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Chapter 6 

 
Abstract Neuron Models 
 

§ 1. The Need for and Nature of Abstract Neuron Models 
Physiological models such as those looked at in the previous chapters are discovered and 

developed for the purpose of understanding the neuron. They are the fruit of scientific reduction 

aimed at explaining neuron behavior at a mechanistic level. However, the purpose of explaining 

neuron behavior is to lay the foundation for eventually explaining the behavior of the more 

complex biological structures found in the nervous system and, eventually, of the CNS itself. The 

next step up in the ladder of scientific knowledge from the neuron is the neural network. 

It will not have escaped your attention that every additional mechanistic detail learned adds to 

the complexity of the neuron model. The Huguenard-McCormick model of thalamocortical relay 

neurons includes ten different ionotropic current components, not counting synaptic channels. 

Eight of these are described by differential equations. Then one has the differential equation for 

calcium buffering plus the membrane voltage differential equation, for a total of ten differential 

equations that must be solved per time step. In addition, the eight ionotropic current equations 

also have auxiliary variables (m∞ and τ ) that require the calculation one or two exponential 

equations (e.g. a Boltzmann function) during each time step. Thus, comprehending in detail the 

mechanisms that produce the observable phenomena for membrane potential comes at a cost of 

great increase in computational complexity. If one wishes to study a network of n such neurons, 

the computational cost multiplies by a factor of at least order n (plus, of course, the added cost of 

computing the synaptic channel equations).  

It does not take very many neurons before the computational cost of doing the simulation 

becomes prohibitive. For example, Rulkov et al. [RULK1] have reported that simulating 2.5 

seconds of "real time" data for a linear chain of 128 H-H-like neurons required 9.5 minutes of 

computer time on a fairly respectable high-performance computer. The H-H model they used was 

a reasonably efficient one previously reported by Mainen and Sejnowski [MAIN]. This was about 

2000-fold more computing time than the result they obtained using their abstract neuron model.  

What is an abstract neuron model? In general, it is a model that produces the same input-

output (I/O) behavior as a physiological neuron model but achieves this by replacing the 

mechanistic expressions of an H-H-like model with an alternate set of dynamical equations. 

These equations sacrifice representation of the neuron's internal details in favor of a more 

computationally efficient set of dynamical equations that aims only at reproducing the neuron's 
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I/O behavior with acceptable accuracy. To put this another way, it is a model focused on the 

signal processing function of the neuron rather than the physiological understanding of its 

mechanisms. Underlying its theoretical justification is the presupposition that in a neural network 

it is only the signal processing function of individual neurons, viewed as I/O relationships, that 

matters insofar as the behavior of the network is concerned. The need for abstract neuron models 

is practical (reduction of computational costs), but the validity of the approach is still laid to the 

idea that only "unnecessary" details are sacrificed in achieving the practical goal.  

But how does one know when a detail is "unnecessary" and when a detail is "necessary"? The 

mere fact that one might not be interested in how many species of voltage-gated K+ channels a 

neuron might have or what their individual ionotropic currents might do is not sufficient to make 

this an "unnecessary" detail. If accurate modeling of these currents is required in order for the I/O 

properties of the neuron to be accurate, then they are "necessary" details. "Unnecessary" and 

"necessary" refer not to where one's interests may lie; they refer to whether or not the detail is 

required to achieve the purposes of one's model.  

This brings us to the consideration of what is often called the function vs. mechanism levels 

of system representation. In a loose sense, one can say that function is "what the system does" and 

mechanism is "how the system does it." The coalescence of a number of mechanisms in one 

system frequently results in a system function for which properties of the system come into being 

that are not identifiable in any one of its mechanisms. Such properties are called emergent 

properties and they are the consequence of interactions among the mechanisms. Grossberg tells 

us,  

 The distinction between a network's emergent functional properties and its simple mechanistic 
laws also clarifies why the controversy surrounding the relationship of an intelligent system's 
abstract properties to its mechanical instantiation has been so enduring. Without a linkage to 
mechanism, a network's functional properties cannot be formally or physically explained. On the 
other hand, how do we decide which mechanisms are crucial for generating desirable functional 
properties and which mechanisms are adventitious? Two seemingly different models can be 
equivalent from a functional viewpoint if they both generate similar sets of emergent behaviors. 
An analysis which proves such a functional equivalence between models does not, however, 
minimize the importance of their mechanistic descriptions. Rather, such an analysis identifies 
mechanistic variations which are not likely to be differentiated by evolutionary pressures which 
select for these functional properties on the basis of behavioral success. 

 Another side of such an evolutionary analysis concerns the identification of the fundamental 
network modules which are specialized by the evolutionary process for use in a variety of 
behavioral tasks. How do evolutionary variations of a single network module, or blueprint, 
generate behavioral properties which, on the level of raw experience, seem to be phenomenally 
different and even functionally unrelated? Although each specialized network may generate a 
characteristic bundle of emergent properties, parametric changes of these specialized networks 
within the framework of a single network may generate bundles of emergent properties that are 
qualitatively different. In order to identify the mechanistic unity behind this phenomenal 
diversity, appropriate analytic methods are again indispensable [GROSS10]. 
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The second paragraph just quoted is particularly pertinent when we examine larger scale 

behaviors of networks. At the level of neuron modeling, what is immediately of concern to us is 

Grossberg's comment, "Two seemingly different models can be equivalent from a functional 

viewpoint if they both generate similar sets of emergent behaviors." In every abstract neuron 

model some or even all of its dynamical equations are completely different from those of the 

physiological description of the neuron. Furthermore, the abstract neuron will be described by 

fewer equations than the physiological neuron it is meant to imitate. Were this not so, there would 

be no point to having an abstract neuron model. How can two different models generate 

functional emergent properties similar enough to be called "the same"? The answer is found in 

the phenomenon of interaction.  

One way to illustrate this concept is by an analogy. As you know, water is composed of 

hydrogen and oxygen and described by the chemical reaction 2H2 + O2 → 2H2O we all learned in 

high school chemistry. If one is designing a lawn sprinkler system or studying how best to design 

the hull of a ship, the particulars of hydrogen and oxygen are matters of practical indifference; 

only the properties of water, which are wholly different than either hydrogen or oxygen alone, 

matter. If one knew enough about water but had never heard of either hydrogen or oxygen, one 

could still design a ship or a lawn sprinkler.  

So, too, it is in the case of abstract neuron models used in a neural network model. Imagine if 

you can that some set of mechanistic equations stands in the role of "hydrogen" and another set 

stands in the role of "oxygen" in our analogy. Now imagine the outcome of their interactions at 

the cell level as standing in the role of "water." If we adequately describe the properties of 

"water" by its own set of fewer equations, then from an input-output (functional) point of view, 

this second set of equations is sufficient for our purposes provided these equations do not also 

predict behaviors that do not actually happen at the network level or fail to produce functional 

consequences that do happen in the biological system.  

Proper modeling at the level of the abstract neuron is thus a matter of proper choice of level of 

description and description of the gross effects of mechanistic interactions. In the language of the 

system theorist, the task of going from a lower-level mechanistic description to a higher-level 

functional description is called model order reduction. If we view the hierarchy of levels of 

scientific descriptions as a ladder, descending to lower rungs on the ladder is scientific reduction; 

ascending to higher rungs on the ladder is model order reduction. A key task and responsibility of 

science is to accomplish both outcomes while at the same time providing the linkage between the 

rungs (the "rails of the ladder") so that our different descriptive rungs do not levitate in mid-air 

without a firm supporting structure.  
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Grossberg makes another remark which, although addressed at neural network modeling, is 

equally appropriate for abstract neuron modeling.  

A network model is usually easy to define using just a few equations. These equations specify 
the dynamical laws governing the model's nodes, or cells, including the processing levels in 
which these nodes are embedded. The equations also specify the interactions between these 
nodes, including which nodes are connected by pathways and the types of signals or other 
processes that go on in these pathways. Inputs to the network, outputs from the network, 
parameter choices within the network, and the initial values of network variables often complete 
the model description. Such components are common to essentially all real-time network 
models. Thus, to merely say that a model has such components is scientifically vacuous. 

 How, then, can we decide when a network model is wrong? Such a task is deceptively simple. If 
the model's levels are incorrectly chosen, then it is wrong. If its interactions are incorrectly 
chosen, then it is wrong. And so on. The only escape from such a critique would be to 
demonstrate that a different set of levels and interactions can be correctly chosen, and shares 
similar functional properties with the original model. The new choice of levels and interactions 
would, however, constitute a new model. The old model would still be wrong. Such an analysis 
would show that the shared model properties are essentially model-independent, yet that there 
exist finer tests to distinguish between models [GROSS10]. 

