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Chapter 5 

 
Synaptic Processes 
 

§ 1. The Signaling Process in the Chemical Synapse 
As the principal signaling junction in neural networks, the chemical synapse always involves 

two neuron cells. The presynaptic neuron is the cell regarded as the signal source. The post-

synaptic neuron is regarded as the signal destination or "sink." A synapse may not properly be 

said to "belong" to either neuron by itself. Rather, it is a biological structure one must view as 

belonging either to both or to neither. Most neuroscientists prefer the former to the latter in 

thinking about the synapse, and this is the convention used in this textbook.  

The structure of the chemical synapse can be regarded as consisting of three distinct parts: (1) 

the presynaptic terminal, which is regarded as part of the presynaptic neuron; (2) the post-

synaptic compartment, which is regarded as part of the postsynaptic neuron: and (3) the synaptic 

cleft, which is a small extracellular region, typically on the order of 20 to 30 nm in width. Under 

electron microscope viewing, the cleft is seen to contain filaments of material joining the pre- and 

post-synaptic cells. These filaments are thought to provide a firm attachment keeping the pre- and 

post-synaptic regions of the synapse carefully aligned with each other. However, these filaments 

are absent or largely absent during early synapse formation, during which time a nascent synapse 

might or might not become established. The formation of a filament "scaffolding" is usually 

regarded as the sign that a synapse has become firmly established.  

Figure 5.1 illustrates the principal signal processing details of the chemical synapse. By far the 

most interesting dynamic, the vesicle cycle, takes place within the presynaptic terminal. Vesicles 

are small, spheroidal bodies that serve as containers for neurotransmitter chemicals (NTX). A 

typical presynaptic terminal contains from 200 to 500 vesicles. The proteins from which vesicles 

are constructed are originally manufactured in the cell body and transported to the synaptic 

terminal via a system of microtubules. Once there they are stored in the plasma membrane until 

needed to manufacture new vesicles or repair old vesicles being recycled after NTX release. 

Fresh vesicles are manufactured by organelles in the synaptic terminal. This constitutes step 1 in 

the vesicle cycle.  

Fresh vesicles are next filled with their neurotransmitter substance or substances. This process 

is called neurotransmitter uptake (NTX uptake). It constitutes step 2 in the vesicle cycle. Synaptic 

vesicles filled with NTX move to the active zone of the presynaptic terminal during step 3 of the 

vesicle cycle. They are anchored by actin filaments and form the ready pool of vesicles. 
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Figure 5.1: Schematic illustration of the principal signaling organization of the chemical synapse. 
Neurotransmitter molecules (NTX) are represented in blue. Calcium ions are represented in red. The other 

structures are as labeled in the diagram. 

During step 4 some vesicles are taken from the ready pool and moved to the plasma 

membrane. This step is called docking the vesicles. Docking occurs only in the active zone of the 

terminal and involves attachment of the vesicle to the membrane wall. Docking occurs only at 

neurotransmitter release sites, and these are located in the presynaptic terminal in the region 

opposite postsynaptic receptors. However, docked vesicles are not yet ready to participate in 

neurotransmitter exocytosis. They must first undergo a chemical prefusion reaction that prepares 

them for calcium-triggered NTX release. This step, step 5 of the vesicle cycle, is called priming 

the vesicle and depends on a chemical reaction involving ATP (adenosine tri-phosphate).  

The active zone occupies an area of 5-20 µm2. The number of vesicles attached to the active 

zone (i.e. either docked or docked-and-primed vesicles) at any one time is variable and typically 

is on the order of 5 to 10 vesicles. The primed vesicles constitute the releasable pool. A primed 

vesicles holds its NTX until release is stimulated by reaction with free cytoplasmic Ca2+ (step 6 of 

the vesicle cycle). Calcium enters the presynaptic terminal primarily through HVA calcium 

channels. As these channels are closed at resting potential levels of the cell membrane, an action 

potential arriving at the presynaptic terminal is required to open their gates and allow calcium 

108 



Chapter 5: Synaptic Processes 

influx. It is thought that HVA Ca2+ channels are located primarily in the active zone. The calcium 

influx is sometimes colorfully described as a "calcium volcano" erupting amidst the docked and 

primed vesicles.  

Experimental evidence suggests that at least three or four Ca2+ ions must act simultaneously 

(or nearly simultaneously) at the same site in order to trigger NTX exocytosis by the vesicle 

[SÜDH]. Very high local Ca2+ concentrations, greater than 100 mM, are required for triggering 

the exocytosis. This fact is one reason for making the hypothesis that the HVA channels are 

located amidst the vesicles in the releasable pool. NTX exocytosis requires only about 0.1 ms, 

which is far too fast to be explained by enzyme reactions. In addition to directly stimulating NTX 

exocytosis, the elevated levels of Ca2+ are also thought to cause dissolving of actin filaments 

holding vesicles in the ready pool, thus freeing a new vesicle to take the place of the spent one in 

the releasable pool [KAND2].  

Following exocytosis, the spent vesicle is coated by clathrin and associated proteins and de-

attached from the membrane wall. It is transported back into the terminal and undergoes a process 

of endocytosis in which it is "repaired" and eventually put back into the vesicle cycle at step 1. 

This process constitutes step 7 of the vesicle cycle. Synaptic vesicles can go through the entire 

cycle in approximately 60 seconds. Of this time, only 10-20 ms are required for docking and 

priming, exocytosis requires only 0.1 ms, and removal of the spent vesicle from the membrane 

wall requires only a few seconds. Thus, a vesicle spends most of its time in the other steps of the 

vesicle cycle [SÜDH].  

NTX is released by the vesicle into the synaptic cleft, where it moves by diffusion to reach the 

postsynaptic cell wall. Here some of it binds with receptors on ionotropic and/or metabotropic 

receptor proteins. In the case of ionotropic channel proteins, this binding is followed by the 

opening of the channel (or, in the case of NMDA receptors, the enabling of the channel). What 

happens next has been discussed in the previous chapters. In the case of the metabotropic 

receptor, the immediate result is not the opening of an ionotropic channel, although such a 

channel opening (or closing) might be a secondary result. The direct result of metabotropic 

receptor binding is the stimulation of a biochemical cascade reaction inside the postsynaptic cell. 

The generic name given to this effect is called the second messenger signaling process. Second 

messenger processes are very complicated and will be discussed in their own right later in this 

chapter.  

Synaptic vesicles are typically about 35 nm in diameter and are estimated to contain on the 

order of about 200 protein molecules [SÜDH]. It is thought that one vesicle contains on the order 

of about 5000 NTX molecules [SCHW1]. Using typical ranges for the active zone area and width 
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of the synaptic cleft, this puts the concentration of neurotransmitter in the cleft due to exocytosis 

of one vesicle in the range from about 9 to 20 µM. As the number of NTX molecules in such a 

concentration is likely to be many times greater than the number of available postsynaptic binding 

sites, NTX exocytosis results in an excess of NTX molecules in the cleft. The presynaptic neuron 

helps to clear out this excess by means of re-uptake transporters located in the terminal. Glial 

cells also take part in cleansing the extracellular region of excess neurotransmitter. It is known 

that excessive concentrations of some neurotransmitters, dopamine for instance, are toxic.1 Thus, 

this housekeeping chore is essential to the maintenance of the health of the neurons.  

As mentioned in chapter 4, it is now known that at least some neurons contain NMDA 

channels in their presynaptic terminals. This is one putative mechanism by which glial cells might 

play a role in modulating NTX release activity. At present the location, distribution, and density 

of presynaptic NMDA channels is not well understood. Similarly, many of the biochemical 

details governing the vesicle cycle are not fully understood.  

