                 
9 There is another glutamate-responding ligand-gated channel known as the Kainate (KA) channel. From a 
signal processing perspective, the KA channel and the AMPA channel behave in much the same way and 
we will not treat the KA channel separately.  
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with Esyn = 0. GAMPA is not membrane-voltage sensitive. Third, the AMPA channel responds much 

more quickly to gating by Glu than does the NMDA channel. GAMPA has been described by both 

the beta-function,  

   GAMPA = gmax⋅ g(β)(t),  (chapter 3, equations 3.20 to 3.25) 

and the alpha-function,  

   GAMPA = gmax⋅ g(α)(t), (chapter 3, equations 3.15 to 3.19). 

For example, Gabbiani et al. [GABB] used a beta-function description with gmax =  720 pS and 

time constants τ1 = 0.09 ms and τ2 = 1.5 ms.  

AMPA channels are often co-localized with NMDA channels within the same synapse. In 

these cases, the total synaptic conductance is Gsyn = GAMPA + GNMDA. One interesting phenomenon 

in this regard is the finding that the number of AMPA receptors co-localized with NMDA 

receptors appears to be activity dependent, and their relative density can change over relatively 

short time scales [LÜSC], [MALE]. This has led to a well-supported hypothesis that a "pool" of 

AMPA receptors is available from which the receptor proteins can be relocated to the membrane 

wall of the synapse. Their insertion or deletion modifies the gmax of the AMPA channel, and is 

thus one possible mechanism for activity-dependent modulation of the "strength" of the synaptic 

response. (Signal processing researchers often refer to this as adaptation of the synaptic weight 

of the neuron). The relative density of AMPA to NMDA receptors co-localized in one synapse is 

experimentally found to range from zero (no AMPA activity, the so-called "silent synapse") to 

much greater than one (AMPA-dominated synapses).  

§ 4.3 The GABA Channel 

The principal inhibitory ligand-gated channel (LGC) in the central nervous system uses the 

neurotransmitter GABA (gamma-aminobutyric acid) and the GABAA class of receptor protein. 

The GABA channel primarily conducts chloride and is modeled using an Esyn in the range of –70 

to –75 mV. GABA LGC conductance is often described by an alpha-function with a time constant 

of 5 ms, although the synapses on cerebellar granule cells to which the cerebellum’s Purkinje 

cells project are also known to have a second "slow" current component with a fast rise-time 

constant (τ1) and a slow decay-time constant (τ2) on the order of 50 ms. (The slow component 

therefore must be described by a beta-function rather than an alpha function). For those GABA 

channels described by an alpha-function, a typical gmax is in the range of 10 to 30 pS per pore and 

from about 0.25 to 1.2 nS per synapse [DEST].  

In addition to the GABA channel, there is another inhibitory LGC known as the glycine 
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channel. From the point of view of signal processing, there is little distinction between the two 

channels (although, of course, to the physiologist they are quite distinct). In this text we will not 

further distinguish between these two types of inhibitory LGCs.  

§ 4.4 Multiple Synapses and Synaptic Weight 

While one could model each individual synapse with its own characteristic Esyn battery and 

Gsyn conductance, the large number of synapses on a typical neuron make this simple approach 

computationally impractical. Each synapse would add two more difference equations to the 

neuron model, and each additional difference equation requiring solution increases the cost of the 

computation. 

Fortunately, this cost explosion is wholly unnecessary because the difference equations 

describing the phenomenological form of synaptic input are linear equations. Whether the 

dynamics are expressed by an alpha function,  
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or by a beta function 
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the net synaptic current due to all synapses of the same type at any time t can be found by 

summing the inputs of every synapse for which H[Vpre(t) – Ω] = 1. To a reasonable statistical 

approximation, this can be done through the ν factor in (3.18) or (3.25) in the following way.  

Let nsyn be the number of synapses a neuron has of a particular type (e.g. NMDA synapses). 

Let g0 represent the average maximum conductance parameter for synapses of this type. The 

maximum conductance of synapse n can then be represented by a non-negative weighting factor, 

wn such that gmax(n) = g0 ⋅ wn. Numbering the neuron’s synapses from 1 to nsyn, the distribution of 

synaptic weights can then be represented by a column weight vector,  

   [ ]
synn

T www L21=W         (4.27) 
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where T denotes the transpose of the vector. The distribution of maximum conductances is clearly 

given by the product g0 ⋅ W and we can let g0 take the place of gmax in the expression for Gsyn. 

