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Organized Complexity: The Network Modeling Problem 
 

§ 1. Considerations in General Model Order Reduction 

When one compares the anatomy and physiology literature with the bulk of the literature on 

neural network theory, one quickly notices what appears to be a glaring contradiction. Biological 

neural networks characteristically are much more heterogeneous than the models used by neural 

network theorists. The model networks common in neural network theory tend to be composed of 

only one or a few different types of neuron models and tend to be very homogeneous. The 

discrepancy is so obvious it is understandable if one is led to question whether the studies carried 

out by network theorists have anything at all to do with real neural networks.  

The neuron in vivo exists in an extraordinarily complex environment in the central nervous 

system. Most neurons receive synaptic input connections from thousands of other neurons, and in 

turn project outputs to hundreds or thousands of other neurons. Synapses are distributed over 

complex dendritic arbors, across the cell body, and even along the axon. Furthermore, a 

presynaptic cell frequently will make multiple synaptic connections to the same target neuron. 

Central systems exhibit random-looking background firing activities, upon which is overlaid 

substantially higher levels of action potential firing activities in particular regions correlated to 

psychophysical phenomena associated with sensory reception, sensorimotor actions, and higher 

cognitive phenomena. For a person who prefers a neat, clean, easy-to-understand "picture" of 

what the typical operating environment of a neuron looks like, all this adds up to as pretty a mess 

as one is ever likely to encounter. And it is within the context of this environment where the 

neural network theorist must do his or her work.  

Even if neuroscience knew everything there was to know about the individual neuron, which 

we do not, the complexity of the neuronal environment guarantees that network-level modeling 

will perforce need to employ numerous approximations, simplifications, and outright guesses in 

grappling to produce any theory of the neural network function. What hope, then, could there 

possibly be for the researcher to discover anything about the workings of biological neural 

networks with enough confidence to claim an understanding of the brain in these murky waters 

between the level of the individual neuron and the level of neural maps?  

Elsewhere in science, systems are studied at two extremes. The first deals with small numbers 

of variables and fairly reliable quantitative models as the basis. We can call this the small number 
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extreme, and here theoretical sciences, such as mechanics in physics and engineering, work very 

well. At the other extreme are systems involving on the order of Avogadro's number of 

constituents and for which statistical methods, such as in thermodynamics and statistical 

mechanics, work quite well. We can call this the large number extreme. But in the hierarchy of 

modeling levels in neuroscience, the neural network level is neither. System theorist Gerald 

Weinberg called this the regime of medium number systems:  

 For systems between the small and the large number extremes, there is an essential failure of the 
two classical methods. On the one hand, the Square Law of Computation says that we cannot 
solve medium systems by analysis, while on the other hand the Square Root of N Law warns us 
not to expect too much from averages [WEIN: 19-20].  

The two "laws" of which Weinberg speaks in this quote are names for describing the 

calculations used by science at the small number and large number extremes. He is on the whole 

rather pessimistic about the ability of science to cope with most of the systems in nature because 

most systems are medium number systems. Yet try to cope with them we must or else we may as 

well go home. The questions we face, then, are: What do we try? and How do we determine the 

confidence with which we may justifiably hold our theories and hypotheses to be true?  

None too surprisingly, computational neuroscience's approach to the medium number systems 

with which it must deal is a blending of the approaches used for small and large number systems. 

Inasmuch as system theory prides itself on being a mathematical science, you might find it a bit 

surprising to learn that this blending approach is largely (but not wholly) nonmathematical. To 

appreciate the method computational neuroscience employs, it is helpful to understand a bit more 

about the "laws" of which Weinberg speaks in the quote above.  

§ 1.1 Weinberg's "Laws" 

Weinberg's "Square Law of Computation" refers to small number systems. The example par 

excellence of this is classical mechanics.  

 Consider first the equations needed to describe the most general system of only two objects. We 
must first describe how each object behaves by itself – the "isolated" behavior. We must also 
consider how the behavior of each body affects that of the other – the "interaction." Finally we 
must consider how things will behave if neither of the bodies is present – the "field" equation. 
Altogether, the most general two body system requires four equations: two "isolated" equations, 
one "interaction" equation, and one "field" equation. 
 As the number of bodies increases, there remains but a single "field" equation, and only one 
"isolated" equation per body. The number of "interaction" equations, however, grows 
magnificently, with the result that for n bodies we would need 2n relationships! . . . Experience 
has shown that unless some simplifications can be made, the amount of computation involved 
increases at least as fast as the square of the number of equations. This we call the "Square Law 
of Computation." Thus, if we double the number of equations, we shall have to find a computer 
four times as powerful to solve them in the same amount of time. Naturally, the time often goes 
up faster than this – particularly if some technical difficulty arises, such as a decrease in the 
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precision of results [WEIN: 7].  

Weinberg uses Newton's analysis of planetary orbits to illustrate this point. If no 

simplifications at all are made in computing the orbits of the planets in the solar system, the 

number of equations requiring solution is on the order of 1030,000, clearly an impossible number. 