§ 2. The Statistics of Neurotransmitter Release 

Physiologists first began to suspect neural chemical signaling was quantized as a consequence 

of the work of Katz and others in the 1950s. Katz was studying the neuromuscular junction, 

where the connection analogous to the synapse in central systems is called the endplate. Katz 

noticed the rise in membrane potential in muscle tissue, called the endplate potential (EPP), 

appeared to occur in integer multiples of the smallest non-zero response. Close examination of 

the distribution of "miniature" endplate potentials showed that the "units" of response, n, followed 

a binomial probability distribution,  
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Historically, this formulation came a bit later, after the vesicle hypothesis was formulated. In 

the original studies, Katz and other researchers fit their data to a Poisson process since their 

                                                 
1 Cocaine has for one of its effects the shutting-down of the dopamine re-uptake process, and thus leads to 
excessive buildup of extracellular DA. The psychotic effects of cocaine are one consequence of this. 
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observations were based on the observed amplitudes of the EPSPs and the number of times each 

amplitude occurred in the course of repeated experimental trials. As it turns out, the Poisson 

process is the limiting case approached by a binomial process in the limit of large numbers of 

trials. Outcomes from a binomial process are inherently quantized (either the event does or does 

not happen), and the pioneering researchers did not know at the start that their experiments would 

reveal the existence of a quantized process.  

After the formulation of the vesicle hypothesis, it became possible to assign physical 

significance to the variables in (5.1). N is interpreted as the number of primed vesicles in the 

available pool at the synapse, and n is the number of vesicles undergoing NTX exocytosis in 

response to an action potential stimulation. The variable p is called the release probability, and it 

is found experimentally to vary within the range of about p = 0.1 to p = 0.2 (10% to 20% release 

probability). The expected value of n, denoted n , is the arithmetic mean number of vesicles 

releasing their NTX per AP stimulation. For a binomial process, n = Np. The variance of a 

binomial process is σ 2 = Np ⋅ (1 – p).  

Figure 5.2 illustrates the binomial distribution for N = 10 and p = 0.1 and 0.2. One thing we 

can notice at once from these graphs is the non-zero probability that n will equal zero. This means 

there is a probability that an action potential will evoke no neurotransmitter release at all. Such an 

event is called a failure. In general, if p is held constant as N is decreased, the failure probability 

will go up. For example, Pr[n = 0] is about 0.35 for p = 0.1 and N = 10. If N is reduced to N = 5, 

the failure probability goes up to Pr[n = 0] = 0.59 and Pr[n = 1] drops to 0.328.  

The statistical nature of synaptic transmission is often regarded as a sort of "noise" interfering 

with the otherwise simple (signal-processing-wise) "communication" process between neurons. 

Some researchers characterize synaptic transmission as "unreliable" and suggest this may be one 

reason why effective large-scale neural processing seems to be associated with parallel and 

synchronous AP signaling (spatial summation) or with "burst-like" firing (temporal integration).  

0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

p = 10%, N = 10

Probability of n vesicles releasing

Number of releasing vesicles, n

Pr
ob

ab
ili

ty
 o

f n

P1n

n
0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

p = 20%, N = 10

Probability of n vesicles releasing

Number of releasing vesicles, n

Pr
ob

ab
ili

ty
 o

f n

P2n

n

 

Figure 5.2: Binomial distributions for p = 0.1 and p = 0.2 with N = 10. 
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Other factors add considerable complications to this so far simple picture of synaptic 

transmission. First, we may ask: Why is there a stochastic characteristic to synaptic transmission 

in the first place? It is widely supposed this has to do with the inherently "random walk" nature of 

calcium diffusion in the presynaptic terminal. Assuming it is true that three or four Ca2+ atoms 

must combine at one release site to produce NTX exocytosis, and further assuming the diffusion 

process is or is similar to Brownian motion, an element of chance is introduced into the process 

simply by this property of ion motion in the presynaptic cytoplasm. If all this is so, the amount of 

Ca2+ concentration from the "volcanic plume" of calcium influx through the HVA channels and 

the distance between these "plumes" and the binding sites for the primed vesicles will be factors 

in how likely it will be that sufficient calcium binding takes place at any given vesicle. Currently 

we possess no verified and generally acknowledged quantitative model of this qualitative picture, 

and therefore we are hampered in coming up with definitive experimental tests of the "random 

walk" hypothesis. Consequently, while few neuroscientists seriously doubt the qualitative model, 

it remains somewhat speculative at this time. 

A second factor coming into play is the fact that cytoplasmic [Ca2+] takes time to be cleared 

out by the presynaptic terminal’s calcium buffering process. Consequently, when AP stimulation 

takes place through "burst-like" firing, the [Ca2+] factor at work in stimulating NTX release 

becomes a more complicated function of time and the firing history of the presynaptic neuron. 

Experiments using "paired pulses" of action potentials separated in time by an interval ∆t have 

shown that the resulting amplitude of excitatory postsynaptic current (EPSC) observed in the 

postsynaptic cell increases by up to a factor of three when ∆t is in the range from 10 to 20 ms. 

This phenomenon is called paired pulse facilitation and is one mechanism for what we shall call 

elastic modulation of synaptic strength (synaptic weight). Paired pulse facilitation decays more 

or less exponentially with ∆t. For ∆t larger than about 20 ms, the ratio of the difference between 

successive EPSC amplitudes to the amplitude of the first EPSC drops below unity, indicating less 

than 2:1 facilitation. The time constant for the exponential decay of paired pulse facilitation is on 

the order of about 200 ms. Results from paired pulse experiments appear to be tracked by 

estimates of intercellular [Ca2+] vs. time. This is evidence supporting the qualitative model 

described above [REGE].  

Another complicating factor is the decrease in N, the number of primed vesicles in the 

available pool, following a successful NTX exocytosis event. It takes time for replacement 

vesicles to be summoned from the ready pool, docked, and primed. While increased [Ca2+] levels 

favor the likelihood of NTX release (increase of p), depletion of the available pool population, N, 

works to decrease this likelihood. Long, sustained bursts of action potential stimulation at AP 
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rates at and above about 50 pulses per second (called a firing tetanus) follow a characteristic 

course. There is initially some facilitation evident in the amplitudes of the EPSCs seen in the 

postsynaptic cell, followed by a short term (elastic) depression of the postsynaptic response. 

Depletion of the available pool is one hypothetical model that has been proposed as an 

explanation for this effect, although this hypothesis is not without controversy and at least some 

experimental studies seem to contradict it. The biophysical and biochemical mechanisms of NTX 

release are not completely understood at this time, and so the full implications of these 

experiments are not definitively interpreted yet. This is one area of neural modeling where more 

and better quantitative models are needed. The Linvill modeling schema introduced in chapter 4 

might be able to play an illuminating role in addressing this research question.  

Similarly, the precise biophysics and biochemistry involved in the entirety of the vesicle cycle 

are not well understood as of yet. It seems reasonable to expect that the rate of replenishment of 

the available pool depends at least in part on the population of vesicles in the ready pool, and that 

this population in turn depends on the kinetics of the rest of the vesicle cycle. Here is another 

place where new and better quantitative models of the synaptic processes would be of great use.  

To sum this up: There is reason to think both p and N are time-varying functions of the past 

activity of action potential stimulation of the presynaptic cell. Quantitative mathematical models 

for these quantities are not yet very far along in their development, and more research work by 

computational neuroscientists, working with the physiologists, certainly seems called for.  

§ 3. Synaptic Arrangements 
Stepping back away from the details of the chemical synapse, we next consider the variety of 

arrangements in which synapses may form. Figure 5.3 illustrates six of the major "themes" by 

which synapses organize in central systems.  

 

Figure 5.3: Various synaptic arrangements. The six arrangements shown here are not exhaustive. 
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Two of the most common synapse types are the axodendritic and axosomatic synapses. The 

axodendritic synapse (shown in Figure 5.3) is a connection from an axon terminal to a dendrite. 