Such is the intellectual framework and the scientific environment for model order reduction 

and for the development, evaluation, and employment of abstract neuron models. Here it is worth 

the reminder that the utility of all scientific models is the ability to predict phenomena. Merely 

because a model accurately reproduces some set of experimental test outcomes is no guarantee 

the model will correctly predict other functional I/O behaviors under conditions different from 

those of the experiment. Yet such predictions are the pragmatic justification for model 

development in science. Were this not so, any statistical curve fit to measured data would suffice 

for science, yet such curve fits are not means of understanding but rather means of description in 

advance of understanding. This is important for us to keep in mind as we look at the descriptions 

of the abstract neuron models that follow. 

§ 2. The Wilson Models 

The first abstract neuron model we will consider in detail is actually a class of model neurons, 

which we will call Wilson's models [WILS1]. Wilson's models are signal processing models, 

thus abstract neuron models. The goal of these models, in Wilson's own words, is "to develop the 

simplest plausible approximation to neocortical neurons that is consistent with the observed 

diversity of dynamical behavior." Three features of Wilson's models are noteworthy here. First, 

the model neurons are approximate models of neocortical neurons, i.e. neuron types found in the 

neocortex (the thin outer layer of the mammalian brain commonly called "the gray matter"; the 

neocortex is thought to be the seat of "higher" cognitive, sensory, and motor functions). Second, 

Wilson's models maintain a fairly close coupling with the physiology of the neuron. They are 
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abstract neuron models, but the connection between them and their biological counterparts is very 

evident and easily understood. We will call this sort of model order reduction approximation 

modeling, in distinction from another kind of model order reduction we will call mimic modeling. 

Third, Wilson's models are classified according to signaling type rather than by the anatomical 

classifications of neocortical neurons, although there is fairly well-defined correspondence 

between signaling type and anatomical classification. Because the notion of classifying neurons 

by signaling type is pervasive in neural network theory, it is worthwhile for us to begin the 

discussion with an overview of neocortical neurons and their varieties in the neocortex.  

§ 2.1 Neocortical Neurons 
Anatomists describe the neocortex as being divisible into six distinct layers, numbered 1 to 6, 

and distinguished mainly by depth and the types of neurons found in each. Layer 1 is the outer-

most layer (closest to the skull bones) and contains very few neurons. Layer 1 does contain many 

axons running relatively short distances and providing regional cortico-cortical interconnections. 

Layer 6 is the deepest layer, immediately adjacent to the brain's "white matter" – a volume of the 

brain containing billions of myelinated axons interconnecting more distant regions of the brain, 

including connections to subcortical brain structures. The first and most broad classification of 

neocortical neurons is the division between excitatory neurons (neurons for which signaling 

tends to excite action potentials in their postsynaptic target cells) and inhibitory neurons 

(neurons for which signaling tends to suppress action potential generation in their target cells). 

Excitatory neurons make up about 85% of all neurons in the neocortex, the remaining 15% being 

inhibitory interneurons.  

Excitatory neurons are further divisible into two classes, pyramidal cells and spiny stellate 

cells. Pyramidal cells (PCs) are the projection neurons in the neocortex. They are so called 

because the cell body has a pyramidal shape. A long dendritic structure projects vertically from 

the cell body and spans many layers within the neocortex. PCs are found in layers 2 through 6. 

Their axons make local synaptic connections but also project via the white matter to other 

locations in the brain. PCs in layers 2 and 3 primarily make cortico-cortical projections to other 

locations in the neocortex and primarily target neurons located in these same layers. They also 

make projections to nearby regions via layer 1 and by short lateral projections in the other layers. 

PCs in layer 5 make lateral axonal projections over short distances in layer 6 and white-matter 

projections to the brain's basal ganglia. PCs in layer 6 also make short axonal projections via 

layer 6 and long white-matter projections to the thalamus (a subcortical structure in the brain). 

PCs account for about 65% of all the neurons in the neocortex.  

Spiny stellate cells (SSCs) account for about 20% of all neurons in the neocortex. They are 
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interneurons located in layer 4, and they are one of the principal target cells for signals coming 

into the neocortex from the thalamus (the "central routing" structure for sensory information 

coming into the neocortex from the peripheral nervous system). Their output projections never 

leave the immediate vicinity of where the cell body is located, although they do make output 

projects up as far as layer 2. The word "stellate" means "star-shaped", a term that describes the 

shape of the cell. SSC dendrites are covered with tiny projections, called dendritic spines, where 

the majority of excitatory synapses made to the cell are found. (Pyramidal cells also have a rich 

structure of dendritic spines). Within the broad classification of cells as PCs or SSCs one finds a 

rich variety of subspecies of cells.  

The remaining 15% of all neocortical neurons are inhibitory interneurons (IINs). Although the 

IINs make up the smallest class of neocortical neurons insofar as sheer number of neurons is 

concerned, they also exhibit the richest variety of different species of neurons. The ten identified 

species of IINs are: (1) large basket cells (LBCs); (2) small basket cells (SBCs); (3) nested basket 

cells (NBCs); (4) bitufted cells (BTCs); (5) bipolar cells (BPCs); (6) double bouquet cells 

(DBCs)1; (7) neurogliaform cells (NGCs); (8) Martinotti cells (MCs); (9) chandelier cells (ChCs); 

and (10) Cajal-Retzius cells (CRCs). IINs are characterized by the absence of dendritic spines, 

and receive their excitatory synaptic inputs on their dendritic shafts. IINs are found in all layers of 

the neocortex, but different species of IINs do have different characteristic locations. This is 

summarized in Table I, the data for which is taken primarily from [TOLE].  

§ 2.2 Signaling Types in Neocortical Neurons 

A number of different taxonomy systems have been proposed over the years for classifying 

neurons on the basis of their signaling properties [BERT], [RINZ], [CONNb1-2]. The one used in 

Table I and largely adopted by Wilson is due to Connors et al. [CONNb1-2], [McCO2]. It 

recognizes four primary signaling type classifications: regular spiking (RS); fast spiking (FS); 

intrinsic bursting (IB); and continuous bursting (CB). These classifications are based on neurons' 

membrane responses to the injection of a supra-threshold test current under laboratory test 

conditions. Thus, the names do not describe normal in vivo behavior of these cells in response to 

biological excitation. The Connors-Gutnick-McCormick (CGM) system is probably the one in 

widest use, but there is no one official "standard taxonomy" system in use at this time. 

Nature seems to have a way of upsetting even the most carefully wrought classification 

systems, and this is so for the CGM system and for others as well. Thus it is not uncommon to see 

                                                 
1 At this time there is some evidence suggesting that an excitatory bipolar cell and an excitatory double 
bouquet cell might also exist. This is not yet confirmed.  
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enhancements and sub-categories appended to the primary distinctions (RS, FS, IB, CB), nor does 

this fourfold division fully take into account every neuron signaling response that has been 

discovered. In addition to these four, there are also "irregular spiking" responses (IS), "chattering" 

CB responses [GRAY1], "rhythmic firing" responses (RF), "low threshold spiking" responses 

(LTS), "stuttering cells" (STUT), and, no doubt, others that will turn up over time. Newer 
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taxonomies, e.g. [GUPT], are brought forth from time to time to help deal with fine shades of 

difference that are obscured in the older taxonomies such as the CGM classifications [TOLE].  

An RS neuron injected with a supra-threshold test current initially fires at a relatively high rate 

(determined by the amount of injected current) but soon slows its firing rate and settles into a 

constant-frequency firing pattern. This behavior is called accommodation by some researchers 

and 'adaptation' by others. Its principal physiological mechanism is thought to be the slow 

activation of Ca2+-dependent K+ channels with contributions by the K+ "M" current [McCO2] (see 

chapter 4). Many neurons contain high-voltage-gated Ca2+ channels in their cell membranes. 

These VGCs normally cannot be opened by EPSPs due to synaptic inputs. However, when the 

cell fires an AP sufficient voltage is generated to open these VGCs. This results in an influx of 

Ca2+ ions which bind to sites on the cytoplasmic side of the proteins that make up the Ca2+-

dependent K+ channels, thereby opening these channels and hyperpolarizing the cell. The amount 

of resulting firing rate accommodation depends on the number and density of these channels and 

on the number and density of the high-voltage Ca2+ VGCs. Most, but not all, pyramidal cells 

belong to the RS signaling type. Spiny stellate cells also belong to the RS-type class.  

Figure 6.1 illustrates the RS-type firing response. The firing rate accommodation is clearly 

evident in the figure from examining the spacing between successive action potentials. The figure 

 

Figure 6.1: RS-type firing under laboratory test conditions stimulated by injection of an excitatory current 
from t = 10 to t = 190 ms. 
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was generated using Wilson's RS-type model parameters. In addition to the spike rate 

accommodation, one should also note the absence of any strong hyperpolarization during the 

repolarization of the membrane potential.  