Through a series of simplifications, Newton reduced the number of equations to about 10.  

 At this point, Newton stopped simplifying and solved the equations analytically. He had 
actually made numerous other simplifications, such as his consideration of each of the solar 
bodies as point masses. In each of these cases, he and his contemporaries were generally more 
aware of – and more concerned about – the simplifying assumptions than are many present-day 
physics professors who lecture about Newton's calculations. Students, consequently, find it hard 
to understand why Newton's calculation of planetary orbits is ranked as one of the highest 
achievements of the human mind.  
 But the general systems thinker understands. He understands because it is his chosen task to 
understand the simplifying assumptions of a science – in Wigner's words, those "objects of 
interest" and "well-defined conditions" that delimit the domain of application and magnify its 
power of prediction. He wants to go right to the beginning of the process by which a scientist 
forms his models of the world, and to follow that process just as far as it will help him in 
suggesting useful models for other sciences. 
 Why is the general systems thinker interested in the simplifications of science – in the science 
of simplifications? For exactly the same reason as Newton was. The systems theorist knows that 
the Square Law of Computation puts a limit on the power of any computing device. . . Newton 
was a genius, but not because of the superior computing power of his brain. Newton's genius 
was, on the contrary, his ability to simplify, idealize, and streamline the world so that it became, 
in some measure, tractable to the brains of perfectly ordinary men. By studying the methods of 
simplification that have succeeded and failed in the past, we hope to make the progress of human 
knowledge a little less dependent on genius [WEIN: 11-12].  

We have seen examples of this simplification process in chapter 6, both with Wilson's 

approximation models and with Izhikevich's and Rulkov's mimic models. In Wilson's case the 

simplification comes about because he found it was possible to ignore some objects (particular 

voltage-gated ionotropic channels in his case) by making phenomenological corrections to the 

models of other objects so that the overall result was a numerically accurate approximation to the 

behavior explained at a more mechanistic level by Hodgkin-Huxley models. Izhikevich and 

Rulkov take this to an even greater extreme by requiring their models to accurately mimic 

Hodgkin-Huxley-like behaviors without having to approximate the mechanisms that underlie it.  

At the other extreme of scale we come upon large number systems. The scientific example par 

excellence for the treatment of large number systems is statistical mechanics.  

 Newton's achievement was in describing the behavior of a system of perhaps 105 objects, of 
which he found 10 of interest. By the nineteenth century, however, physicists wanted to tackle 
other systems, simple little systems such as the molecules in a bottle of air. 
 The molecules in a bottle of air differ from the solar system in several ways. First of all, there 
are not 105 of them, but 1023. Second, the nineteenth century physicists were not interested in 
just 10 of the molecules, but in all of them. Third, had they been interested in only 10, they 
would have had to study all 1023, since the molecules were pretty much identical in mass and 
were, furthermore, in close interaction. 
 These nineteenth century physicists already knew from Newton that they only had to consider 
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pair relations, but this merely reduced the number of equations from about 2  to 10
2310 46. 

Although this is undoubtedly a substantial reduction, the prospects of further reduction of that 
1046 looked rather grim. After a few fruitless tries at the job, these physicists must have felt 
much like the fox in Aesop's fable who just could not quite reach the grapes. We know they must 
have felt that way because they solved their problem the same way the fox did: They decided 
they did not really want to know about the individual molecules anyway. 
 Actually, of course, the matter was not entirely one of sour molecules. We might more 
realistically describe the position of these physicists (such as Gibbs, Boltzmann, and Maxwell) 
by saying that they were lucky not to be interested in things for which they could not solve their 
equations. They had inherited a set of observed laws (such as Boyle's law) about the behavior of 
certain measurable properties of gases (such as pressure, temperature, and volume). They 
believed that gases were made of molecules, but they had to bridge the gap between that belief 
and the observed properties of gases. They bridged that gap by postulating that the interesting 
measurements were a few average properties of the molecules, rather than the exact properties 
of any one molecule.  
 Since the number of different average properties was small, this simplification brought down 
the amount of computation in one fell swoop. Furthermore, the precision of prediction that was 
obtained for the averages was excellent, because the number of molecules was very, very large, 
and therefore the so-called "Law of Large Numbers" could be invoked. What this says, in 
essence, is that the larger the population, the more likely we are to observe values that are close 
to the predicted average values [WEIN: 13-14]. 