Now let Q(t) denote the vector Heaviside function of all synaptic inputs of this type, i.e.,  

( ) ( )( ) ( )( ) ( )( )[ ]nsynpreprepre
T tVtVtVtQ

nsyn
Ω−Ω−Ω−= HHH 21 21

L . (4.28) 

The net contribution to the total synaptic conductance at time t is given by the sum of all the 

synaptic inputs for which the Heaviside functions are non-zero. This can be represented by 

              (4.28) ( ) ( )tQWt T=ν

so that equations (3.18) and (3.25) become 
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respectively.  

One vector product (4.28) and one pair of state equations (4.29) or (4.30) must be used for 

each unique synapse type (NMDA, AMPA, or GABAA) for a single-compartment neuron model 

of the Hodgkin-Huxley type. Thus, the total additional computational cost for modeling synaptic 

inputs is limited to at most six difference equations and three vector products regardless of how 

many synapses the neuron may have.  

§ 5. Glial Cells 

In the 60+ years of neural network research, it has always been the traditional presupposition 

that neurons alone are responsible for biological signal processing. Since the late 1980s this 

tradition has come under increasing scrutiny by physiologists conducting research on glial cells in 

the central nervous system. There is mounting evidence that glia in central systems are not the 

passive and, from a signal processing viewpoint, uninteresting cells the traditional view has held 

them to be. Do glial cells participate in biological signal processing by neurons? The scientific 

verdict has not yet been definitively delivered on this question, but there is now ample evidence 

telling us we may not simply dismiss glial cells from the picture as tradition has long done. The 

new evidence makes all the more prescient a remark made in 1899 by pioneer and Nobel laureate 

Santiago Ramón y Cajal:  
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The prejudice that the relation between neuroglial fibers and neuronal cells is similar to the 
relation between connective tissue and muscle or gland cells, that is, a passive weft for merely 
filling and support (and in the best case, a gangue for taking nutritive juices), constitutes the 
main obstacle that the researcher needs to remove to get a rational concept about the activity of 
the neuroglia. 

Glial cells outnumber neurons in human brain by on the order of 10:1. Glial cells, particularly 

the star-shaped glial cells called astrocytes, are intimately associated with synapses, ensheathing 

up to a few thousand synapses per astrocyte. Glial cells are themselves interconnected in a vast 

network of cells, the glial syncytium, joined by gap junction synapses. They also possess many of 

the same or similar types of ionotropic and metabotropic channels as neurons do, although the 

density of Na+ and Ca2+ channels is insufficient to cause large-amplitude spiking of the glial cell’s 

membrane potential [VERK], [BARR1-2]. It is the very inactivity of the glial cell’s membrane 

potential that led researchers to originally conclude it was not involved in biological signal 

processing related to information processing.  

However, the absence of electroactivity in glia does not mean glia are totally inert. Recent 

years have shown glia to be amazingly active chemically, the most important of the activity 

currently known being calcium activity [VERK], [ARAQ]. Glia are known to possess active 

transporters that regulate concentration levels of extracellular chemicals, including glutamate, 

dopamine, and other important ligands used by neurons in cell-to-cell communication [ARAQ], 

[BERG]. One important recent discovery has been that glutamate uptake by glial cells stimulates 

a sharp rise in the glial cell’s intracellular level of [Ca2+]. It is thought that the mechanism for this 

is probably release of Ca2+ by the cell’s endoplasmic reticulum via a metabotropic mechanism 

similar to the one we looked at earlier in the case of neuron cells. More important still, it is now 

known that glial cells can pass on calcium waves from glial cell to glial cell in the glial network 

[ARAQ], [VERK]. The precise mechanism by which this takes place is not yet fully understood, 

but the leading hypothesis is that this calcium transport takes place via the gap junction synapses 

connecting the glial cells. Calcium wave propagation is relatively slow – on the order of about 20 

µm/s – but these waves can extend out to at least hundreds of microns from their source.  