IB-type signaling is divisible into two major subclasses, called IB-1 and IB-2. Not all PCs are 

of the RS-type. Some PCs found in layer V exhibit IB-1 type signaling. The primary mechanism 

for IB-type firing is thought to be a transient low-threshold calcium current produced by low-

voltage-gated Ca2+ channels. It is this current, rather than an Na+ current alone, that produces the 

burst action [McCO2]. However, the Ca2+ channel is a slowly inactivating (transient) VGC and it 

soon ceases to conduct any more current until its inactivation is reset by hyperpolarizing the cell. 

Under laboratory test conditions with constant-current injection the neuron fires a burst of 3 to 5 

action potentials, followed by a quite period, and then resumes firing at a lower and more or less 

constant rate. Other PCs exhibit IB-2 firing, where the neuron fires a burst, followed by a pause, 

then fires another burst, repeating this while the stimulus lasts. Figures 6.2 illustrate the IB-class 

responses.  

The remaining 15% of neocortical neurons, the local inhibitory interneurons, are categorized 

into four classes. 50% of these neurons are classified as Class-I GABAergic cells. They are found 

in all cortical layers. Class-I IINs belong to the fast-spiking or FS-type category. As shown in 

Table I, almost all morphological classifications of IINs contain species of neurons belonging to 

Class-I. The classical FS-type neuron is non-accommodating, i.e. its spiking frequency does not 

change when the neuron is injected with an excitatory constant current. Thus some researchers 

prefer the designation NAC (non-accommodating) to the designation FS for these neurons. Figure 

6.3 illustrates the FS-type firing pattern. Most FS-type neurons tend to be somewhat "hair trigger" 

in their response to stimulus, which is to say that their repetitive firing pattern in response to a test 

stimulus does not exhibit a gradual transition to high firing rates.  

 
     (A)         (B) 

Figure 6.2: IB-type firing patterns in response to injected current stimulus. (A) IB-1 type. (B) IB-2 type. 
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Figure 6.3: FS-type firing response to injected current stimulus. 

As can be seen from Figure 6.3, the FS-type neuron's firing rate is significantly faster than that 

of the RS-type. Examination of the onset of the firing pattern has led to the distinguishing of three 

subclasses of FS-type response, called b-NAC, c-NAC, and d-NAC. Figure 6.3 illustrates the c-

NAC (constant non-accommodating) subclass. The b-NAC subclass is characterized by a brief 3 

to 5 spike very-high-frequency burst at onset which quickly settles into the constant steady-state 

firing pattern. It is not entirely clear what the mechanism is for this bursting-NAC response. The 

d-NAC or delayed-NAC response is characterized by a brief delay between the application of the 

stimulus and the onset of firing. There is an initial strong depolarization of the membrane voltage 

followed by a brief interval before AP spiking begins. Most likely this is caused by the presence 

in the trigger zone of a particular type of transient K+ VGC known as the "A-current" or IA 

[McCO1]. Large basket cells (LBCs) and nested basket cells (NBCs) of different subspecies 

exhibit all three subclasses of NAC signaling. Bitufted cells (BTCs) and small basket cells 

(SBCs) have species exhibiting both d-NAC and c-NAC. Neurogliaform cells (NGCs) and Class-

I chandelier cells (ChCs) are d-NAC FS-type cells, while Class-I Martinotti cells (MCs) are c-

NAC FS-type cells [TOLE]. FS-type cells tend to make synapses to the soma or to the shafts of 

proximal dendrites at their target cells and will form synapses with any other type of cell. The 

exception to this rule is the Class-I NGC, which targets only axons.  

About 17% of IINs in the neocortex are Class-II GABAergic cells. Some of these neurons 

exhibit a low spiking threshold and so are known as low threshold spiking (LTS) cells. Class-II 

cells are found in layers II-VI of the neocortex. The Class-II response shows adaptation during 
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tonic firing, and therefore is called an AC (accommodating) response. This is similar to the RS-

type firing pattern except for two things. First, the firing rate is higher for AC-type than for RS-

type. Second, the onset of accommodation is slower to appear than in the case of the RS-type 

cells. The AC signaling class also shows three subspecies, called b-AC, c-AC, and d-AC where 

the prefix designator means the same thing as above for the NAC class. Class-II NBCs have 

subspecies that exhibit all three firing subclasses. Class-II BTCs and MCs  have subspecies that 

exhibit b-AC and c-AC signaling. Class-II LBCs have subspecies exhibiting d-AC and c-AC 

signaling. Class-II double bouquet cells (DBCs) exhibit c-AC signaling. The c-AC type is also 

sometimes called the RSNP (regular spiking non-pyramidal) type.  

An interesting feature of LTS Class-II neurons (BTCs and MCs) is the exhibition of post-

inhibitory rebound. PIR is the firing of an AP spike upon release from hyperpolarizing 

inhibition. The mechanism for PIR is an inactivating low-threshold Ca2+ VGC, commonly called 

a "T-current" or IT. The IT channel is normally open at the cell's resting potential, and the resulting 

Ca2+ current causes a slow depolarization of the cell's membrane potential, rising to the spiking 

threshold of the neuron. The neuron then fires an AP, in the process of which the IT channel is 

inactivated. The channel will not deactivate (release from  the inactivation state) until the cell 

membrane is hyperpolarized, and will not activate again until the membrane recovers from 

hyperpolarization. LTS cells co-localize the neuropeptide SOM (somatostatin). 

Class-III IINs make up another 17% of all IINs in the neocortex. They co-localize the 

neuropeptide VIP (vasoactive intestinal peptide) and display an irregular spiking (IS) pattern 

[GIBS]. Some mathematical modelers refer to this as a 'chaotic' firing pattern [SHIL]. An 

illustration of an IS pattern is provided in [TOLE]. The Wilson models are not very successful at 

producing an IS pattern. They require an ad hoc sinusoidal oscillator to be added to the model 

dynamics to produce a chaotic response [WILS2, pp. 180-183]. Rulkov has demonstrated 

irregular (chaotic) spiking by his map-model neuron [SHIL]. Class-III IINs include DBCs, BPCs, 

and BTCs. Of these, vertically-oriented BPCs are the most common. 

The three classes just described make up 84% of all IINs. The remaining 16% have not been 

given a specific classification, but their firing patterns can still be grouped into 3 major 

categories. Continuous bursting (CB) neurons respond to a constant stimulus of injected current 

with a burst firing pattern. This pattern is sometimes denoted as the BST class. Figure 6.4 

illustrates the CB-type firing pattern of neurons in this class. Species of neurons exhibiting this 

firing pattern are found among the ChC, BPC, and DBC IIN cells. 

Stuttering cells (STUT cells) make up a second interesting group of unclassified neurons. The 

STUT–type cells respond to a constant-current stimulus injection with high-frequency clusters of  
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Figure 6.4: CB-type firing response to injected test current 

APs, showing little or no accommodation, interspersed with periods of silence of unpredictable 

length. Some LBC, NBC, BTC, MC, and BPC neurons have subspecies of STUT-type cells. To 

date  the modeling of STUT-type cells has not been very successful in that the unpredictability of 

the silent interval has not been successfully reproduced. [TOLE] provides an illustration of a 

STUT-type firing pattern. 

Finally, some IINs exhibit an AC response to constant stimulus current injection yet do not 

fall under the Class-II designation. This is because Class-II classification uses a particular 

molecular category system, and IINs of the type we are now discussing do not fall into that 

molecular category. We will call them "other AC" (OAC) types. ChC, SBC, and BPC neurons 

exhibit subspecies that fall into the OAC-type category. For functional purposes, we can regard 

these as simply AC-type neurons and view them as a fast species of RS-type signaling.  

The population percentages among CB-type, STUT-type, and OAC-type cells are not reliably 

known. The best we can presently say is that taken in total they add up to 16% of the total IIN 

population. Table II summarizes the mix of classifications that the various morphological IINs 

exhibit.  

§ 2.3 The Wilson Model Schema 

All five firing patterns exhibited in Figures 6.1 through 6.4 can be generated from a common 

modeling schema. Although Wilson's models are approximations of Hodgkin-Huxley membrane 

responses, the mathematical form producing these responses is not the typical sort of 

approximation one obtains by, for example, a curve fit or truncation of a Taylor series. Rather, the 
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      Table II: Classes of Inhibitory Neurons 
                  

   Neuron Class-I Class-II Class-III CB- STUT- OAC- 

     (NAC)   (AC)    (IS) type  type   type 
                  
 
   SBC     X               ?       X 
   NBC     X      X         X 
   LBC     X              X         X 
   DBC     X         X    X 
   BPC           X    X     X      X 
   NGC     X 
   BTC     X              X       X       X 
   MC     X       X         X 
   ChC     X         X       X 
                  

   X denotes that a subspecies of the neuron is found among the indicated types. 
   The Cajal-Retzius (CRC) cell is not classified. The CRC is found only in layer I. 

equations for generating the model's response is the product of a specialized branch of 

mathematics known as nonlinear dynamics (NLD).  