In information theory this same "essence" is known as the "asymptotic equipartition property" 

of information. It is from this fortunate behavior of systems comprised of very large numbers of 

constituent objects that one comes to what Nobel laureate Erwin Schrödinger dubbed the "Square 

Root of N Law." Weinberg cites Schrödinger: 

 If I tell you that a certain gas under certain conditions of pressure and temperature has a certain 
density, and if I expressed this by saying that within a certain volume (of a size relevant for 
some experiment) there are under these conditions just n molecules of the gas, then you might be 
sure that if you could test my statement in a particular moment in time, you would find it 
inaccurate, the departure being of the order of n . Hence if the number n = 100, you would find 
a departure of about 10, thus relative error = 10%. But if n = 1 million, you would be likely to 
find a departure of about 1000, thus a relative error = 0.1 %. Now, roughly speaking, this 
statistical law is quite general. The laws of physics and physical chemistry are inaccurate with a 
probable relative error on the order of 1/ n , where n is the number of molecules that co-operate 
to bring about the law – to produce its validity within such regions of space or time (or both) that 
matter, for some consideration or for some experiment.  
 You see from this again that an organism must have a comparatively gross structure in order to 
enjoy the benefit of fairly accurate laws, both for its internal life and for its interplay with the 
external world. For otherwise the number of co-operating particles would be too small, the "law" 
too inaccurate. The particularly exigent demand is the square root. For though a million is a 
reasonably large number, an accuracy of just 1 in 1000 is not overwhelmingly good, if a thing 
claims the dignity of being a "Law of Nature" [SCHR]. 

To put a number on this "square root of n" effect, the measured correlation coefficient in a 

typical well-controlled experiment between pressure and 1/volume for Boyle's gas law is about 

0.9999918. This is one of the best experimental agreements found in science1 and it illustrates 

                                                 
1 Why is this accuracy not much better still, as one might expect when Avogadro's number of constituents 
is involved? The explanation lies with the fact that other factors, such as the accuracy of the measurement 
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what Schrödinger was driving at by saying "an accuracy of just 1 in 1000 is not overwhelmingly 

good." The accuracy of Boyle's gas law is almost three orders of magnitude better than this. 

§ 1.2 Region I and Region II Systems 

Correlation coefficients for predictions made in other sciences are not so good as this. For 

example, an economist might be thrilled if his theory returned a correlation of about 0.7 when its 

predictions were stacked up against observable or measurable data. But few true-blue physicists 

would be willing to regard this as an overwhelming triumph. Their standard of judgment rests on 

theories such as Boyle's law, and perhaps this has something to do with why economics and 

psychology are dubbed "social sciences" while physics and chemistry reserve for themselves the 

title of "hard science" or even "exact science." The difference, of course, is that physics gets to 

operate in either the regime of small numbers or that of large numbers, whereas economics and 

psychology are condemned to work in the regime of medium numbers. Weinberg classifies types 

of systems with respect to methods in three groups. Region I he calls the region of organized 

simplicity (or the "machine" region). It enjoys the benefits of simplification allowing it to operate 

well within the limitations imposed by the "Square Law of Computation." Region II he calls the 

region of unorganized complexity (or "aggregates" region), which benefits from the "Square 

Root of N Law." Region III he calls the region of organized complexity (or "systems" region, an 

appellation that more or less reveals where his interests in system theory lie). Region III is 

precisely the regime of what he calls medium number systems.  

The attainment of scientifically successful theories in both Region I and Region II rests upon 

the same factor, namely achieving simplification of the models of the systems being studied. In 

both cases, this is brought about by reducing the number of interaction equations that must be 

considered. The difference between these regions lies with how they go about achieving this 

reduction.  

Region I systems achieve simplification by being able to ignore factors that have no 

significant short-term quantitative effect on the phenomena being modeled. For example, the 

Hodgkin-Huxley model need not take into account the processes within the nucleus of the cell 

that produce proteins, nor does it need to take into account the various metabolic processes 

involved in cell respiration. Both of these have long-term effects on cell behavior. Intracellular 

levels of ATP (one of the products of cell respiration) do affect membrane channel function, but 

over the short run the ATP levels in the cell can be approximated as relatively constant and thus 

                                                                                                                                                 
equipment and knowledge of the precise volume of the gas container, are not as good as the predictive 
power of Boyle's law.  
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this factor is absorbed into the parameters that set the cell's resting potential and channel function. 

This is organized simplicity in the model, because of which the number of equations required for 

the model can be made small and tractable. It is the basis also for approximation models, in which 

one knows of certain unmodeled factors that do have a direct bearing on the function of the 

system, but which can be accounted for adequately enough for the purpose of the modeler by 

"corrections" made to the numerical value other parameters.  

Electric circuit models in general are Region I models because they are able to ignore certain 

effects, such as radiation, and treat the Maxwell equations of electromagnetic theory using 

"lumped-element" models (resistors, capacitors, inductors, voltage sources, and current sources). 

In this way, circuit models convert Maxwell's partial differential equations with their boundary 

conditions into ordinary differential equations with initial conditions. It is only when the 

wavelengths of the electromagnetic waves (which are the actual phenomena underlying circuit 

behavior) are comparable to the linear dimensions of the circuit that modelers must take spatial 

distribution of these waves into account. The electrical engineer does this accounting by 

introducing "mutual inductances" and "transmission lines" into his model. A circuit model is said 

to be a "quasi-static approximation" to Maxwell's equations.  