This connection might or might not be made at a dendritic spine. The axosomatic connection is 

similar except that in this case the connection is from an axon terminal to the cell body.  

Many neurons do not have axons. In their case, the dendrodendritic synapse is a common form 

of connection. Here the presynaptic structure is found in one of the dendrites and the post-

synaptic density (the structure of membrane-spanning receptor proteins) is found in the other. 

Communication between the neurons is one-way. However, in some cases each dendrite contains 

both a presynaptic structure and a postsynaptic density, and communication between the neurons 

is reciprocal (lower left of Figure 5.3). One arrangement of this type frequently occurs where one 

of the pair of reciprocal synapses is excitatory while the other is inhibitory. An excitatory output 

by the first neuron also propagates through the dendrite to reach the reciprocal synapse. There it 

excites a response in the second (inhibitory) neuron. This response, in turn, excites the reciprocal 

inhibitory synapse, thus inhibiting further output by the first neuron. This type of action is called 

feedback inhibition.  

Axoaxonic connections are common and usually inhibitory. Two important cases are worth 

considering here. In the first case, the synaptic connection occurs at or near where the axon of the 

postsynaptic neuron leaves the cell body. Inhibition at this point blocks the generation and spread 

of the postsynaptic neuron’s action potential, and is thus a global inhibition. In the second case, 

the synapse occurs at or near an axon terminal of the postsynaptic cell. In this case, the inhibition 

is specific, preventing the signaling by the postsynaptic cell to a third neuron without directly 

inhibiting that third neuron. This type of connection is often called presynaptic feedforward 

inhibition.  

An illustration of this second (specific) structure is exhibited by the case of serial axo-axo-

dendritic (lower center case in Figure 5.3) or axo-axo-somatic connection. Referring to Figure 

5.3, the axon shown in the center of this "synaptic sandwich" is excitatory for the dendrite to 

which it connects. The axoaxonal connection to it, on the other hand, is inhibitory.  

Yet another very interesting case, from the signal processing point of view, is exhibited by the 

synaptic glomerulus (lower right in Figure 5.3). In this case, the signal from the axon is excitatory 

for both dendrites, but the synaptic connection from the right-most dendrite to the other dendrite 

is inhibitory. An excitatory signal from the axon produces excitatory responses in both dendrites. 

However, the excitation of the right-most dendrite produces a follow-on inhibition of the left-

most dendrite, thus producing an excitatory-inhibitory sequence. Such a sequence is thought to 

mediate a kind of temporal differentiation in the signal processing by this neural "netlet." 
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Arrangement of this type are common in the thalamus.  

Complex synaptic arrangements, like the lower three types shown in Figure 5.3 as well as 

others, appear to be more the rule than the exception in biological networks. Because the simple 

types of arrangements illustrated by the three top-most cases in Figure 5.3 were discovered first, 

they became known as "conventional" synapses. Accordingly, the others became known as 

"unconventional" synapses. Today, however, it would seem that "unconventional" synapse types 

are far more numerous than "conventional" ones. The old labels have become misleading.  

Because the "unconventional" synapse arrangements are so common throughout the central 

nervous system, some computational neuroscientists propose that these synaptic clusters be 

regarded as the basic "computing" units of neural organization. There is much merit in this, 

because the close interplay among complex synaptic arrangements allows for a greater wealth of 

signal processing operations to be carried out than can be realized by simple spatial and/or 

temporal summation of signals from the "conventional" arrangements. However, judging by the 

current literature on mathematical neural network models, this idea has been slow to take hold 

among the majority of neural network theorists. The classical neural network models (Adaline, 

perceptron, Hopfield networks, the "connectionist" models, and so on) were set up based on the 

"conventional" synapse model, and incorporating some of the more complex dynamics possible 

with "unconventional" synapses is not easily achieved by these models without making some 

significant alterations to them. One can, of course, "fake" these dynamics by using a sufficiently 

more complicated "conventional network" and incorporating feedback into it. This is 

conceptually no more difficult than constructing computer logic circuits using a sufficiently large 

number of von Neumann’s McCulloch-Pitts "organs" (logic gates). But doing so obviously takes 

the network model one or more steps away from an easily self-evident biological interpretation.  

§ 4. Neuropeptides 

In addition to the small vesicles containing small-molecule neurotransmitters discussed earlier, 

many neurons also contain a smaller number of large vesicles in their presynaptic terminals. 

These vesicles contain compounds of two or more amino acid residues called neuropeptides. The 

neuropeptides come in a great variety and produce an even greater variety of effects. All the well-

documented effects of neuropeptide transmission are very slow in onset and very long-lasting in 

duration. So far as is currently known, neuropeptide signaling is exclusively metabotropic. The 

principal difference between neuropeptide signaling and small-molecule metabotropic signaling 

lies in the time scales involved, neuropeptides seeming to take significantly longer in onset and 

having significantly longer-lasting effects, including some that are effectively permanent. (A 
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number of the neuropeptides are known as growth factors. Obviously, growing new neural 

structures would be regarded as a permanent or semi-permanent effect).  

Unlike the small-molecule neurotransmitters and neuromodulators, production and packaging 

of neuropeptides in their vesicles does not take place locally at the synaptic terminal. Instead, 

they are manufactured exclusively (or so is presently believed) in the cell body and transported to 

the presynaptic terminal using the neuron’s internal "transportation network." Far less modeling 

detail is known about neuropeptide exocytosis than about small vesicle neurotransmitter 

exocytosis. In at least some cases, neuropeptides are thought to be co-released with the cell’s 

small molecule neurotransmitters. It may be the case that the neuropeptide release probability, p, 

is smaller than that discussed previously, but this is conjecture. Depending on the species of 

metabotropic receptors present in the postsynaptic cell, neuropeptide action can be inhibitory or it 

can be excitatory. The action of the neuropeptide can even be the opposite of the presynaptic 

cell’s small molecule neurotransmitter. In such a case, the difference in time scales required for 

the onset and cessation of the effects of the two types of substances is significant. So far as is 

presently known, neuropeptides do not participate in "fast" synaptic communication.  

Neuropeptide action has received very little attention by neural network theorists. Primarily 

this is because so little detail about their signal processing mechanics is known and because their 

role is primarily regulatory. But another reason may be because the time scales of 

neurotransmitters and neuropeptide neuromodulators are so different. Many theorists regard the 

phenomenon of neuropeptide transmission as more properly belonging to the "bias setup" or 

parametric-determination part of neuronal modeling rather than to the direct information-

processing operations of neurons and neural networks. There is much justice in this point of view, 

at least so far as relatively short-term signal processing operations are concerned. But there is also 

a certain amount of naivety in this view as well when one turns to the consideration of large-scale 

integration of neuron system-level activity and considerations dealing with long-term potentiation 

and long-term depression in the large-scale connectivity of large neural assemblies and systems. 

Nonetheless, the fact remains that these topics are difficult to model and address on a 

biologically-sound basis so long as so much about neuropeptide signaling remains undiscovered.  

§ 5. Metabotropic Signaling 

Metabotropic signals do not directly produce ionotropic currents, but they do indirectly 

influence such currents. For that reason metabotropic signals are said to be modulation signals. A 

metabotropic channel is determined by both the transmitter substance and the receptor protein to 

which it binds on the postsynaptic membrane surface. Metabotropic channels are characterized by 
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time scales of onset and inactivation that are slow compared to ionotropic signaling. Table I 

illustrates the time scales characteristic of different classes of metabotropic channels. The time 

scale is expressed in "units" of ionotropic action, arbitrarily chosen as 1 ms per "unit."  