 One might argue that the ready availability of desktop microcomputers has made the study of 
nonlinear dynamics irrelevant: one need only approximate solutions of equations to study their 
behavior. This viewpoint rests on several major misconceptions, however. First, one is unlikely 
to have any idea what form the equations appropriate to a particular phenomenon might take 
without a grounding in nonlinear dynamics. Second, even when the relevant equations are 
already known, it is very difficult to determine how solutions depend on parameter values 
without knowledge of dynamical techniques. Finally, a knowledge of nonlinear dynamics is 
required if one is to be certain that one's computer approximations actually reflect the true 
dynamics of the system under study [WILS2, pg. 3]. 

In this introductory textbook, we will not be delving deeply into the mathematics and methods of 

NLD. Wilson's book [WILS2] provides an excellent introduction to this topic for the student 

interested in mastering its techniques. For present purposes, it is enough to remark that the model 

equations we are about to see are not arbitrarily chosen but, rather, deduced by means of NLD 

methods [WILS1].  

The basic circuit model used by Wilson is shown in Figure 6.5 without synapses. Synaptic 

inputs are added in the standard manner described in chapter 3. Wilson's model incorporates four 

voltage-gated channel models. GNa and GK are the usual sodium and potassium channels. GCa 

denotes a low-voltage calcium channel (a T-channel), while GH is a calcium-dependent potassium 

channel that produces after-hyperpolarization current IK(AHP). Wilson uses battery potentials ENa = 

50 mV, EK = EH = –95 mV, and ECa =  120 mV. We can already see one approximation Wilson is 

making in his model schema, namely the use of a Nernst potential and standard conductance 

model for the calcium current rather than a GHK-equation-based expression for the calcium 

dynamics. 
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Figure 6.5: Circuit for the Wilson Model 

When a stimulus current Is, either due to synaptic action or to a test current stimulus, is 

injected into the cytoplasm (connected to the terminals at the left side of the figure), Kirchhoff's 

current law gives us the usual expression, 

   ( ) ( ) ( ) ( ) smHmCamKmNa
m IVGVGVGVG

dt
dVC ++−−−+−−−= 951209550 . 

With conductances in µS and voltages in mV, the currents in this expression are in nA. The 

capacitance C is in nF. Notice that there are no leakage terms in Wilson's model. Wilson accounts 

for the usual leakage terms by absorbing them into the expressions he will use for the voltage 

dependencies of the Na+ and K+ currents. This is possible because the empirical leakage potential 

values lie between ENa and EK. Wilson describes this as "simply a matter of mathematical 

convenience" [WILS1]; it is the first novelty in his model, compared to our previous treatments. 

The second novelty in Wilson's model, compared to our previous treatments, is introduced at 

the next step. Wilson introduces variable scaling into the membrane voltage equation. Variable 

scaling is a trick commonly used in numerical methods for solving differential equations. Its 

purpose is to minimize the impact of numerical roundoff and truncation errors in the computer 

calculations by making the terms multiplying the unknown (Vm in this case) have less spread in 

the orders of magnitude of their values. In Wilson's case, he divides all the voltage terms by 100 

and compensates for this by multiplying all the conductances and the capacitance by 100. Letting 

v = Vm/100, the result is 

( ) ( ) ( ) ( ) sHCaKNa IvGvGvGvG
dt
dvC ++⋅−−⋅−+⋅−−⋅−=⋅ 95.01002.110095.01005.0100100 . 
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Next Wilson chooses to make C = 1 nF. This is primarily a matter of convenience for reducing 

the number of arithmetical operations required in the numerical solution for v. It has the physical 

consequence of implying a value for C which is not a particularly biologically-realistic value. 

However, he will compensate for this by his choice of constants in the expressions for the 

conductance terms in order to force the solution to match measured data for the membrane 

voltage response. This is effectively the same as absorbing the ratios of the various Gx/C values 

into the expressions for the voltage dependencies of these terms. It does, however, divorce the 

numerical value of the stimulus current from its empirical counterpart. If the real neuron has 

membrane capacitance Cact and the laboratory test current stimulus is It, then the corresponding 

model stimulus current is Is = (C/Cact) ⋅ It. If Is is modeled as a synaptic conductance and synaptic 

potential, Gsyn and Esyn, then after voltage scaling one absorbs the capacitance value into Gsyn/C. If 

the physiological channel conductance is Gact, then the model conductance is Gx = (C/Cact) ⋅ Gact. 

Reported Cact tend to fall in the range of ≈ 0.15 to 0.30 nF [YAMA], [McCO].  

Wilson's next step applies nonlinear dynamics analysis to the experimentally-observed 

behavior of the membrane potential. He introduces four abstract variables, m∞, R, T, and H, to 

represent the voltage-dependencies of the four channel terms. These play functional roles similar 

to those of the Hodgkin-Huxley activation variables, although in Wilson's case they have no 

direct interpretation in terms of gating kinetics. He also introduces phenomenological constants gT 

and gH which are used to "tailor" the membrane voltage response to the different signal classes of 

neocortical neurons. These constants apply to the GCa and GH terms in the voltage equation. 

These variables transform the membrane voltage equation into 

 ( ) ( ) ( ) ( ) 10095.02.195.05.0 sHTK IvHgvTgvRgvm
dt
dv

++⋅−−⋅−+⋅−−⋅−= ∞ . (6.1) 

Strictly speaking, the Is term is actually Is/100C, but since C = 1 in Wilson's model, this term need 

not be carried in the expression of (6.1). The numerical value of Is is related to the value of 

injected test current It by the scaling rule noted above when C is not equal to Cact.  

The m∞ term in (6.1) represents the Na+ VGC and is defined by 

   .         (6.2) 28.336.478.17 vvm ⋅+⋅+=∞

The leading constant term is regarded as a leakage term for Na+. The overall form of (6.2) was 

chosen to allow class-I spiking behavior in the neuron, i.e. arbitrarily low spiking rates. The "∞" 

subscript is intended to denote a very fast channel time constant relative to the time constants for 

the other channel terms in the overall model. In effect, the Na+ VGC is modeled as responding 
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instantly to changes in membrane voltage.  

When (6.2) is inserted into (6.1), the result is a cubic functional dependency for the Na+ 

current. A cubic dependency is maintained for all the other terms as well, and this is done for 

purposes of analytic tractability in the NLD analysis of (6.1). This is a mathematical rather than a 

physiological constraint Wilson places on the model, and it ties back to much earlier work in the 

development of the mathematics of NLD pioneered by FitzHugh [FITZ] and Nagumo [NAGU]. 

The physiological consequence of this decision is that the Wilson models cannot simulate channel 

inactivation. The production of inactivation dynamics minimally requires 5th-order polynomial 

dependencies in the terms in (6.1), which both increases the computational cost of the model and 

makes its analysis more difficult. Therefore, there are some neuronal phenomena that are not 

accurately modeled by Wilson's models. Two of the more prominent of these are representation of 

the refractory period and the post-inhibitory rebound dynamic [WILS1].  

The gK term in (6.1) is set equal to the constant value gK = 26 for all four signaling types of 

Wilson models. Potassium VGC dynamics are captured in the R term, which is defined by the 

differential equation 

   
( )

22.37.324.1

1

vvR

RR
dt
dR

R

⋅+⋅+=

+−=

∞

∞τ .          (6.3) 

The constant term in the expression for R∞ takes in the potassium leakage current. The time 

constant τR in the model is truly a constant, in contrast to the case in Hodgkin-Huxley models. 

The value used for the time constant depends on which signaling class (RS, FS, IB, or CB) is 

being represented. Again we have an overall cubic nonlinearity in (6.1) from this term, so the 

model can not represent any inactivation dynamics for K+ VGCs.  

The gT term in (6.1) is a constant that depends on the signaling type being represented. The 

low threshold Ca2+ VGC dynamic is determined through the T function, which is defined by 

   
( )

( )2725.08

1

+⋅=

+−=

∞

∞

vT

TT
dt
dT

Tτ  .           (6.4) 

In this case, the time constant is set to the same value, τT = 14, for all neuronal signaling classes. 