Organized simplicity is also the basis for mimic models. In this case, the mimic model is 

possible because the modeler only cares about stimulus-response ("input-output") behavior and 

can safely presume that whatever physical factors underlie this behavior are time-invariant 

enough he need not be concerned with their specific details. Almost all abstract models used in 

control system theory and communication system design are of this type. The control system or 

communication system designer need not be specifically concerned with the physical models of 

the constituent parts of his system because he can properly account for the behavior of the system 

merely by modeling the information-bearing signals2 present and the transformations effected on 

these signals by the "functional blocks" in his system model. The Izhikevich and Rulkov models 

are examples of mimic models that suppress physical detail and focus on the signal 

transformation properties of the system being modeled.  

In the case of Region II systems, model order reduction (simplification of the model) is made 

possible because the gross effects of interactions among a huge number of variables tend to 

produce measurable results ("observables" in the language of system theory) that cluster very 

tightly around a very small numerical range of values. The "pressure" of a gas in a container is an 

example of this. The center of this range is called the "expected" or "average" value of the 

observable. What is key to the success of Region II models is that the deviations of the observable 
                                                 
2 These are made up of input signals, output signals, and signals representing "state variables." 
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from its expected value are very small and, equally important, have a predictable range into 

which observations of these deviations will fall. In other words, the deviations themselves are 

observables distinct from the expected value and can be given model expressions of their own. 

For example, Ohm's law states that the voltage across a resistor is proportional to the current 

through it. The proportionality constant is called the resistance. Macroscopically, Ohm's law is as 

exact as any fundamental law of physics. But microscopically, the conduction of electrons 

through the resistor (which constitutes the macroscopic current) is subject to a large number of 

irregularities, such as reflection of electrons at crystal boundaries within the resistor, that cause 

tiny fluctuations around the average current and produce tiny fluctuations in the voltage across 

the resistor. These fluctuations are called thermal noise. More generally, "noise" is the term used 

to describe any fluctuation of a model variable from its expected ("mean") value. Noise is itself 

treated as a distinct Region II variable in the model, and here what is important is that the 

equations describing the noise variables are distinct from the "element law" describing the mean 

values of the current (or voltage, or pressure). "Noise" is treated as just another factor contained 

in the overall model. A model containing one or more "noise" variables is called a stochastic 

model and the system it describes is called a stochastic system.  

Stochastic variables are said to be "random variables." Weinberg comments,  
 The concept of "randomness" is most important for systems thinking, though randomness often 
leads to properties quite contrary to our intuition. We do not have such a problem in 
understanding the success of mechanics, for although "simplicity" will prove to be as slippery a 
concept as "randomness," to a first approximation we were able to use the number of objects as a 
measure of complexity – the complement of simplicity. 
 Intuitively, randomness is the property that makes statistical calculations come out right. 
Although this definition is patently circular, it does help us to understand the scope of statistical 
methods. Consider a typical statistical problem. There is a flu epidemic and we want to know 
how it will spread through the population so that we may plan for the distribution of a vaccine. If 
every person is just as likely to get the disease as any other, we can calculate the expected 
number of cases and the effect of vaccination strategies with great precision. If, on the other 
hand, there is some sort of nonrandomness in the population, our simple calculations will begin 
to deviate from the experienced epidemic [WEIN: 17-18]. 

Weinberg's "definition" of "randomness" is not so much circular as it is backwards. If a statistical 

treatment of a modeling problem gives answers that agree with experiment and observation, then 

we describe the system as one with "random" variables. The word "random" is basically an 

adjective in the sense that the "blue" in "blue sky" is an adjective. Its use denotes that fact that we 

are unable to predict the precise value of the observable measured in any one trial but we are able 

to predict the various statistical measures of the observables (mean, variance, correlation, etc.) to 

a specific degree of precision and with a specific degree of confidence. In formal mathematics, 

statistical measures are described by probability functions. A probability function is an 
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abstraction. One never has a directly experienced encounter with "a probability." A statistic, on 

the other hand, is an observable. Probabilities are ghostly entities of the world of mathematics; 

statistics belong to the world of direct empirical experience. A statistical model is always a mimic 

model. In it, the probability function plays the same role that the abstract variables of the Rulkov 

model play in mimicking neuron input-output behaviors. Just as we do not assign physiological 

significance to the parameters and variables of the Rulkov model, so also we do not assign any 

causal signification to "probability" variables in a statistical model.  

Region I systems are systems said to be accurately described "on the basis of physical laws." 

One could say that these "physical laws" along with particular constraints constitute the model. If 

we choose to suppress the details of some of the physical variables by making an abstract model, 

this is a matter of practical convenience or practical necessitation under Weinberg's "Square Law 

of Computation." Scientists are often fond of saying of their reduced models that "in principle" 

we could put the abstracted variables back in and get the same result if only we were willing to 

undertake the labors of calculation. In fact, such "in principle" confirmation is rarely carried out, 

and often it is the case that the "in principle" calculation might require many lifetimes to actually 

accomplish. When a physicist says, "Physics explains all of chemistry," he doesn't mean 

physicists have actually predicted or explained every single chemical phenomenon "from first 

principles." What he really means is, "I'll be flabbergasted if anyone ever discovers one single 

case where physics predicts one thing and chemistry behaves otherwise."  