Metabotropic receptor proteins exist that bind glutamate (MGluRs) and that bind GABA (the 

GABAB receptor). Thus, both Glu and GABA are capable of acting as metabotropic signals. Both 

Glu and GABA are amino acids and so their metabotropic actions belong to the first entry in 

Table I. Acetylcholine (ACh) is another transmitter substance capable of producing metabotropic 

actions. The other principal small-molecule metabotropic transmitters are called biogenic amines 

and include: (1) the catecholamines dopamine (DA), norepinephrine (NE, also known as 

noradrenaline, NA), and epinephrine; (2) serotonin (5HT); and (3) histamine. All neuropeptides 

are metabotropic substances.  

All these substances are called first messenger chemicals because their binding to 

metabotropic receptors in the postsynaptic cell triggers a biochemical cascade reaction inside the 

postsynaptic cell. There are many distinct kinds of metabotropic reactions, and this signaling 

process is one of the most complex found in biological signal processing. Nonetheless, the great 

majority of these signal processes follow the same general signal process flow, depicted in Figure 

5.4.  
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Figure 5.4: General signal flow process for metabotropic "second messenger" cascades. 

The process begins with the binding of an extracellular "first messenger" to a metabotropic 

receptor protein. The receptor responds by activating a transducer protein located on the 

cytoplasmic side of the membrane wall of the neuron. In the most extensive class of second 

messenger systems, the receptor protein activates a G-protein ("GTP-binding protein"; GTP is 

guanosine triphosphate). There are, however, other second messenger systems that do not use the 

G-protein as the transducer. These include the guanylate cyclase receptors, tyrosine kinase 

receptors, and cytokine receptors. Of these, the G-protein-based second messenger systems are 

the most studied and we will confine our discussion to them.  

The discovery of the G-protein is credited to the work of Alfred Gilman and Martin Rodbell, 

for which they shared the 1994 Nobel Prize. Speaking in 1994, Gilman tells us, 

It has become abundantly clear, particularly over the past decade, that this relatively large family 
of GTP-binding and hydrolyzing proteins plays an essential transducing role in linking hundreds 
of cell surface receptors to effector proteins at the plasma membrane. These systems are widely 
used in nature, controlling processes ranging from mating in yeast to cognition in man. 
Receptors that activate G proteins are correspondingly diverse and encompass proteins that 
interact with hormones, neurotransmitters, autacoids, odorants, tastants, pheromones, and 
photons. . . Four subfamilies are usually discussed: (1) the small Gs group (Gs and Golf), best 
recognized as activators of adenylyl cyclases; (2) the large and functionally diverse Gi group, 
whose members are pertussis toxin substrates with one exception (Gz); (3) the Gq group, 
activators of several isoforms of phospholipase Cβ; and (4) the most recently recognized G12 
group, whose functions are unknown. . . If all possible combinations . . . were allowed, we 
would need to consider at least 600 G protein oligomers [GILM].  

G-proteins act as molecular timers and switches, turning on a primary effector protein (which 
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is typically an enzyme). This primary effector, in turn, causes the production of large numbers of 

molecules called second messengers. The primary effector can be viewed as a kind of signal 

amplifier since one first messenger molecule can lead to the production of an enormous number 

of second messenger chemicals. The G-protein switches on this process and controls how long 

the production of second messengers will continue before the primary effector is switched off 

again. Three of the most important primary effector enzymes are adenylyl cyclase2 (AC), 

phospholipase C (PLC), and phospholipase A2 (PLA). AC converts ATP (adenosine triphosphate) 

to cAMP (cyclic adenosine monophosphate). PLC produces a pair of second messengers, IP3 and 

diacylglycerol (DAG). PLA releases the second messenger arachidonic acid (AA).  

The second messengers in turn act upon secondary effectors, which are likewise often enzyme 

proteins. The secondary effector is so called because it is the efficient cause of the final cell 

response to the biochemical cascade. In some cases, it should be noted, the G-protein is also 

capable of exercising direct action on ionotropic channels, and in these cases the G-protein itself 

acts as an effector. In the other cases, the secondary effector is often a protein kinase3, the most 

important of which are protein kinase A (PKA), which reacts to cAMP, protein kinase C (PKC), 

which reacts to DAG, and the Ca2+/calmodulin-dependent protein kinases (CaM kinases). Other 

secondary effectors include the arachidonic acid metabolites 5-lipoxygenase, 12-lipoxygenase, 

and cyclooxygenase, and the receptor tyrosine kinases. 

Figure 5.5 illustrates the four principal classes of metabotropic second messenger systems. 

One of the interesting features of second messenger signaling, which adds to the complex of 

different effects it exhibits on the cell, is the phenomenon of convergence and divergence in the 

second messenger pathways. Convergence occurs when more than one G-protein can act on the 

same primary effector. Two examples of convergence are shown in Figure 5.5. In the first, both 

G-protein Gs and G-protein Gi can act on primary effector AC. The action of Gs is to turn on AC, 

which stimulates production of increased levels of cAMP. The action of Gi is to inhibit AC, 

leading to a decline in the level of free cytoplasmic cAMP. The second example is the 

convergence of Gi and G-protein Gq on PLC. In this case, both G-proteins excite the primary 

effector, resulting in production of two second messengers, IP3 and DAG.  

Divergence occurs when activation of one G-protein or one primary effector produces two or 

more distinct second messenger cascades. Two examples of this are likewise shown in Figure 5.5. 

                                                 
2 Also known as adenylate cyclase. 
3 A kinase is an enzyme transferring a phosphate group from a high-energy phosphate compound to a 
recipient molecule. The recipient molecule, which is often an enzyme, is thereby activated and able to 
perform some function. The action of a kinase is opposed by a phosphatase, which removes the transferred 
phosphate group. 
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Figure 5.5: Networking pathways of the principal metabotropic second messenger systems. R = receptor. 
Gs and Gi denote stimulating and inhibitory G proteins, respectively. Gq is another type of G protein. PLC is 
the enzyme phospholipase C. PLA2 is the enzyme phospholipase A2. IP3 is inositol 1,4,5-triphosphate. DAG 
is diacylglycerol. AA is arachidonic acid. PKA is the cAMP-dependent protein kinase. PKC is protein kinase 

C. A "+" sign indicates activation of a primary effector. A "-" sign indicates deactivation. At present not 
enough is known about the arachidonic acid process to permit a meaningful network description here. 

However, some of its metabolites are membrane-permeable and are thought to be capable of modulating 
nearby neurons. 

The first we have already discussed, namely the divergent pathways taken from Gi. The second is 

illustrated by PLC’s production of a pair of second messengers. IP3 leads to the release of Ca2+ 

from internal stores in the cell’s endoplasmic reticulum. DAG activates PKC, which in turn 

catalyzes a reaction of substrate proteins (channel proteins, receptor proteins, enzymes, or 

cytoskeletal proteins) with ATP to produce a phosphoprotein (phosphorylation of the target 

protein). Some PKC enzymes also require Ca2+ for activation; thus in many cases the IP3 cascade 

must first liberate Ca2+ from the ER before the DAG cascade can get fully underway, another 

example of convergence. Figure 5.5 does not illustrate any "crosstalk" convergence or divergence 

for the AA cascade. This is merely because we do not yet know what these are for the AA path. 
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Figure 5.6: Illustration of Gs-protein activation of adenylyl cyclase. Only two steps in the cAMP cycle are 
illustrated in this figure. The full cycle has seven distinct configurations in it, starting from the figure on the 

left above, leading to the figure on the right at the fifth step, and returning to the inactive configuration on the 
right after two more steps in the cycle (re-association of the G-protein subunits, switching AC off again, and 
ejection of the first messenger neurotransmitter from the receptor protein). GDP = guanosine diphosphate. 

GTP = guanosine triphosphate. See text for discussion. 