We again have the cubic nonlinearity in (6.1), and this prevents the representation of inactivation 

for the low voltage calcium channel. It is this limitation that prevents the representation of the 

post-inhibitory rebound phenomenon in Wilson's models.  

Finally, the Ca2+-dependent K+ VGC is represented by parameter gH, the value of which 
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depends on the signaling type being represented, and the H function 

   ( TH
dt

dH

H
⋅+−= 31

τ
)  .           (6.5) 

The time constant τH = 45 is the same for all signaling classes. What is interesting to note in (6.5) 

is the way in which the H function incorporates the Ca2+ dependence by merely scaling the T 

variable. Increasing the value of T increases the slope dH/dt (makes it more positive), and this 

reflects the activating influence of cytoplasmic free Ca2+ on these K+ VGCs. The cubic 

dependency of the H channel is introduced indirectly through its dependence on the T variable. 

Equations (6.1) through (6.5) completely describe Wilson's modeling schema. Different 

signaling classes of neurons are represented by the choice of just three parameters: 

RS Type:  gT = 0.1;  gH = 5;  τR = 4.2 (ms) 
FS Type:  gT = 0.25;  gH = 0;  τR = 1.5 (ms) 
CB Type:  gT = 2.25;  gH = 9.5;  τR = 4.2 (ms) 
IB-1 Type: gT = 0.8;  gH = 4;  τR = 4.2 (ms) 
IB-2 Type: gT = 1.2;  gH = 3.4;  τR = 4.2 (ms) 

The numerical values given above are the direct values used in the actual simulation calculations 

for computer solution of the model equations. In the modeling equations time is in ms. With 

Wilson's choices of NLD parameters the neurons have a resting potential of around –74.8 mV (v 

= –0.748) and a firing threshold of around –60 mV. In his 1999 paper [WILS1], Wilson 

comments that decreasing τT  and τH by "about a factor of three" will also provide "a much better 

fit" to the firing pattern of chattering pyramidal cells [GRAY1]. However, doing this does not by 

itself result in a firing pattern that matches the chattering response shown in [GRAY1] very well 

at all. The selection of parameters that will result in firing patterns other than the five basic types 

is not an easy task. 

§ 3.0 The Izhikevich Model Schema 

Wilson's models have considerably less computational cost than the Hodgkin-Huxley model. 

This cost reduction is paid for by the loss of some biological accuracy in the representation of the 

neuron, as we have seen. It is not too difficult to understand what produces the loss of physiology 

details in the Wilson modeling schema, and thereby to be forewarned about what sort of signaling 

will be simulated inaccurately in a neural network model. Wilson's models remain close enough 

to actual neural physiology to have a meaningful circuit representation. The same is not true of 

our next example. 

Although Wilson's models represent a considerable improvement over Hodgkin-Huxley so far 
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as the computational cost is concerned, they are still expensive enough to limit their practical use 

to relatively small networks of neuron cell groups. As inhibitory and excitatory synapses are 

added to the model, the model accrues additional differential equations in pairs (two more 

equations for an excitatory synapse, two more for an inhibitory synapse), taking it from four 

differential equations up to at least eight for a minimal neuron with network synaptic connections. 

This is still a cost improvement in comparison to models such as the McCormick-Huguenard 

model of thalamocortical relay neurons, which would expand from ten to fourteen differential 

equations when excitatory and inhibitory synaptic connections are added. The Wilson schema 

also benefits from the simpler form of its auxiliary equations, which are polynomials and do not 

involve computing exponential functions. But the Wilson schema simplification returns less than 

an order of magnitude reduction in computational costs. Thus, its practical application to neural 

network modeling is limited to small networks ("netlets") containing on the order of tens of 

neurons and computation time climbs rapidly with each additional neuron added to the network.  

To simulate larger neural networks, containing thousands of neurons, additional computational 

simplification is needed. This is bought at the price of the outright loss of any immediate 

connection to the biological mechanisms that constitute the basis of one's physical understanding 

of neuronal behavior. Thus, the modeling methods we now turn to are typically not favored by 

physiologists but they are, for obvious reasons, popular with neural network theorists.  

Our next example is a model schema developed by Izhikevich [IZHI1]. Like Wilson's models, 

Izhikevich's models are the product of the techniques of nonlinear dynamics. Unlike Wilson's 

models, the abstraction made from channel conductance mechanisms and Nernst potentials is 

complete. There is, consequently, no meaningful circuit model representation for the Izhikevich 

neuron. 

The Izhikevich modeling schema is represented by only two differential equations, 

   
( )uvba

dt
du

Iuvv
dt
dv

−⋅⋅=

+−+⋅+⋅= 140504.0 2

         (6.6) 

where v is a variable taken to represent the membrane voltage and I is an input variable taken to 

represent either a test current stimulus or synaptic inputs to the neuron. Variable u is called the 

"membrane recovery variable" and is used for re-setting the spikes generated by the v equation. 

The v equation is scaled such that the numerical value of v can be regarded as a membrane 

potential in mV, and the variable t is interpreted as time in ms. Equations (6.6) are accompanied 

by an auxiliary "reset" condition, 

153 



Chapter 6: Abstract Neuron Models 

    .        (6.7) 


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+=
=

+≥
duu

cv
v then,mV30if

Variables a, b, c, and d are numerical parameters that determine what kind of spiking behavior 

will be produced by the neuron when subjected to a step-like test stimulus, I.  

The Izhikevich schema is capable of producing a large "library" of spiking responses. Twenty 

example spiking patterns, all generated from (6.6)-(6.7) using different selections for {a, b, c, d}, 

are illustrated in [IZHI2]. Parameter "recipes" for six different signaling types have been 

catalogued in [IZHI1]. He reports RS, FS, and IB signaling models plus a chattering cell mimic 

(CH), a low-threshold-spiking mimic (LTS), and a "thalamocortical" type (TC). Parameters for 

these are shown in Table III.  

While we might say that Wilson's models represent an intermediate step between the 

"mechanism" representations of Hodgkin-Huxley models and the pure "function" representations 

of abstract neural networks, Izhikevich's modeling schema is entirely functional in its 

representation. Furthermore, since the model abandons physiological representation of 

mechanisms, a suitable choice of synaptic weight vector W (see chapter 4) can be made so that 

the representation of synaptic connections to the neuron can be reduced to a single differential 

equation that represents action potential input impulses by a single time constant, exponentially 

decaying "current" pulse. Thus it is possible to "cap" the number of differential equations to be 

solved to as few as three per neuron. Izhikevich estimates that his model is almost two orders of 

magnitude less expensive to compute than a minimal Hodgkin-Huxley model. 

The Izhikevich models produce signaling patterns that are qualitatively similar to spiking 

patterns experimentally observed in biological neurons. No quantitative physiological 

significance attaches to any of the models' parameters or variables, although in his papers 

Izhikevich often writes in a manner such as to suggest an attribution is possible. It is not. While 

the modeling schema does a credible job of capturing signaling responses to test current stimulus, 

it does not capture the refractory period effects exhibited in biological neurons. Refractory 

behavior is postulated by some theorists to be an important element in signal filtering in networks 

and thus tied in with the need to mimic firing patterns; at present this is still merely conjecture. 

    Table III: Izhikevich Parameters for Six Signaling-type Models   

    Signaling-type    a     b    c  d    

     RS   0.02  0.20  –65  8 
     FS   0.10  0.20  –65  2 
     IB   0.02  0.20  –55  4 
     CH   0.02  0.20  –50  2 
     LTS   0.02  0.25  –65  2 
     TC   0.02  0.25  –65  0.05    
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§ 4. Other Abstract Neuron Models Described by Differential Equations 

At the time of this writing, the Izhikevich modeling schema is the latest in a line of abstract 

neuron models described by differential equations. For purposes of completeness, it is worthwhile 

to take a little time to mention three older models, all of which are considerably more 

computationally expensive than the Izhikevich modeling schema and in this sense are now 

obsolete. The oldest of these we have already mentioned briefly, namely the FitzHugh-Nagumo 

model [FITZ], [NAGU]. It is described by two polynomial equations, one of which is a cubic 

polynomial. It is a functional model with no easily-definable connection to biological 

mechanisms. The second, which was for a time very popular, is the Morris-Lecar model 

[MORR]. Similarly to Wilson's models, the Morris-Lecar model retains something of a direct 

connection to physiological mechanisms and can be meaningfully represented by a circuit model. 

Its computational complexity is somewhat greater than the Wilson modeling schema, and so is 

more expensive to compute. It has the further handicap of being able to represent fewer signaling 

types. Finally, the Rose-Hindmarsh model [RoHi] is an NLD-based model described by three 

differential equations. It is a very versatile model capable of representing a number of signaling 

types. Its computational cost is slightly less than that of Wilson's schema but considerably higher 

than that of Izhikevich's schema.  