Region II systems are systems said to be accurately described "on the basis of laws of 

probability." Now, the "laws of probability" are entirely mathematical inventions and they take 

nothing more from physical experience than the incentive to have developed these laws in the 

first place. They derive their wide-ranging scope of applicability and their honored place in the 

arsenal of scientific methods from their object independence, i.e. from their success in being 

applied to a great many physical circumstances irrespective of the "physical basis" for the 

observables they are used to describe. For Region II systems the "laws of probability" along with 

particular constraints constitute the model. The one and only thing that "justifies" the use of a 

statistical Region II model is success. If the model successfully describes and predicts the 

phenomenon to which it is being applied, that phenomenon is said to be a Region II system. If it 

does not, then the phenomenon is said to be "not sufficiently unorganized in its complexity" for a 

statistical approach to be successful to a satisfactory degree. Science is pragmatic. If a model 

works, we use it. If it does not, "the phenomenon is an area of active research."  

But what is meant by saying a system is one of "unorganized complexity"? Again, the 

meaning of this phrase is pragmatic. In order to meet the practical dictates of the "Square Law of 
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Computation" the parameters and variables in a Region II model must be sufficiently uncoupled, 

when given mathematical expression, for the equations of the model to be practically solvable. In 

this sense, Schrödinger's "Square Root of N Law" is a consequence of probability theory, and 

conformity to the expectations of this "law" is the telltale indicator that the condition of 

"unorganized complexity" is being met with in the object of the system. Again, it is the fact that 

deviations from expected values in a Region II model are small enough to make the predicted 

averages useful from whence Region II models draw their power and fecundity.  

Now, this rather Platonic state of affairs is a source of great philosophical discomfort for many 

people, including many scientists. Scientists like "causal explanations" when they can get them, 

but the "laws of probability" utterly lack any symptom of "causal connection." They are "non-

deterministic." This brings us to the subject of the role of statistical mechanics in Region II 

models. Physicist-turned-philosopher Henry Margenau wrote,  

 The systems of thermodynamics are ordinary objects: solids, liquids and gases with definite 
boundaries. The observables of interest are somewhat more remote from direct perception than 
the visual properties on which mechanics concentrates attention. Temperature, pressure, and 
entropy lack the intuitive immediacy of positions and velocities. They are bound to Nature by 
more extended and more complex correspondences and lead to concepts that are more abstract. 
All this makes the problem of explanation in thermodynamics rather unique and gives it some 
features which form a bridge with quantum mechanics. 
 In thermodynamics proper, observables are connected by what are sometimes called empirical 
relations, with the term empirical understood in a very limited and specific way. The "laws of 
motion" in this science are primitive equations combining the observables themselves. In a 
certain sense, the laws do not say "why" bodies behave thermodynamically as they do. While 
this connotes no defect of the methods of thermodynamics as a science, it nevertheless raises a 
question as to the possibility of other modes of explanation, of theories that "go behind" the 
phenomenologic structure of thermodynamics and its minimal assumptions. . . Now, clearly, the 
bodies of thermodynamics are also systems of mechanics, and it is indicated that one should 
inquire whether the laws of mechanics can produce, or at least simulate, the equations of 
thermodynamics.  
 But, as in all transferences of a theory into a domain other than its native own, one meets here 
with an initial obstacle. Though the systems are the same, the observables of thermodynamics 
are quite different from those of mechanics. By no stretch of the imagination can a mass point or 
a rigid body be said to have a temperature or an entropy or to exert a pressure. A merger of the 
two theories therefore requires first of all a reinterpretation of the observables of one in terms of 
the observables of the other. . . The mechanical reinterpretation of thermodynamic observables 
and with it the reduction of all thermodynamic equations are performed in statistical mechanics. 
Neither reinterpretation of observables nor reduction of equations is possible by means of the 
proper tools of mechanics alone; additional constructs, not germane to mechanics and thermo-
dynamics are needed to attain to these ends. . . Statistical mechanics is therefore a discipline in 
its own right, related to mechanics but operating with certain extra notions peculiar to itself 
[MARG: 268-269].  

Margenau points out that an observable such as "gas pressure" is "possessed" by a 

thermodynamic system (that is, pressure is a primitive object in thermodynamics), but it is merely 

"latent" in statistical mechanics. This means that there is no one variable or parameter object in a 

statistical mechanics model that corresponds to "pressure." Rather, "pressure" becomes a defined 
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quantity through a mathematical transformation that converts "statistical mechanics objects" into 

a "thermodynamic object." While statistical mechanics does not actually restore "determinism" to 

the theoretical model, it does at least present the illusion of causality, that there is "some reason" 

for the system behaving the way that it does. It gives us a way to impose rationalist principles on 

what is otherwise merely an empiricalism of observable relationships. (This, too, is something the 

physicist means when he says quantum statistical mechanics "explains all of chemistry").  