Although this text is not concerned with the details of organic chemistry except as this appears 

at the more abstract level of signal processing theory, it is nonetheless instructive and interesting 

to briefly look at the biomechanics of the G-protein’s ability to act as a molecular timer/switch. A 

partial illustration in the case of G-protein activation of AC is shown in Figure 5.6. The cAMP 

cycle, for which Figure 5.6 is a partial illustration, has seven distinctly identifiable stages or 

"steps." An illustration of the full seven-step cycle is given in [SIEG]. Step 1, the inactive state, is 

depicted in the left-hand figure of 5.6. We may call this the "resting step" since the receptor 

protein has not been bound to a first messenger transmitter. In Step 2, a neurotransmitter binds 

with the receptor protein and the receptor undergoes a change of configuration, exposing a 

binding site for the G-protein. In Step 3, the G-protein diffuses through the lipid bilayer to bind 

with the receptor protein. This activates the G-protein for GTP-GDP exchange. In Step 4,  GTP 

causes the G-protein to dissociate into two parts. One remains with the receptor protein. The other 

moves to an AC protein in the membrane wall. Step 5, illustrated by the right-hand figure in 

Figure 5.6, is the binding of the second subunit to AC, with subsequent activation of cAMP 

production. In Step 6, hydrolysis of the GTP by the second subunit returns the G-protein to its 

original configuration, causing it to dissociate from the AC and re-associate with the other 
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subunit. Finally, in Step 7 the receptor ejects the transmitter substance and the system returns to 

its resting configuration. The kinetics of this qualitative model can be given a quantitative and 

mathematical formulation in the form of a rate process, similar to that which we have seen earlier 

in the Hodgkin-Huxley model. In this case, the rate process would have seven states rather than 

only two. The statistical form of such a model is called a Markov process, which will be 

discussed in §7.  

§ 6. Phosphorylation and Dephosphorylation 

Figures 5.4 and 5.5 might convey the impression that metabotropic signaling is a feedforward 

type of signal processing. However, this is true only to the extent of the secondary effector 

producing phosphorylation of a target substrate protein.4 The overall process is also regulated by 

a feedback process of dephosphorylation, which is the mechanism by which metabotropic 

modulation of the cell response is brought to a conclusion.  

It has been well established that phosphorylation/dephosphorylation is an important, and 

perhaps the primary, mechanism for regulating receptor sensitivity and modulating ion channel 

dynamics [HUGA], [LEVI]. Levitan remarks, 

Modulation of the properties of membrane ion channels is of fundamental importance for the 
regulation of neuronal electrical activity and of higher neural functions. Among the many 
potential molecular mechanisms for modulating the activity of membrane proteins such as ion 
channels, protein phosphorylation has by chosen by cells to play a particularly prominent part. 
This is not surprising given the central role of protein phosphorylation in a wide variety of 
cellular, metabolic, and signaling processes. As summarized here, regulation by phosphorylation 
is not restricted to one or another class of ion channel; rather, many, and perhaps all, ion 
channels are subject to modulation by phosphorylation. Similarly, a number of different protein 
kinase signaling pathways can participate in the regulation of ion channel properties, and it is not 
unusual to find that a particular channel is modulated by several different protein kinases, each 
influencing channel activity in a unique way. Finally, the biophysical mechanisms of modulation 
also exhibit a striking diversity that ranges from changes in desensitization rates to shifts in the 
voltage dependence and kinetics of channel activation and inactivation [LEVI]. 

While physiologists, molecular biologists, and neurochemists have by now long been aware of 

the importance and role of phosphorylation/dephosphorylation in the regulation of neuronal 

activity, this has not yet been widely recognized by neural network theorists in the form of neural 

network models that include it in their structures. Of the major "schools" of neural network 

theory, only adaptive resonance theory (ART) has so far incorporated mathematics to give a well-

organized account for the modulation phenomena, albeit this accounting is high-level, abstract, 

                                                 
4 In some cases, the G-protein itself acts in the role of the secondary effector by binding its mobile 
dissociated subunit to a substrate protein (typically a channel protein or a receptor protein). This action is 
similar in form to the cAMP cycle illustrated in Figure 5.5 except that the target is not an AC enzyme and 
the outcome is a direct cell response rather than the production of a second messenger This is sometimes 
called membrane-delimited control [HILL6]. 
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and quite indirect. (In ART this type of network modulation is recognized through such 

mechanisms as the ART "vigilance parameter" and the gain control mechanisms of its 

"attentional" subsystem [GROSS10], [CARP4-6]). Yet most of the major subsystems in the brain 

that signal by means of metabotropic messengers have widespread targets across large regions of 

the neocortex and other cerebral structures. Because these modulating signals, after all is said and 

done, work through phosphorylation and dephosphorylation, this lack of attention by network 

theorists is difficult to justify, and perhaps it is impossible to truly justify when one realizes that 

ART methods are a possible means to take it into account at the network level of the reductionist 

hierarchy.  

Not surprisingly, the kinetics of phosphorylation are different for the many different kinds of 

kinases. We will not delve into the fine details of the biochemistry involved here, mainly because 

there are so many but also because this is a topic for specialists. Some excellent reviews are 

available describing PKA [FRAN], PKC [TANA], the CaM kinases [HANS], and the receptor 

tyrosine kinases [FANT]. In this text the focus will be given to common features found in the 

processes of the phosphorylation/dephosphorylation cycle.  

A kinase exhibits (at least) two states, called active and inactive. A kinase in the active state 

produces phosphorylation of its target substrate protein. Again, phosphorylation is the transfer of 

a phosphate group by a phosphorylase to an organic compound. A phosphorylase is any enzyme 

which catalyzes the addition of phosphate to an organic compound. This compound is then said to 

be phosphorylated. Phosphorylation is often ATP-dependent, and it produces compounds which 

are highly reactive in water with other organic molecules in the presence of appropriate enzymes. 

A kinase is a protein catalyzing the transfer of phosphate. An active kinase is one capable of 

acting as a catalyst in this way. An inactive kinase is one in a configuration where it does not act 

as such a catalyst.  

Second messengers cause a kinase to enter the active state. Other factors in the cell’s chemical 

milieu, not all of which are particularly well understood, return a kinase to its inactive ("basal") 

state. In addition to phosphorylating substrate proteins, some kinases have the ability to 

phosphorylate themselves; this is called autophosphorylation. A kinase in this state remains at 

least partially active, and is returned to the inactive state through the action of a phosphatase. Let 

S0 denote the inactive state of a kinase. Let S1 represent the normal active state of the kinase, and 

let S2 represent the autophosphorylated active state.  

By introducing a new element in the Linvill modeling schema, called the reactor, we can 

represent the process just described. The simplest feasible representation is shown in Figure 5.7. 

The flux law for a reactor element, R, is identical to that of a transporter, T, except for its physical 
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Figure 5.7: A simple Linvill schema for modeling inactive, active, and partially active kinase activated by a 
second messenger, m. 

interpretation. Unlike transporter flux, which represents the active transport of a substance from 

one location to another, reactor "flux" represents the loss of concentration of a substance, [X], due 

to a chemical reaction or a change in chemical state involving substance X. The reactor flux is 

given by  

   [ ]XRR ⋅=φ . 

In general, the value of R will be a function of the concentration of some other substance, [Y], 

with which X is undergoing chemical reaction or which causes the change in chemical state of X. 

For example, reactor R2 in figure 5.7 will be a function of the second messenger concentration, 

[m]. Similarly, reactor Rm in the figure will be a function of [S0], the concentration of inactive 

secondary effector kinase acted upon by second messenger m. Thus, the two Linvill networks in 

the figure are non-linearly coupled through the co-dependencies of the reactor elements. The sign 

convention for reactor flux is the same as that of the transporter element. For example, the 

differential equation describing node [S2] in the network is 

   [ ] [ ] [ ]2413
2 SRSR

dt
SdC ⋅−⋅=⋅ . 

Many kinases exhibit a threshold effect for their activation by second messengers. This 

implies that the dependency of R on [m] is likely to follow a Boltzmann function or a function 

similar in general form to a Boltzmann function. 