§ 5. The Rulkov Modeling Schema 

All the modeling schemas discussed to this point are based on differential equations and must 

be converted to difference equation form before they can be simulated on the computer. Our last 

abstract neuron model, the Rulkov modeling schema [RULK1], differs in kind from these. It is 

called a map-based model, which means only that it is developed in difference equation form 

from the very beginning. Like Izhikevich's and Wilson's modeling schemata, it is the product of 

the mathematics of nonlinear dynamics. Like Izhikevich's schema, no quantitative physiological 

significance can be attached to any of its parameters or variables.  

Difference equations are not differential equations, and a difference equation can be said to be 

"equivalent" to a differential equation only under particular conditions of restriction. This means 

that all neural network simulations, which must always use difference equations, are in principle 

open to the question of to what degree they can faithfully replicate what is going on in a real 

neural network, for which time is a continuous, not a discrete, parameter. One of the most 

important issues is how one knows one's difference equation representation will not "miss" 

generating an action potential because its simulation time steps are quantized. A related issue is 

the question of whether and how discretization of the time steps in a simulation affects the overall  
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Figure 6.6: Effect of time step ∆t on the response of the Izhikevich RS model. (A) ∆t = 0.01 ms. (B) ∆t = 0.5 
ms. In addition to the obvious differences in pulse amplitudes, note the significant changes in pulse times. 

The stimulus was a step of amplitude I = 10.0 turned on at t = 10 ms and off at t = 190 ms. 

population responses in a large neural network containing feedback from "downstream" neurons 

back to the "upstream" neurons whose signaling pathways drive the former.  

Figures 6.6 illustrate the step size issue for the case of Izhikevich's RS neuron model. Figure 

6.6(A) was simulated using Euler's method and a time step of 0.01 ms; figure 6.6(B) was 

simulated under the same conditions except that a time step of 0.5 ms is used. The differences in 

pulse amplitudes between the two figures are obvious, but this is not the most important 

difference between the figures. Of far more importance in the context of neural network modeling 

is the difference in the times when spiking occurs. What has happened is that the difference 

equation for ∆t = 0.5 ms is no longer an accurate representation of Izhikevich's differential 

equations. In effect, one is left with "different" neuron models in the two figures. When (6.6) is 

converted to difference equation form using Euler's method, avoidance of excessive sensitivity to 

∆t requires that ∆t be made no larger than 0.01 ms.  

Map-based methods avoid this issue by developing the desired signal-type response in 

difference equation form at the outset. The price paid for this is that for these models ∆t is now 

fixed and cannot be varied once the modeling parameters are established. A second disadvantage 

is that map-based models are developed in terms of an "iteration index" rather than a "time index" 

and so the effective value of ∆t is usually not evident during the model development. This is 

illustrated in [RULK2], where Rulkov originally presented his modeling schema. In order to 

correlate the model's iteration index against a real time parameter, it is necessary to compare the 

map-based model result against a physiological comparand, typically a Hodgkin-Huxley model. 

Rulkov et al. [RULK1] report that one time step in simulation corresponds to "about 0.5 ms"; a 

closer examination of the model puts the equivalence at 0.495 ms [CHENG].  

The benefits accrued by this method are that it can be guaranteed the model will not miss any 
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spiking events and it requires 50× fewer iterations for a given real time simulation span. This 

leaves only the question of whether or not time quantization affects large-scale network behavior 

in the presence of feedback. In a biological system, a spiking event can occur at any time; in a 

simulation model it can occur only at one of the simulation time steps. Simulation studies of 

multiple, asynchronous synaptic input responses using physiological neuron models indicate that 

neuronal response is relatively unaffected by the arrival of asynchronous synaptic inputs, 

compared to perfectly synchronous ones, provided the time spacing between synaptic events is no 

greater than about 0.5 ms and time constants for synaptic current decay are no less than 2 ms 

[POOL]. While this does not constitute a general proof of the proposition, one may conclude that 

time steps of 0.5 ms or less leave overall network behavior unaffected provided the neuron 

models themselves are unaffected by discrete time steps of this magnitude. The Rulkov models 

meet this criterion.  

§ 5.1 Rulkov's Map Schema 

Turning now to the modeling schema itself, the Rulkov schema employs a base model 

comprised of two difference equations [RULK1-2, SHIL],  
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where the auxiliary function is defined as 
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In these expressions n is an integer denoting the time index of the simulation. The corresponding 

time is t = n  ⋅∆t, with ∆t = 0.495 ms. Variable xn is usually called "the fast variable" in nonlinear 

dynamics, and in this case it corresponds to (but does not equal) the membrane potential of the 

neuron. Variable yn is called "the slow variable" and has no physiological correspondent.  is 

the variable representing synaptic input currents (or an externally-applied test stimulus) but does 

not numerically correspond to a physiological value for synaptic current (i.e., it is "functional" 

rather than "mechanistic").  and s

syn
nI

eβ e are scaling factors for weighting the external input variable.  

The other variables in (6.8)-(6.9) are the model parameters. Different choices for α, µ, and σ 

define different firing patterns made to correspond to the signaling types for the particular class of 

neuron being modeled. Using a two-compartment Hodgkin-Huxley model developed by Mainen 
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and Sejnowski [MAIN], Rulkov et al. obtained parameters for an RS-type model and an IB-type 

model [RULK1]. The parameters and the associated test stimulus amplitude, Imax, for  shown 

in Table IV reasonably reproduce the firing patterns shown in [RULK1].

syn
nI

2  

     Table IV: Model Rulkov RS- and IB- Parameters    

  Neuron     α     µ      σ      β e    s e   Imax   

      RS  3.65  5⋅10 –4  0.06  0.133 1.0  0.03 
       IB   4.1  5⋅10 –4   -0.036 0.330 1.0  0.015  

Rulkov's schema has the interesting peculiarity that the input "current" stimulus is actually 

applied to the slow variable, yn, rather than the "membrane voltage" variable, xn. The role of  

in the model is primarily to produce accommodation in the step-input response of the RS- and IB-

type neuron models. = 0 suppresses accommodation in the spiking response. Note, too, that 

the calibrated Rulkov signaling responses use different stimuli, I

eβ

eβ

max, for the two different cases. 

The action potential response of the neuron is not given directly by either xn or yn. Letting zn 

denote the AP response of the neuron (zn = 1 denoting an AP, zn = 0 denoting no AP), the firing 

condition for the neuron is 

    .     (6.10) 
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Note that the condition for zn = 1 is the same as the condition corresponding to xn+1 = –1 in (6.9).  

The Rulkov FS-type neuron is developed as a special case modification of the base model. He 

introduces a "hyperpolarization current" term, analogous to hyperpolarizing VGCs in a biological 

neuron,  of the form 

             (6.11) n
hphp

n
hphp

n zgII ⋅−⋅=+ γ1

where  and ghpγ  hp are two new model parameters.  controls the decay time constant of the 

"hyperpolarizing current" and g

hpγ

 hp sets the maximum amplitude of this "current." Note that  

depends on the present firing state, z

hp
nI 1+

n, of the neuron. (6.11) replaces the slow variable equation 

for yn in (6.8) and the equation for xn is modified to 
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2 The parameters reported in [RULK1] for the IB neuron model do not reproduce the firing pattern shown 
there. 

158 



Chapter 6: Abstract Neuron Models 

Here y rs and β hp are two additional model parameters denoting a resting state variable and a 

hyperpolarization scaling factor, respectively. The function fα is unchanged from (6.9). The action 

potential firing condition for the FS-type model remains zn = 1 if xn ≥ α + u or xn-1 > 0, and zn = 0 

otherwise. Rulkov's parameter values for the FS-type neuron model are: 

Rulkov FS-type Model  α = 3.8; β e = 0.1; y rs = –2.9; β hp = 0.5; γ hp = 0.6; g hp = 0.1; Imax = 0.016. 

Synaptic inputs to the neuron are modeled as geometrically decaying pulses. Separate 

difference equation parameters are used for excitatory vs. inhibitory synapses, adding two more 

difference equations to the neuron model (for a minimum of four difference equations). Let S  

denote the weighted sum of all AP inputs at excitatory synapses at time index n,  

e
n
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where wj ≥ 0 is the synaptic weight of the jth synapse, ( )j
nz  is the firing state of the jth presynaptic 

neuron, and Je is the total number of presynaptic cells sending excitatory signals to the neuron. 

Note that  = 0 if no presynaptic cell is firing an AP. The excitatory stimulus is then given by e
nS
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Here γ controls the time constant of the decay of the stimulus and gsyn is a global scaling factor 

determining the maximum excitatory stimulus into the neuron. xrp is a parameter analogous to Esyn 

in the Hodgkin-Huxley model. Rulkov et al. model the excitatory synaptic input using xrp = 0. 