The rise of intercellular calcium concentration within the glial cell is known to be stimulated 

through glutamate uptake by the glial cell. There may be other mechanisms as well, but the 

glutamate uptake relationship is well established. Now, the mere fact that Ca2+ levels rise within a 

glial cell, and propagate from cell to cell, by itself implicates nothing more than that the internal 

chemical milieu of glial cells is responsive to neuronal signaling (since the excess Glu taken up 

by glia is due to neuronal signaling at glutaminergic synapses). In a manner of speaking, neurons 

"talk to" glial cells through their synaptic signaling activity. Were this all there is to it, it would be 

difficult to see any role for glial cells in biological signal processing. 
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But this is not all there is to it. It has been discovered that glial cells with elevated Ca2+ levels 

also release glutamate into the extracellular region [VERK], [ARAQ]. Again, the mechanism 

by which this takes place is not yet fully understood. The hypothesis with the most experimental 

support at this time is that glia release Glu via some mechanism probably similar to the 

neurotransmitter exocytosis process used by neurons. (It is the influx of Ca2+ through HVA 

calcium channels, and not the action potential, that actually releases neurotransmitter at the 

neuron’s presynaptic terminal; the action potential merely opens the Ca2+ channels located in the 

terminal). Because glia heavily involve synapses in the cellular layout of brain cells, the release 

of Glu in the immediate vicinity of synapses could, in principle at least, have profound 

consequences for neuronal signaling.  

The physiological evidence currently indicates the Glu exocytosis by glial cells10 does not 

result in Glu entering into the tiny synaptic cleft separating the presynaptic terminal from the 

postsynaptic receptor site. Thus, glial Glu exocytosis does not directly excite synaptic responses. 

However, there is compelling evidence for the existence of Glu-binding receptors outside the 

synaptic area. These receptors, called extrasynaptic receptors, include metabotropic Glu-binding 

receptors (MGluRs) and also appear to include NMDA receptors located on the presynaptic 

terminal itself [COCH], [GLIT].  

The presence of NMDA receptors on the presynaptic terminal implies that Glu exocytosis by 

glial cells can modulate the amount of neurotransmitter release by the presynaptic terminal in 

response to an action potential. We will look at the mechanism for this in the next chapter, but the 

basic hypothesis is simple. If presynaptic NMDA receptors are enabled by glial Glu exocytosis, 

then there will be an additional influx of Ca2+ into the terminal in response to an action potential. 

The still-open question regarding this hypothesis is: Is the additional calcium influx significant 

compared to the influx due to the terminal’s HVA calcium channels? If it is, then neuronal 

synaptic activity in one location could lead, through calcium wave propagation in the glial 

syncytium, to modulation of the synaptic strength of other neurons over a wide area. Existing 

evidence [GLIT], [COCH] seems to favor the hypothesis that this effect probably is significant. 

The existence of extrasynaptic GluRs and MGluRs in the postsynaptic cell provide for at least 

the possibility that the glial syncytium might serve as a regional network for modulating the 

excitability of large numbers of local neuron groups in response to neuronal signaling by some 

members of the group. If in fact this signal processing mechanism exists, a proposition not yet 

established by physiology research, it has interesting potential consequences for network-level 

                                                 
10 As we shall provisionally call it here, while awaiting additional clarification of the precise mechanism or 
mechanisms through future physiology research. 
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neuronal signal processing. For example, if it is the case that evocation and propagation of glial 

calcium waves has a threshold, then presumably one or more neurons would have to exhibit a 

somewhat higher level of firing activity, either individually or collectively, to produce it. Because 

calcium wave propagation is relatively slow, the glial syncytium might, in principle, be a 

mechanism for measuring the level of firing activity in a region and for causing enhancement (or 

suppression, depending on the precise mechanisms involved) of network-level responsiveness to 

network stimuli.  