At least some second messengers (such as cAMP) are known to be able to reach any part of a 
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mammalian cell. In the case of cAMP, this can be accomplished in 100 ms. This omnipresent 

spread of second messengers might be true for most of the major second messengers in the 

neuron. It is therefore a reasonable speculation that the rate of activation of the messenger’s target 

kinases is a function of messenger concentration, [m], which is in turn a function of its production 

rate by the first effector (represented by φm in figure 5.7). Similarly, it is a reasonable speculation 

that the rate of phosphorylation of target substrate proteins (e.g. an ionotropic channel protein) is 

a function of the concentrations of active second effectors ([S1] and [S2] in figure 5.7) and of the 

concentration of non-phosphorylated target proteins (e.g. the number of such proteins in the 

neuron divided by the aqueous volume of the cell). Modeling this requires a third subnetwork, 

along the same lines as the lower subnetwork in figure 5.7, be added to the total network model.  

The principal protein kinases are widely expressed throughout the central nervous system. 

Often they are heavily concentrated in the postsynaptic density (the region in and around the 

synapse where the ionotropic and metabotropic receptors are found). Because these membrane 

spanning proteins are target substrate proteins for active kinases, this localization is further 

evidence for how the modulatory role of these kinases is realized in biological signal processing. 

At the present state of signal processing modeling theory for the neuron, there are many, many 

important factors for which we are not yet in possession of quantitative data needed to develop an 

accurate model. No doubt a large of amount of this information lies buried in the biochemistry 

and organic chemistry literature, e.g. [BUXB], expressed there in the language of the chemist 

rather than that of the computational neuroscientist. No doubt, too, some of this information is 

still entirely unknown, the relevant modeling research question not having yet been posed. This is 

an under-recognized research field for computational neuroscience and biological signal 

processing. There is very clear evidence that for many of the important kinases their activity level 

(which one can assess by examining the rates at which they phosphorylate their targets) is more 

complex than being merely binary or ternary (as figure 5.7 might suggest). Reports in the bio-

chemistry literature indicate that the activity levels of the major kinases is dependent upon levels 

of ATP concentration (and probably other factors as well). Accounting for this clearly requires a 

more complex network model than the one given above. Indeed, the need for this accounting is 

one reason why a method of lumped-element representation of the process is useful and important 

for understanding the modulation processes of the neuron.  

The experimentally observed fact that many of the major protein kinases, especially PKC and 

CaM, exhibit autophosphorylation, and thus remain partially active even after concentration 

levels of their second messengers decline, has been a source of great scientific interest. There is a 

great deal of speculation that autophosphorylation of the kinases is a memory mechanism for the 
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neuron [SCHW2]. This appears to be an undeniable fact in the case of elastic modulation, a form 

of short-term "memory" for the neuron. Additional evidence suggests that some kinases, 

particularly CaM and presynaptic PKC, may also support plastic (that is, irreversible) modulation 

of synaptic efficacy. Presently, this putative role is still somewhat speculative, but it is receiving a 

great deal of attention and one can reasonably expect the future to bring further clarification to 

this possibility.  

The secondary effectors primarily exert their effects through phosphorylation of their target 

substrate proteins. The phosphorylation process is accompanied by another regulatory process, 

namely the process of dephosphorylation. Phosphorylation of the substrate protein can, depending 

on the kinase involved and the particulars of the target protein, work either to sensitive or to 

desensitize the response of the channel protein in responding to neurotransmitters. In some cases 

it can open a normally-closed channel; in others it can close a normally-open channel. One model 

of this effect, although disputed by some researchers, holds that phosphorylation of channel 

proteins can be represented by introducing the idea of an effective density of channel proteins in 

the synapse. In this phenomenological model, the effect of phosphorylation is looked upon as 

having the same effect as increasing (or decreasing) the number of receptors on the postsynaptic 

side of the synapse. AMPA receptors are often treated this way, although there seems to be no 

strong reason to exclude the other ionotropic receptors from being looked at in this way. 

However, as already noted, other researchers take issue with this model of cell response to the 

secondary effectors, and the matter seems to be far from settled on the physiology level. 

Computational neuroscientists, on the other hand, have been quick to adopt this model of channel 

sensitization/desensitization. At the modeling level discussed in chapter 4, this effect is taken into 

account by the setting of the relative synaptic weight, w, or the base g0 of the channel. 

Presynaptic protein kinases might possibly target synaptic vesicle membranes or other 

structures within the synaptic terminal and thereby effect a change in either p or N or both in 

equation (5.1). This is presently regarded as rather speculative and is often accompanied by a 

speculation that membrane-permeable retrograde messengers such as NO must also be involved 

in such a process. (NO is a byproduct of the action of the arachidonic acid process; the DAG-

PKC second messenger process is thought to produce AA as a divergence byproduct).  

Dephosphorylation is the removal of the phosphate group from the target protein. It is also the 

mechanism by which autophosphorylated protein kinases become inactive once again. 

Dephosphorylation is produced by enzymes called phosphoprotein phosphatases. Whatever the 

cell response to the secondary effector was, dephosphorylation terminates the effect. Reactor R4 

in figure 5.7, which represents dephosphorylation of an autophosphorylated kinase, is an example 
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of how the Linvill modeling schema can represent of this effect. A large value of R4 represents 

rapid dephosphorylation; a small value represents slow dephosphorylation.  

Dephosphorylation can itself be regulated by metabotropic mechanisms. One well-studied 

case is that of phosphorylation of K+ channels by the action of PKA [SIEG]. In this case, a K+ 

channel opened by phosphorylation is dephosphorylated and closed by the action of an enzyme 

called phosphoprotein phosphatase-1. However, the action of this enzyme is regulated by another 

protein called inhibitor-1. Inhibitor-1 is phosphorylated by the action of PKA, and in this state it 

inhibits the action of phosphoprotein phosphatase-1. Here is one example of how one 

metabotropic signaling cascade can diverge (PKA inhibiting dephosphorylation, while at the 

same time producing it in the K+ channel). Inhibitor-1 is dephosphorylated by the action of Ca2+, 

which activates another phosphatase known as calcineurin that in turn dephosphorylates inhibitor-

1. A similar process has been reported for regulating phosphorylation/dephosphorylation of 

NMDA receptors [HALP]. This one involves inactivation of the inhibitor DARPP-32 by CaM 

and activation of DARPP-32 by PKA produced from elevated cAMP levels stimulated by 

dopamine signaling.  

Each of these actions just described can be approximated by adding additional Linvill 

networks to those depicted in figure 5.7. In the case of targeted channel proteins, if one adopts the 

effective-density model the relevant concentrations would be concentrations νp of phosphorylated 

channels and νd of dephosphorylated channels. Reactor elements would be used to model the 

kinetics of the phosphorylation/dephosphorylation process in terms of concentrations of various 

active secondary effectors. Modeling of dephosphorylation would involve networks similar to the 

lower network in figure 5.7 modeling the concentrations of inhibited and uninhibited 

phosphatases, calcineurin, etc. As this model-building is a corollary to the general idea illustrated 

in figure 5.7, this is left as an exercise at the end of this chapter.  

§ 7. Markov Processes 

The Hodgkin-Huxley technique for modeling rate processes expressed the rate variable (n, m, 

h) in terms of quantities with values ranging from 0 to 1. We have previously seen that this can 

likewise be interpreted in terms of the probabilities of channel deactivation, activation, and 

inactivation. The Hodgkin-Huxley rate variables, α and β, then take on the significance of being 

regarded as parameters describing conditional transition probabilities.  

When we look at kinetics processes in these statistical terms, what we have is a model that 

mathematicians and statistical signal processing theorists call a Markov process. Markov 

processes are widely used in many, many fields. Any physical process that we represent in terms 
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of a Hodgkin-Huxley-like model, including a Hodgkin-Huxley-like formulation of a Linvill 

network, can be equivalently expressed in terms of a Markov process model in which the 

transition probabilities between the states of the model are functions of the state probabilities. 