Since xn < 0 except when the neuron is firing an AP, the second term in (6.14) results in a 

depolarizing stimulus.  

For inhibitory inputs, the variables  and i
nS ( )isyn

nI  are given by (6.13) and (6.14) merely by 

changing the e superscripts and subscript to i superscripts and subscript, with the obvious re-

interpretation of the presynaptic variables and weights (with wj > 0). For inhibitory synapses 

Rulkov uses xrp = –1.1. In the network simulations reported in [RULK1], the synaptic "time 

constant" variables were γ = 0.6 and γ = 0.96 for excitatory and inhibitory synapses, respectively. 

The total stimulus input to the neuron is given by 

              (6.15) ( ) ( )isyn
n

esyn
n

syn
n III +=

subject to the constraint –0.0001 < ⋅  < 0.1, which is imposed to keep the dynamics of the 

model within the valid range set by Rulkov's NLD derivation.  

eβ syn
nI
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Equation (6.14) dictates that the natural response of the stimulus follows a geometric decay 

governed by the geometric ratio γ. Bearing in mind that n is a simulation step index and not a 

time index, the geometric ratio can be related to the decay time constant τ  we discussed in the 

earlier chapters by requiring that one simulation step correspond to the ratio of ∆t to τ ,  

   ( ) ( )γττγ 1lnexp tt ∆=⇒∆−= . 

With ∆t = 0.495 ms for the Rulkov model, the geometric ratios given above correspond to 

physiological time constants of 0.969 ms and 12.1 ms, respectively, which are in the biologically-

reasonable range for postsynaptic currents in AMPA and GABAA synapses [SILV]. 

§ 5.2 Neurodynamics of the Rulkov Modeling Schema 

Like Izhikevich's model, the Rulkov model is capable of generating a much larger suite of 

responses than merely the three neuron signaling types parameterized in the previous section. In 

addition, there are a variety of sub-types within the major classifications for RS, IB, FS, and CB 

neurons. For example, Rulkov's models in the previous section do not correspond to either 

Wilson's or Izhikevich's models for RS, FS, and IB neurons. For both these reasons, it is 

commonplace for the modeler to need to come up with parameter values different from those 

tabulated above. This is not particularly easy to do even if one is well-trained in the NLD 

methods from which the Rulkov modeling schema is derived. Some basic understanding of what 

controls general features of the model dynamics is necessary in order to find new or different 

Rulkov signaling responses.  

The starting point for understanding the basic dynamics of the system defined by (6.8) is the 

case where the model does not exhibit accommodation in its response to constant current 

stimulus. This is the  = 0 case. For constant-valued , we can make the substitution eβ syn
nI

    syn
n

e
c Is ⋅+=
∆
σσ

and examine the basic dynamics of the system in terms of this excitation variable [RULK2], 

[SHIL]. We first examine the conditions under which the model possesses a steady-state solution 

for σc. In nonlinear dynamics, such a solution is called a fixed point. In the steady-state, xn+1 = xn 

and yn+1 = yn. Substituting these conditions into (6.8) and (6.9), we find that the fixed point 

solution is given by 

   
x

xy

x c

−
−=

−=

1

1
α

σ
  .            (6.16) 
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The pair (x, y) given by (6.16) is a fixed point solution but it is not necessarily a stable fixed 

point solution. For some solutions (x, y), any tiny perturbation to this solution may carry the 

system away from the fixed point. Such fixed points are called unstable fixed points. Determining 

if a fixed point is stable or unstable calls upon what is known as a homocline analysis by NLD 

theorists. The details of such an analysis are beyond the scope of this textbook, but the outcome 

of this analysis for the case of Rulkov's equations are simple to state. In the region of small µ, the 

solution (6.16) is a stable fixed point if and only if 

   ( )µασ −−< 12c  .           (6.17) 

The value ( )µασ −−= 12th  is called a bifurcation value and it represents the firing threshold 

of the model neuron. The neuron will not produce spike outputs for values of σc in the range 

given by (6.17).  

For thc σσ > , the neuron will produce spiking outputs. Here two possible cases must be 

considered. The neuron's spiking response may either be tonic or bursting. A tonic response is 

the type of response produced, for example, by a biological FS-type neuron excited by a constant 

current stimulus. Likewise, an RS-type neuron similarly excited produces tonic firing once its 

accommodation dynamics have completed (refer to figure 6.1). A bursting response is the 

signaling type produced by IB-type and CB-type neurons. Rulkov has shown that for α < 4, the 

neuron can only produce tonic firing when σc exceeds the threshold value. For α > 4, the neuron 

may produce either tonic or bursting responses depending on the specific value of σc. The 

parametric boundary region separating these two cases is determined by simulation studies for the 

Rulkov model.  

Figure 6.7 summarizes the above. This type of diagram is called a bifurcation diagram and 

delineates different regions of nonlinear behavior in the model system. The blue boundary shown 

in the figure is the threshold boundary and separates the non-spiking and spiking regions. The red 

line separates the tonic spiking (below and to the right of the red line) and the bursting region 

(above and to the left of the red line, and above and to the right of the blue line).  

Consider the case where α < 4 and σc places the system to the left of the threshold boundary. 

The neuron in this case produces no spiking response (no action potential). Now suppose an 

applied stimulus changes σc such that the system moves to the right of the threshold boundary. 

The neuron then begins to produce action potential spikes in a tonic firing mode and continues to 

do so until σc returns to the region to the left of the threshold boundary.  

Next consider the case where α > 4 and σc places the system to the left of the threshold line. In 
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Figure 6.7: Bifurcation diagram describing the dynamics of the Rulkov model. The blue line is given by 
(6.17) and represents equality between the left- and right-hand sides of (6.17). For parameters (α, σc) to the 
left and below the blue line, the neuron is below threshold and the fixed point is stable (produces no spiking). 
For (α, σc) to the right and above the blue line, either tonic spiking or burst spiking results. The tonic spiking 

region is below and to the right of the red line, which depicts the tonic-bursting parameter boundary. 

this case, the neuron again produces no AP spikes. However, now when an applied stimulus 

changes σc such that the system moves to the right of the threshold boundary, one of two 

responses will result. If σc places the system in the burst-firing region, the neuron responds with a 

burst of two or more AP spikes. If σc places the system in the tonic-firing region, the neuron 

responds with a tonic firing pattern.  

It is important to understand that during simulations the slow variable, y, changes much more 

slowly than the fast variable, x, and so the neuron passes through regions where it is not at a fixed 

point. This dynamic cannot be seen from the bifurcation diagram; to examine this requires what is 

known as a phase plane diagram. Note that the coordinates in figure 6.17 are not (x, y). In order 

to use figure 6.7, it is important to bear in mind that the transient nonlinear dynamics of the 

neuron are not depicted by this figure. To see what the response actually is, one runs the 

simulation. Furthermore, the transient effect of neither the accommodation variable, , nor the 

slow variable parameter, µ, are represented in the bifurcation diagram. Figures 6.8 illustrate the 

responses of the RS- and IB-type models for the parameters provided in Table IV. One curiosity 

of the nonlinear dynamics worth noting for these models is this. The slow-variable parameter µ, 

which controls the rate of change of y, also affects the burst response of the IB-type neuron. If the 

eβ
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Figure 6.8: Rulkov RS- and IB-neuron responses to constant current stimulus. The stimulus was applied at t 
= 10 ms and turned off at t = 440 ms. 

parameter µ is increased to 0.001, with all other parameters in Table IV held the same, the second 

spike in the IB-neuron response disappears and the neuron exhibits non-accommodating spiking 

(that is, it does not burst at this input stimulus setting). This demonstrates that some coupling 

exists between µ and  in the nonlinear dynamics of the model. However, these two variables 

do have differing effects and one must not regard them as "interchangeable" in coming up with 

modeling parameters. Unfortunately, no "rules" or guidelines for selection of these parameters 

was given by Rulkov et al., nor did they describe the procedure by which they arrived at their 

published model parameters. Thus, there is a certain amount of art, and a certain amount of trial 

and error, involved in coming up with a complete set of model parameters using the Rulkov 

modeling schema. 

eβ

There is another important point to mention in regard to the neurodynamics of the Rulkov 

model. Most nonlinear systems, including the Rulkov model system, have regimes of operation 

where the system evolves to a limit cycle response (a non-terminating, sometimes periodic, time 

evolution for which no fixed point solution is obtained). The production of a limit cycle response 

depends in part on the model parameters, but it also can depend on the initial conditions for the x 

and y variables at the beginning of the simulation. This is so in the case of the Rulkov model. 