Not enough is known at present about the specifics of glial signaling to draw definitive 

conclusions about this speculation. However, the general question is interesting and potentially of 

significance because it is tied to mathematical questions involving necessary or sufficient 

conditions for promoting synchronized and oscillatory behaviors in neural networks. In recent 

years more and more neuroscientists have been drawn to the hypothesis that such behaviors by 

neural networks underlie cognitive processes, that network oscillations bias input selectivity, and 

facilitate synaptic plasticity (the putative physiological mechanism for learning and memory) 

[BUZS], [VARE]. Consequently, there has been considerable work by mathematicians striving to 

understand what requirements on signal coupling, network interconnects, global vs. local signal 

connectivity, and relative signaling delay properties promote different kinds of synchronicity and 

oscillatory behaviors in model networks [CAMP1], [MEDV], [WANG]. To date the models used 

in these studies have attempted to remain at least somewhat faithful to known properties of neural 

networks but have not considered how or if the picture may change if there is a signaling 

syncytium capable of globally and non-specifically biasing these factors in a network. This is an 

important question for neural network research because it is known, through the work of 

Grossberg in the 1970s, that non-specific signaling within complex neural network systems is 

crucial for the possibility of a number of important factors in neural network dynamics. This is 

especially the case in adaptive resonance theory (ART) [GROSS5-6, 11-12, 19-20]. 

Finally, some researches have speculated that glial cells might play a more direct role in 

synaptic plasticity mechanisms. Long-lasting changes in synaptic weight coupling, known as long 

term potentiation (LTP) and long term depression (LTD), are extremely important in 

neuroscience because these are thought to underlie and provide the biological substratum for 

learning and memory phenomenon. The question of whether or not glial cells participate in the 

plasticity phenomena is presently not even remotely close to being settled and is, as a matter of 

fact, a topic of somewhat heated controversy at present.  

No general modeling schema, comparable to the unified treatment of neurons provided by the 

Hodgkin-Huxley schema, has been proposed to date for the glial syncytium. Because glia are not 
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electrically active in vivo, but because they appear to be chemically active in their reciprocal 

signaling with neurons, a schema such as the Linvill schema presented in this chapter appears to 

be an attractive first step in the quantitative modeling of the glia factor in biological signal 

processing. There is, however, a great deal of physiological research still needed to enhance and 

quantify the various elements in the Linvill schema before we can achieve more than a first-order 

approximate model of the global effects of calcium-wave signaling. It is a fertile topical area for 

fresh neuroscience research.  

§ 6. The Reactance Element in the Linvill Modeling Schema 

In section 2.3 of this chapter the Linvill modeling schema was introduced. Of the five Linvill 

network elements introduced, only the mathematical description of the first four was discussed. 

Treatment of the reactance element was postponed for later. The time for that treatment has now 

arrived.  

We have seen that metabotropic signaling plays an important control function in biological 

signal processing. Metabotropic signaling occurs by means of cascade biochemical reactions in 

the cell that alter basic properties in the flow of ionotropic signaling pathways. The reactance 

element is the element in the Linvill network modeling schema that models chemical reactions. 

The basic element shown in figure 4.3 has two inputs and one output. The reactance can be 

easily extended to take into account more input reactants and/or to produce more than one 

reaction product. In this section the action of the reactance element is illustrated for the simplest 

case of two inputs and one output as shown in figure 4.13 below.  

Consider the case of a simple reaction such as 

   OHOH 222 22 →+

or, more generally in terms of concentrations of substances, 

  2 321 2ννν →+ . 

 
 

Figure 4.13: Linvill reactance element example. 

103 



Chapter 4: The Biological Neuron 

We assume all three substances are co-located within the same volume within the cell. Because 

the substances represent different chemical species, three storance elements are required, as 

shown in the figure. Noting the flux directions indicated in the figure and applying the storance 

element law, we have  

   332211 ;; νφνφνφ &&& CCC =−=−= . 

Noting the stoichiometric coefficients in the chemical reaction equation above, we also have  

   1231 5.0; φφφφ ⋅== . 

Chemical reaction kinetics are governed by what is known as the mole balance equation 

[FOGL: 6-16] and by the form of the reaction rate equation. In general, reaction rate equations are 

algebraic equations, rather than differential equations, and are frequently deduced from 

experimental data. Generally, a reaction rate equation would be of the form φi = fi(ν1,ν2,ν3) where 

fi is some algebraic function of the concentrations of the three substances involved in the reaction 

[FOGL: 73-113]. For purposes of our present example, we will assume the reaction is governed 

by the simplest form of reaction rate expression, namely the second order reaction,  

    . 
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Here α is a non-negative proportionality constant for the reaction rate. Note that the simple 

second order reaction model used here makes the system of differential equations describing the 

network a nonlinear system model even if all the other Linvill elements in the network are 

described by linear differential equations.  