Such a model is a time-varying Markov process said to be linear in parameters because the next 

state of the model is a linear function of the present state (linear in the transition probability 

parameters), but the parameters themselves are different after this transition (thus making the 

overall model time-varying).  

How does one take a model representation from the "physical" representation of a Hodgkin-

Huxley or a Linvill model to the more abstract representation of a Markov process? This can be 

easily demonstrated by showing how this is done for the case of the Hodgkin-Huxley rate 

process. We begin with a diagrammatic representation of the H-H rate process as shown in Figure 

5.8(A). For simplicity we pick the activation variable, n, which represents the channel gate as 

having two states, open and closed. We will let S0 represent the closed (deactivated) state and S1 

represent the open (activated) state. From our previous rate equations (chapter 3), we obtain the 

diagram of figure 5.8(A). The corresponding pair of differential equation is  
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10
0

SS
dt

dS

SS
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dS

⋅−⋅=

⋅+⋅−=

βα

βα
 . 

By interpreting states S0 and S1 as the fraction of gates closed or open and then imposing the 

constraint  S0 = 1 – S1  we obtain the original Hodgkin-Huxley rate equation with S1 interpreted as 

 

Figure 5.8: Rate process and equivalent Markov process diagrams. (A) The Hodgkin-Huxley first order rate 
process in diagram form. This diagram represents the process in continuous time in the form of a pair of 

differential equations. By letting S0 and S1 denote the fractions of the populations closed or open, 
respectively, and setting S0 = 1 – S1 we obtain the original Hodgkin-Huxley equation. (B) Equivalent Markov 
process diagram. This form is obtained from converting the pair of differential equations describing (A) to a 

pair of difference equations. 
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activation variable. Converting the pair of differential equations to difference equations using 

Euler’s method gives us 
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Now, when one interprets S0(t) and S1(t) as the fraction of gates closed or opened, and if one 

further assumes (as Hodgkin and Huxley did) that the closing and opening of any particular gate 

is statistically independent of the closing or opening of any other gate, then S0 and S1 can be 

equally well interpreted as representing the probabilities, π0 and π1 of any particular gate being 

closed or open. We may then replace the state variables in (5.3) by their corresponding 

probabilities. The state matrix on the right-hand side of (5.3) then has the interpretation of being a 

matrix of state transition probabilities. These are conditional probabilities, e.g. p0|1 is the 

probability of making a transition to state S0 given that the current state is S1.  

Making these changes of variables in (5.3) results in the expression 
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This is the system of equations represented in diagram form by Figure 5.8(B). This diagram is 

called a Markov process diagram. The entries in the state transition matrix of (5.4) correspond 

one-to-one to the entries in the state matrix of (5.3) and give them a statistical interpretation. (5.4) 

is written in more concise form by using standard vector-matrix notation, Π(t + ∆t) = P Π(t). 

The obvious disadvantage of using expressions (5.3) or (5.4) is that they require two equations 

to be solved, whereas the original Hodgkin-Huxley formulation requires only one. The rows of 

the system of equations (5.3) or (5.4) are not linearly independent. Note that if we sum the 

column entries in the state matrix of (5.3), both columns sum to unity. The same is true for the 

state transition matrix in (5.4), and this is a general feature of all Markov processes. The proper 

interpretation of this mathematical property is simply this: Given whatever state the system is in 

at time t, it is certain to be in some state at time t + ∆t. Furthermore, the sum of all the state 

probabilities at any time t is always unity. Thus, the state matrices of (5.3) and (5.4) are not full 

rank. The expression for the steady state in (5.4) is simply Π(t + ∆t) = Π(t). If we make this 

substitution into (5.4), we find that the solution for Π(t) is indeterminate. In order to solve (5.4) 

for the steady state, one must replace one of the rows (which one doesn’t matter) by the constraint 

equation 1 = π0 + π1. This is, in effect, how Hodgkin and Huxley were able to reduce (5.3) to a 

single difference equation. 
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This disadvantage of the Markov process representation becomes less of a disadvantage as the 

number of states in the system increases. If P is an n × n matrix, its rank will always be n – 1. For 

any column of P, the sum of the column entries will always equal 1 because the sum of all the 

state probabilities must always add up to unity. The column-sum property is a mathematical 

constraint placed on any probabilistic model of any rate process kinetics.  

As an example, let us derive the Markov process model for the kinase process illustrated in the 

lower part of Figure 5.7. Here we have three state variables. Summing the effluxes from each 

node to obtain the system of differential equations, converting these to difference equation form 

by Euler’s method, and making the substitution of the state probability variables, we obtain 
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The derivation of (5.5) is left as an exercise at the end of the chapter. Note that for each column 

of the state transition matrix, the sum of the column elements adds up to unity, as it must for any 

correct model of this class. The entries in the state matrix of (5.5) are interpreted as the transition 

probabilities, pn|m, for making a transition to state n from an initial state m.  

The combination of a network representation using the Linvill schema with the probabilistic 

representation of a Markov process provides a powerful tool for general modeling of the 

dynamical processes in a neuron. Furthermore, the mathematical constraint that the columns of 

transition probabilities must add to 1 provides a check on the correctness of the kinetics network 

represented by the Linvill model. Note that the three equations of (5.5) can be combined with the 

single difference equation for [m] in Figure 5.7. The equation for [m] will be a difference 

equation for the second messenger concentration rather than for a probability, and this equation 

will be uncoupled from the three state probability equations. (The coupling in the physical 

process being represented is indirect; it occurs through co-dependencies of the process parameters 

in just the same manner as membrane voltage is coupled to the rate constants in the Hodgkin-

Huxley model). The constraint on the sum of column elements applies only to the submatrix 

representing the state transition probabilities because the terms relating to [m] are not interpreted 

as state transition probabilities. The equations for the model of Figure 5.7 are easily shown to be 
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Figure 5.9: Illustration of the gap junction synapse. The spacing of the synaptic cleft at a gap junction 
narrows to around 3.5 nm (compared to 20 nm for a chemical synapse). The channel is formed by a pair of 
six-sided membrane-spanning structures called connexons. The spacing between connexons is about 8.7 

nm, giving a channel density of around 26,400 pores per µm2. The pore conductance is on the order of 100 
to 120 pS/connexon. 

where the pn|m entries are obtained from (5.5).  

§ 8. Gap Junction Synapses 

Although chemical synapses are the most common form of synapse found in the neurons of 

the central nervous system, a second type, the gap junction synapse is also found to occur 

between some neurons. Gap junctions also are the principal synapse connecting glia to one 

another. Figure 5.9 illustrates the arrangement of a gap junction synapse. At the gap junction, the 

spacing between cell membrane walls narrows to about 3.5 nm. Gap junctions range in diameter 

from about 0.1 to about 10 µm. The channel is formed by a six-sided structure called a connexon. 

The channel diameter is around 1.5 nm and connexons are spaced at intervals of approximately 

8.7 nm. This gives a channel pore density of approximately 26,400 pores/µm2. Channel 

conductance is large, around 100 to 120 pS/pore. Thus, the over conductance of the junction, Ggj, 

ranges from around 20 nS to 200 µS, depending on the diameter of the junction.  

Gap junctions come in two different types, non-rectifying and rectifying. The non-rectifying 

junction is the most common in the central nervous system. It’s model is quite simple, merely an 

electrical conductance, Ggj, connecting two neurons. A simplified circuit model of the gap 

junction connection is shown in Figure 5.10. There is very little voltage drop across the gap 

junction, and in equilibrium the two cells will maintain the same membrane voltage. The gap 

junction causes a larger overall conductance to be presented to the chemical synapse circuit, 

which means it is more difficult for the chemical synapse to stimulate the neuron into firing. 