In this sense, statistical mechanics is a discipline for building a bridge between the "laws of 

mechanics" and the "laws of probability." But, Margenau warns us, it is vitally important that one 

always be fully aware of when he is reasoning about the objects proper to one science (e.g. 

temperature and thermodynamics) vs. the objects proper to the other (e.g. velocity distributions 

and statistical mechanics).  

 Statistical mechanics is a link between thermodynamics and mechanics; it succeeds almost in 
reducing one to the other. The reason for its partial failure is in the need it has for introducing 
probabilities, quantities unknown among the concepts of mechanics. True, dynamical principles 
tolerate the use of probabilities in certain special problems, where the initial state of a 
mechanical system is not completely known. But even there they offer no help in generating 
probabilities; these must first be introduced by considerations of a nondynamical sort, for the 
competence of the laws of dynamics is limited to the transformation of one set of probabilities 
into another. . . Probability is a foreign element in mechanics; it does not evolve naturally in the 
application of these principles and must be injected into them from without if it is to function in 
mechanical description. Hence the failure of statistical mechanics in effecting a complete 
reduction of thermodynamics to mechanics [MARG: 280-281]. 

§ 1.3 Region III Systems 

The objects with which neural network theorists must deal fall into the class of Region III 

systems, i.e. systems exhibiting "organized complexity." This means that these systems are too 

complex for successful treatment by a tractable number of deterministic equations, but they 

display too little "randomness" (they are "too organized") for successful and tractable application 

of stochastic principles. These are the systems that theoretical physicists and pure mathematicians 

alike banish to the provinces as "the concern of engineers and others interested in applications" of 

"fundamental" scientific and mathematical principles.  

Not surprisingly, and befitting a situation that falls in between the two extremes represented 

by Region I and Region II systems, the methods employed in computational neuroscience are a 

blending of "mechanical" and "stochastic" methods. Why? Because no one has yet come up with 

another way of approaching the problem. The situation here is not unlike what the physicist does 

when he uses a "semi-classical" model of the electron to try to describe phenomena such as the 

ferromagnetism of bulk iron (another Region III system). Lacking tractability at the level of 

relativistic quantum mechanics (which is viewed as the "fundamental level of explanation" for 
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ferromagnetism), but too entirely foreign to classical mechanics to be successfully treated by that 

approach, "applied" physicists and materials scientists seek a middle ground of explanation. So, 

too, it is at present with the computational neuroscience of neural networks between the regimes 

of biological neuroscience on the one end and psychophysical neuroscience on the other.  

Region II models are successful mainly because the overwhelmingly large number of factors 

thought to be "in play" (by statistical mechanics) largely cancel each other out and keep the 

variances from predicted mean values small enough and independent enough to be treated simply 

as "noise." But this "separation of variables" does not work too well in Region III. Here the 

variances are usually large and usually cannot be neatly separated out for treatment independently 

of the "average behaviors" of the system. The challenges imposed by organized complexity make 

the computational neuroscience of neural networks a most difficult area of research, and, at the 

same time, the most ripe for breakthrough discoveries in brain theory.  

The much-sought-after "trick" to Region III model development in neuroscience is simple 

enough to state but, so far, difficult to accomplish. It is simply this: To find appropriate 

observables (the objects of the system) sufficiently simple in description to avoid the limitations 

of the "Square Law of Computation" and, at the same time, sufficiently reliable in predictive 

power that the statistical variances in parameters do not carry the model results far away from the 

actual behavior of the physiological object. We will be looking at a few examples of this a bit 

later on. All the while, the model must be fecund enough to return useful and accurate predictions 

of the emergent properties of neural networks. We must be prepared to endure the discomfort that 

usually attends increasingly abstract concepts of a mathematical nature, while at the same time 

not becoming so complacent about these concepts that we lose all touch with observation, 

experiment, and consequential interpretation.  

Even if this scientific task was already an achievement of neuroscience – which it is not – it 

would be poor pedagogy to present the answer first before explaining the backdrop that makes it 

the answer. But since we are not yet in possession of a fully developed discipline for dealing with 

organized complexity, it seems best to begin with a kind of scouting expedition to explore the 

landscape into which we now begin to journey and to see the difficulties with which we must deal 

concretely. So, all the while bearing in mind what it is we seek to achieve with model order 

reduction in the region of organized complexity, let us begin with a brief examination of the 

environment in which the neuron operates.  

§ 2. The Neuron's Contribution to Organized Complexity 

We begin with examining how the neuron itself contributes to the complexity of the 
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environment in which it operates. In the previous chapters we have seen the model development 

for describing the behavior of the individual neuron. Neuroscience has been able to produce 

neuron models with relatively few descriptive parameters, these being tied to neuron physiology 

either directly or through a fairly modest and short series of abstractions. If these model 

parameters were found to be tightly distributed in their numerical values, we would be able to feel 

confident in taking a first important step on the path to a successful small-variance "Square Root 

of N Law" treatment of the neural network. Unfortunately, this is not the case.  