In a more complex network than the one depicted in figure 4.13, the first two equations above 

merely enter in as terms in the differential equation for nodes 1 and 2, respectively and account 

for the disappearance of substances ν1 andν2 that occurs during the chemical reaction. The third 

differential equation above is a new term introduced into the overall set of network equations by 

the reactance element. In other words, a reactance element having only a single output product 

introduces one new differential equation into the system model, namely that of the reaction 

product. In general, one new differential equation is introduced for each output product. The 

relative amounts of flux associated with each substance is determined from the stoichiometry of 

the chemical reaction [FOGL: 33-35].  

In some important biochemical reactions one of the reactants, say ν2 for example, may merely 

act as a catalyst and take no other part in the reaction. The simplest example would be the case 

where ν1 is an inactive isomer and ν3 is an active isomer form of the same substance. In this case 
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we would have φ2 = 0 because catalyst ν2 is neither increased nor decreased by the reaction it 

catalyzes. Often the reaction rate in such a case might involve a first-order reaction, f = α ⋅ν2, in 

the expressions for φ1 and φ3. In such simple cases as this, the Linvill network can often be 

simplified by the introduction of a sixth element, called a reactor, which is mathematically 

identical to the transporter element in figure 4.3 except that the substances represented at the two 

terminals are different substances. Examples of the use of a reactor element are discussed in 

chapter 5. The reactor element can be regarded as a special case of a one-input/one-output 

reactance.  

At the present time, it is the unfortunate case that the research literature reporting the findings 

of biochemical studies in neuroscience frequently omit findings regarding the specific reaction 

rate kinetics of the biochemical reactions being studied. In the opinion of your author, this is 

largely due to the fact that computational neuroscientists have not yet carried out much work on 

the mathematical modeling of metabotropic processes and, as a consequence, have posed no 

research questions to the biochemical community to help direct specific research investigations. It 

can be hoped that the introduction of the Linvill modeling schema may help to correct this 

situation. In the absence of reported experimental facts, the mathematical modeler can only have 

recourse to phenomenological guesses of what form of reaction rate equation f might be involved 

in a particular system under study. Quantitative results from such modeling work can serve to 

pose questions to other researchers that subsequent experiments can confirm or refute. One 

example of this is a recent work by Ramirez, Wells, and Lew on the modeling of monoclonal 

antibodies in the treatment of methamphetamine addiction [RAMI].  

 

Exercises 
1.  Using either MATHCAD® or a computer program of your own design, plot the Boltzmann 

equation (gmax = 1) over the range from –100 mV < Vm < 100 mV for V50 values of –70, –50, 
and –30 mV and with k values of –5, + 5, and +20 mV.  

2.  Prove the two models in Figure 4.1 are equivalent if G in the Thévenin equivalent is equal to 
the sum of G1 + G2 and the battery potentials in both circuits are the same. 

3. Using equations (4.4), plot the steady-state mCa over the range from –100 mV < Vm < 100 mV. 

4. Using the numerical values given in the text and either MATHCAD® or a computer program 
of your own design, reproduce Figures 4.2. 

5. Huguenard and McCormick express the activation and inactivation constants for their LVA 
calcium channel model using a Boltzmann function for m∞ and h∞. For the activation constant 
they use V50 = –57 mV and k = 6.2 mV with j = 2. For the inactivation constant they use V50 = 
–81 mV and k = –4.0 mV. Their time constant expressions are 
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 Plot the activation and inactivation curves for this channel. 

6. Convert equation (4.9) to a difference equation. 

7. Derive the difference equations for equation (4.10) as shown in the text. 

8. Plot the activation constants, equations (4.19), using the same calcium concentrations as used 
in plotting figure 4.8. 

9. Plot the activation and inactivation constants for the Huguenard/McCormick A1 and A2 
channel parameters given in Table 4.1. 

10. Propose a generic circuit model for a two-compartment neuron model in which the first 
compartment represents the cell soma and dendrites and the second compartment represents 
the axon. Draw a schematic diagram of your proposed two-compartment model schema. 

11. Plot the activation and time constant curves for the h-current using the parameter values given 
in the text. 

12. Find the difference equation description for the NMDA channel. 

13. Plot the NMDA channel conductance for membrane potentials of –65, –60, and –55 mV. 
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