When one neuron in a gap-junction-connected network is stimulated into firing, the other neurons 
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Figure 5.10: Simplified circuit model of two neurons connected by a gap junction synapse. The synaptic and 
Hodgkin-Huxley circuit elements have been simplified (cell-level Thévenin equivalent circuits) in this figure. 

Current flow from neuron 1 to neuron 2 is simply I = Gg j ⋅ (Vm1 – Vm2). 

will likewise be stimulated into firing. Thus, one can regard a network of gap-junction-connected 

neurons as, in effect, constituting a single gigantic neuron with multiple inputs and outputs. It has 

been proposed that gap junctions are a mechanism for promoting synchronized firing by groups 

of neurons.  

The second, less common, form of gap junction is the rectifying gap junction. This type of 

junction easily conducts current in one direction, say from cell 1 to cell 2 in figure 5.10, but not in 

the other. Its conductance is well approximated using the Heaviside function,  

   . ( )21 mmgj VVGG −⋅= H

Why some gap junctions rectify is not entirely understood. Some have proposed there may be a 

minute voltage-dependency for the opening of the channel pore that is more sensitive on one side 

of the junction than on the other, but this hypothesis is at present somewhat speculative.  

It is known that non-rectifying gap junctions can be modulated by chemical messengers within 

the cell. Neuronal gap junctions have been found to close in response to lowered pH levels, and in 

response to elevated Ca2+ levels. Other neurotransmitters stimulating metabotropic signaling have 

also been found to alter gap junction conductance. One function such modulation might perform 

is to disconnect gap-junction-connected neurons. Gap junctions are have been found in the retina, 

between certain types of inhibitory interneurons in neocortex, and in the neural circuitry of the 

brainstem.  

132 



Chapter 5: Synaptic Processes 

Because their membrane voltage is more or less inactive, in networks of gap-junction-

connected glial cells ion transport seems likely to be primarily a matter of diffusion rather than 

ion drift caused by electric potential differences. If ion diffusion current dominates electrical 

current in glia, the Linvill model is a more appropriate model for transport of chemicals via the 

glial network. Because glia are known to transport cytoplasmic calcium waves, this suggests that 

gap junctions in glial cells do not share the propensity seen in neurons for elevated Ca2+ to close 

gap junctions. This might be merely a matter of the possible existence of some threshold 

phenomenon that depends on levels of [Ca2+], this perhaps being higher in glia than in neuronal 

cytoplasm, or it might hint at a quite different set of biophysical conditions for glia. This, 

however, is speculation and merits its own investigation into whether gap junctions behave 

differently for glia vs. neurons.  

 

Exercises 
1.  Calculate and plot the probabilities Pr[n] for exocytosis by n vesicles as a function of n for a releasable 

pool of N = 5 vesicles and release probabilities p of 0.1 and 0.2. Calculate the variance for each of the 
two release probabilities.  

2.  For p = 0.1 and N = 5, what is the average number of action potentials required to stimulate exocytosis 
by at least 1 vesicle assuming that the action potentials are spaced far enough apart in time for Ca2+ 
buffering to return presynaptic Ca2+ concentration to its basal level? How might one expect faster AP 
rates, relative to the Ca2+ buffering rates, to affect neurotransmitter release? 

3. Develop a first-order Linvill model for presynaptic calcium concentration in response to the occurrence 
of an action potential. Assume a basal [Ca2+] level of 100 nM and that action potential induced calcium 
influx into the presynaptic terminal is by means of HVA calcium channels. What physical parameters 
are required for this model to make quantitative predictions of calcium concentrations?  

4. Why would synchronous AP signaling at many synapses at the same time improve the reliability of 
neuronal signaling in a neural network? Why would high-rate action potential signaling at one synapse 
improve the reliability of neuronal signaling in a neural network? If on the average p = 0.1 and N = 5, 
how many synapses would need to receive action potentials in order to activate signaling for an average 
of 50 synapses in the postsynaptic neuron?  

5. The binomial distribution model of synaptic exocytosis makes the implicit assumption that the 
measured level of post synaptic current is proportional to the number of vesicles undergoing exocytosis 
in response to an AP. What does this assumption imply for NTX binding on the postsynaptic side of the 
cleft?  

6. Assume the active area of a synapse contains N = 5 primed vesicles arranged in the configuration 
illustrated in Figure E.6. Pick out 5 reasonable geometric centers for a 5-compartment Linvill model of 
NTX diffusion into the cleft and propose such a model network. Assume that outside the active area 
[NTX] is effectively zero and ignore NTX re-uptake. Model NTX exocytosis as an impulsive flux event 
and make reasonable scaling approximations for compartment volumes (use the center compartment as 
reference C) and make reasonable scaling approximations for the relative diffusance values (taking 
those attached to the centermost compartment as reference value D). Your compartments do not need to 
have equal volumes. Assume that within the synaptic cleft D is proportional to the cross sectional area 
between compartments and inversely proportional to the straight-line distance from the vesicle center to 
the compartment center. For diffusion out of the cleft assume D is inversely proportional to the mean 
distance from the center of the compartment to the periphery of the cleft region. Make whatever other 
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assumptions you deem reasonable, but explain them.  

 

Figure E.6 

7. Sketch the Hodgkin-Huxley circuit model for a two-neuron network connected by a reciprocal synapse 
arrangement as shown in Figure 5.3. In representing each neuron, it is sufficient to represent the 
neuron’s voltage-gated channels using a single Thévenin equivalent circuit segment. Clearly label what 
the activating signal is for each of the two synapses. 

8. Repeat exercise 7 for the case of the synaptic glomerulus of Figure 5.3. 

9. The simplest kinetic model one might propose for the action of a G-protein is the second-order 
statistical model shown in Figure E.9. Models of this type are called Markov process models. Let π0 
denote the probability that the G-protein has not switched on its primary effector. Let π1 denote the 
probability the G-protein has switched on its primary effector. Let k denote a time index in units of ∆t. 
The terms pn|m denote the conditional probabilities for entering state n given that the present state is m. 
Assume the rate of second messenger production is proportional to π1. Let π0(0) = 1 and π1(0) = 0. 
Show that for k ≥ 0 the state probabilities are given by 
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 Plot the two state probabilities vs. k for p0|0 = 0.8, p0|1 = 0.01, p1|0 = 0.2, p1|1 = 0.99. Do you think this 
model properly accounts for the eventual turning off of the G-protein? Why or why not? Based on your 
answer, is this kinetics model a correct model for G-protein action?  

10. The modeling error for the model in exercise 9 is improper treatment of the π0 state. When a G-
protein returns to the inactive condition, its receptor protein ejects the first messenger 
substance and so the conditions are different from those represented by the π0 state. This can 
be accounted for by adding a trap state to the model as shown in Figure E.10. In this model 
p0|1 is set to zero, denoting that the system cannot return to the π0 state directly from the π1 
state. Transition probability p2|1 replaces the old p0|1 transition probability, and p2|2 = 1 denotes 
that the G-protein remains inactive until a new first messenger re-starts the cycle. Derive the 
new system of difference equations describing the model of Figure E.10 and repeat the rest of 
exercise 9 for the new system. Except as noted here, use the same initial conditions and state 
transition probabilities as before.  
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Figure E.9. 

 
Figure E.10 

 

11. Derive the full set of four differential equations describing Figure 5.7. 

12. Deduce equation (5.4) directly from the diagram of Figure 5.8(B). How does this deduction differ from 
the process by which differential equations are derived from rate process diagrams such as Figure 
5.8(A)? (The reason the processes differ is because one describes a differential equation at a single 
instant in time, t, whereas the other describes a difference equation giving the values of the variables at 
the next time step).  

13. Derive equation (5.5). 
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