Therefore, at the beginning of a simulation the initial conditions (x0, y0) should be set equal 

to the fixed-point solution (6.16).  

Figure 6.9 illustrates the Rulkov FS- response. In the case of the FS-type neuron, non-

accommodating, tonic firing is the desired response to stimulus, and thus for this model α < 4 is 

used. Initial conditions for the FS-type neuron differ from those of the base model. An 

adequate initial condition is provided by x0 = –1 and  = 0.  hpI0
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Figure 6.9: Response of the Rulkov FS-type neuron using the parameters given in the text. The external 
stimulus was applied at t =  10 ms and turned off at t = 440 ms.  

§ 6. Calibrating an Abstract Neuron Model 

Phenomenological NLD-based models such as Rulkov's or Izhikevich's are used in network 

simulations in order to capture the effects on network dynamics of the complex firing patterns 

that can be produced by the different neuron signaling types thought to be present in the 

population of biological neurons being modeled. Indeed, there is very little point in going to the 

trouble of putting together such a model if it is not presumed that these dynamics are 

fundamentally important to network function.  

However, abstract neuron models such as the Rulkov or the Izhikevich schemata produce have 

no mechanistic tie to underlying biological neuron dynamics. Merely because such a model 

produces a realistic-looking firing response to an external stimulus with a given set of parameters 

at a particular level of applied stimulus, this does not guarantee that the model's responses will be 

equally realistic for other levels of input stimulus or for other patterns of stimulus produced by 

different patterns of synaptic input stimuli. An abstract neuron model that presents realistic-

looking responses for only one or a few different input cases is a model that is not very useful for 

neural network simulation. Indeed, the use of such a model poses a serious risk that the researcher 

using it may "learn something that isn't true" of the biological network he wishes to study. For 

this reason, it is essential that one calibrate an abstract neuron model before employing it in a 

research study.  

To calibrate a neuron model means to adjust its parameter set such that the model produces 

responses to different stimulus conditions that match those of its desired biological counterpart. If 
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necessary, one must modify the model to either produce some desired response characteristic not 

exhibited or to suppress some undesired response characteristic it does exhibit. Measuring a 

neuron's response to an applied current pulse stimulus is an important laboratory method for 

investigating the physiology of the neuron, but neurons in their normal biological environment 

are not subjected to this type of stimulus. Natural stimuli consist of different patterns of post-

synaptic current produced by vectors of action potential afferent signals, both synchronous and 

asynchronous, with different incoming firing rates, different relative times of arrival at its 

different synapses, and different arrival times relative to the target neuron's own firing history.  

For example, map-based models typically do not have either an absolute or a relative 

refractory period of any significance after firing an action potential. The refractory period of a 

neuron is thought to be an important factor in determining the neuron's selectivity to afferent 

firing rates, acting as a kind of low-pass filter to the signals it receives. To a large degree the 

modeler depends on the firing rate characteristics of the model in response to different test 

stimulus amplitudes to adequately mimic this property in a network setting. However, it should be 

kept in mind that the model is not explicitly designed to produce a particular refractory period 

characteristic, and so one is depending on refractory-like behavior to be an emergent property of 

the model. The only way to be sure the model actually exhibits the desired refractory-like 

response to realistic AP stimuli within a network is to test for it.  

For example, the Rulkov neuron's response to external stimulus is determined by two terms in 

the model, namely  

    and syn
n

e I⋅β ( )syn
n

e Is ⋅+⋅ σµ  .  

These factors interact in determining the model's firing rate in response to pulse test stimuli, and 

its accommodation and burst-vs.-tonic response properties for this stimulus. When  is held at 

a constant value, both terms are merely constants and there is a multiplicity of different parameter 

combinations for β

syn
nI

 e, µ, σ, and s e that will produce the same firing response. To calibrate the 

response of the model, it is necessary to use several different stimulus levels, , to determine 

the overall set of parameters needed to produce the desired dynamical properties. Even then, it 

might be that the resulting model still does not adequately capture a biologically-realistic 

refractory time property over the range of network stimulus conditions possible. (It is not always 

necessary that the neuron model accurately capture the true refractory characteristic; it is only 

necessary that it capture it well enough for the network operation to behave properly). The only 

practical way to know this is to test for it. Then, if one finds the refractory response to be 

syn
nI
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unsatisfactory, one can modify the base model. For example, one might modify the input 

parameter s e to include a refractory effect. One possible way this might be done is to make s e a 

dynamic variable, e.g. 

  ( )n
e
ss

e
n

nnn

qss
zqq

−⋅=
+⋅=+

1
1 ρ

 . 

Here qn is an auxiliary variable modeling the refractory state and zn is the AP output variable for 

the neuron. ρ is a constant, 0 ≤ ρ < 1, setting the time constant of the refractory period, and  is 

the steady-state value, corresponding to the s

e
sss

 e term in the base Rulkov model. Addition of this 

term will generally require re-testing and possibly re-fitting of the other model parameters.  

The reference standard against which an abstract neuron model is to be compared is a 

physiological model, generally a Hodgkin-Huxley model of the biological neuron. In some cases 

an abstract model with a reasonably strong connection to physiology, such as Wilson's models, 

might be used in place of a full-blown Hodgkin-Huxley model, although here the limitations of 

Wilson's models (e.g. no post-inhibitory rebound, dubious refractory period characteristics) must 

be kept in mind by the modeler. In the case of the Rulkov et al. network simulations [RULK1], 

the calibration standard was the Hodgkin-Huxley-like neuron model of Mainen and Sejnowski 

[MAIN], which is a physiologically-based two-compartment H-H-like model. 

The objective of calibrating the model neuron to a physiological counterpart is to provide a 

link between the mechanistic properties of biological neurons and the functional properties of the 

abstract neuron model insofar as these mechanistic properties are manifested in network behavior. 

Typically this means the basis of comparison will include a small network (a "netlet") of 

physiological neuron models rather than merely an individual physiological neuron model. The 

purpose of using network-based comparisons along with individual neuron comparisons is to 

ascertain that network properties are adequately accounted for in the abstract neuron model.  

For example, Rulkov et al. tested their network model [RULK1] against networks of 128 and 

640 Hodgkin-Huxley neuron models to ascertain that network activity waves (that is, propagation 

patterns of action potentials through the network) were properly captured by their models. One 

can see from this example that the process of calibrating abstract neuron models may entail 

considerable time and effort. However, without such an effort the neural network theorist will 

find it very difficult to convince his colleagues in neurobiology that his results are anything more 

than simply an exercise in mathematics. Using [RULK1] once more as an example, Rulkov et al. 

documented an interesting activity wave propagation effect that only emerged when their abstract 

neuron network model was large (25,600 RS-neurons and 65,536 RS-neurons) and did not appear 
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in networks comprised of "only" 6400 RS-neurons. This result can command serious merit from 

the neuroscience community only because Rulkov et al. were also able to demonstrate other 

network properties of the model that were consistent with the Hodgkin-Huxley network. In one 

case, their model showed an unexpected effect, which was subsequently found in the H-H net-

work when they looked for it there. This is an example of predictive power in a functional model. 

 

Exercises 

1. Figure 6.9 illustrates the membrane response of Rulkov's FS-type neuron model. To what sub-
class of FS-type neurons does the physiological neuron upon which Rulkov's model is based 
likely belong?  

2. Show that the scaling factor needed to produce equivalence between the Wilson model and a 
neuron's physiological values for conductances and stimulus currents is C/Cact where C is the 
Wilson value and Cact is the physiological value for membrane capacitance. 

3. Derive the difference equations for simulation time step ∆t for the Wilson model equations 
(6.1), (6.3)-(6.5).  

4. Write a computer simulation program for the Wilson model response to an injected test 
stimulus pulse Is. Compare the results of your simulations against figures 6.1 through 6.4 for 
the case of Is = 0.8 applied from t = 10 ms to t = 190 ms. Use ∆t = 0.01 ms for these 
simulations. 

5. Derive the difference equations for simulation time step ∆t for the Izhikevich model equations 
(6.6). 

6. Write a computer simulation program for the Izhikevich model response to a constant step 
stimulus. Simulate the responses of the six Izhikevich neuron models for a test stimulus I = 10 
applied from t = 10 ms to t = 190 ms. Use ∆t = 0.01 ms for these simulations. 

7.  Write a computer simulation program for the Rulkov model response to a constant step 
stimulus. Simulate the responses of the Rulkov models for parameter and stimulus values 
given in Table IV. Compare your results to those of figure 6.8. 

8. Write a computer simulation program for the Rulkov FS model response to a constant step 
stimulus. Simulate the response for parameter and stimulus values given in the text. Compare 
your result to that of figure 6.9. 

9. Derive equations (6.16). 
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