Of the many thousands of different distinct biological species of neurons, we have hard data 

on the physiology of only a relative few. Even here the difficulties that attend identification of 

specific neuron species in the course of laboratory investigations lead to a practical situation 

where our available data tends to describe neurons in categories – such as "pyramidal cells of the 

neocortex" – rather than finer subdivisions of neuron classification. On the other hand, the data 

also shows that measurable differences for parameters affecting signal processing fall into ranges 

and this, along with the classification of RS, FS, IB, etc. signaling types, suggests that many of 

the functional differences among neurons in a network can be accounted for by appropriate 

selection of neuron types and parameter ranges.  

Many of our hard numbers for neuron parameters are obtained from neocortical neurons. It is 

instructive to review the range data that has been obtained. Let us begin with parametric data for 

the three primary synapses involved in data flow signal processing by neurons. Table I 

summarizes review findings for AMPA, NMDA, and GABAA data for neocortical neurons 

[SEGE1]. Parameters gmax and Tpk are as defined in chapter 3 for the g(β) conductance equation. 

The space constant and electrotonic length parameters are dendrite parameters explained below.  

        Table I: Synaptic Parameters     

    Synapse     gmax   Tpk  Space constant electrotonic length 
       type    (nS)    (ms)        λ (mm)   (l/ λ)   

     AMPA  0.1-0.3 0.3-1.0       0.2-1.0   0.2-2.0 
     NMDA  0.05-0.5 5.0-50       0.2-1.0   0.2-2.0 
     GABAA  0.4-1.0 0.2-1.2   –         –  
                  

 

       Table II: Neuron capacitance ranges    

        Neuron      C  m (nF)      
           type  minimum  typical  maximum  

           RS      0.09     0.51      1.97 
           IB      0.27     0.53      0.99 
           FS      0.06     0.21      0.84 
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The parametric values for synaptic conductance illustrate the considerable range of values 

observed in neocortical neurons. As previously noted in chapter 3, neurons in other regions of the 

brain can exhibit different maximum conductance values, such as in the cerebellar granule cells 

reported in [GABB]. One can generally expect smaller synapses to exhibit lower values of gmax 

because small postsynaptic densities contain fewer channel pores. However, synaptic area by 

itself is not a compete predictor of gmax because different species of membrane-spanning channel 

pores show a wide range in the basic conductance parameter gp (HILL4: 401).  

Most (but not all) dendrites lack the voltage-gated channels needed to produce an action 

potential. Thus, unlike the axon, the dendrite conveys signals passively from the synapse to the 

cell body [SEGE2]. Experimentally, it is observed that membrane potential is greatly attenuated 

and dispersed during this process. This phenomenon can be modeled using what is known as the 

cable model for dendrites, originally developed by Rall in the early 1960s. The net effect of the 

filtering action performed on EPSPs by the passive dendrite is captured by two dendrite 

parameters, the space constant (λ) and the electrotonic length (L = l/ λ), where l is the length of 

the dendrite in mm. Although a cable model for a typical dendritic arbor rather quickly becomes 

quite complicated [SEGE1], a useful rule of thumb for approximating the attenuation of the EPSP 

for a synapse located a distance x from the soma is provided by [KOCH] 
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where X = x/ λ. However, even though the membrane voltage is greatly attenuated in traveling 

from a distal synapse to the cell body, most of the charge injected into the cytoplasm at the 

synapse does make its way to the cell body with very little leakage loss because the conductance 

within the cytoplasm is much greater than across the membrane wall in the dendrite [SEGE2]. 

Thus the attenuation in peak EPSC amplitude at the soma is accompanied by an increase in Tpk 

and a broadening of the current waveform which can often be well-enough approximated by 

replacing the expression for Gsyn(t) by a g(α)-function expression.  

Physiologically, one would have every justification for modeling synaptic inputs by different 

conductance models based on the distance of the synapse from the soma. However, it is obvious 

that doing so increases by two the number of difference equations per neuron for each additional 

synapse conductance model. Thus, following this tactic carries the model more quickly into 

conflict with Weinberg's "Square Law of Computation." Another tactic is needed. 

Neurons differ greatly in size, thus in surface area. This results in a rather large range of 

membrane capacitance values, Cm. As we saw in chapter 6, the ratio C/Cm is a scaling factor in 
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Wilson's models (where C = 1 nF was the value Wilson used in obtaining his VGC 

approximations). This ratio must be applied in Wilson's models to set the numerical values for the 

ligand-gated channel conductances given a physiological value for gmax. Table II summarizes 

ranges for Cm obtained from data presented in [McCO2]. In laboratory studies, measurement data 

is often biased in favor of larger neurons because these are the more likely to be impaled by the 

microprobes used by the experimenter.  

Measurements of Cm are rarely direct. Instead, physiologists tend to measure membrane 

resistance, RN, and time constants, τm, and compute the implied membrane capacitance as Cm = 

τm/RN. There is nothing wrong with this, but unfortunately most physiological studies do not 

report the correspondences between measurements of RN and τm, thus making the minimum and 

maximum range values for Cm somewhat problematic. One can reasonably guess larger values of 

RN implicate smaller-sized neurons, and therefore smaller values of τm (and vice versa for smaller 

values of RN). This is because the highest density of membrane channels in the cell body tends to 

be concentrated most heavily in the trigger zone of the neuron, whereas Cm reflects the entire 

surface area of the soma. This assumption was made in arriving at the minimum and maximum 

values in Table II. As a rule-of-thumb, however, this assumption is certainly open to challenge 

and only more precise experimental reports will resolve the issue. The typical values in Table II 

are less problematic. What can be said in favor of the minimum-maximum estimates in Table II is 

that these values seem to be consistent with range values reported by those researchers who do 

explicitly report Cm values.  

A Region-II-like approach to modeling the "typical" neuron in a neural network would attempt 

to arrive at "expected values" for the parameters listed in Tables I and II, and to use these to 

model all neurons of a given type (say RS-type) in the network. There are two principal 

objections to this. First, it is postulated by most experts that different regions of dendrite carry out 

different types of signal processing function, and if so this would argue against treating every 

dendritic synapse as a "typical" synapse. Over the past quarter-century, tantalizing evidence has 

mounted suggesting that the dendritic arbor should be regarded as a basic "computational unit" of 

the neuron, in contrast to an older view that made the neuron itself the basic unit of neuronal 

signal processing [MEL]. The question is by no means settled, but it is too important to dismiss. 

The second argument against a classical Region-II-like model is the range of variances seen in 

synaptic parameters. (Presumably the range of variances in Cm is also important, but this has been 

much less well-characterized). Studies have shown that variations in EPSCs even within a single 

generic type of cell (e.g. Layer 5 pyramidal cells) show a very broad and rather Poisson-like 

distribution of values [SMET], [KOCH:404-405], a finding that suggests a similar distribution 
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about a Region-II-like "typical" synaptic conductance parameter. Variances in Region-II models 

used in other sciences can often either be ignored completely, because the variations about the 

expected value are small, or treated simply by adding a noise term to the model. But in the case of 

neural networks, which can and do respond very, very differently for relatively small changes in 

parametric values, these large variances become potentially crucial factors. To some extent, this 

source of variation is accounted for by distributions assigned to different neurons' synaptic weight 

vector, W, (see chapter 3), but a detailed quantitative study of how well this tactic matches up 

against physiological models is lacking at the present time. Neural network theorists generally 

rely on W to capture all the "main effects" of this variance, but the justification here is practical 

and historical rather than experimentally-based on a re-examination of this presupposition. 

Advances in our knowledge of neural physiology and advances in computing power over the past 

decade do make it possible to undertake such a re-examination.  

§ 3. Anatomical Contribution to Organized Complexity 

Suppose someone were to give you a job sorting pennies. You are presented with one million 

pennies, upon each of which is scratched one of an unknown number of symbols. Your job is to 

sort them into bins according to these symbols. To make matters more interesting, the pennies 

come embedded in dirt clods, with an unknown number of them in each clod, so you can't even 

see the individual pennies without extracting them from the dirt clods first. Does this sound fun? 

Figuring out how neurons are interconnected in the brain is something like this only harder.  

We are not even close to possessing a "wiring diagram" for any of the various regions of the 

brain, and there is no prospect in sight that we will possess such a "wiring diagram" any time in 

the near future. But without one, how can we hope to model the collective behavior of neurons in 

a functional biological neural network? In the mid-1950s it was already known that the brain 

could be parcellated into various regions according to differences in local gross arrangements of 

cell bodies and myelinated fibers. There was also evidence in hand that specific functions are 

localized, or largely localized, to specific anatomical regions. It was also clear that the fine details 

of neuronal interconnections were staggeringly complicated.  

§ 3.1 Random Neural Networks 

It is none too surprising, therefore, that some of the earliest ventures into neural network 

research were carried out by using Region II statistical methods that had worked so well for other 

vastly complex systems. Perhaps the first of these attempts was made by Beurle in 1956, who 

introduced the idea of the randomly connected neural network [BEUR]. There was a spurt of 
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activity investigating this idea through the 1950s and 1960s, although experimental 

neurophysiologists lost interest in this after awhile. Significant papers on random network models 

continued to appear into the 1980s, and even today one occasionally still comes along.  

Aside from the fact that a randomly-connected neural network can perform no useful 

computations, these studies did turn up some interesting mathematical properties of random 

networks. These same properties also appear to rule out any possibility that random network 

models describe any sort of physiological reality in regard to brain function. Probably the most 

important finding has been that random network models do not seem to be capable of sustaining 

any low but non-zero level of neuronal activity.  

Models using various probabilistic assumptions, neuron models of varying degree of 

biological plausibility, and a wide range of assumptions on how to represent neuron activity have 

been employed in randomly-connected network models. Abeles has reviewed a number of these 

in [ABEL1, chapter 5]. All have arrived, each in their own way, at more or less the same 

conclusion. What this conclusion is can be amply illustrated by considering the random network 

model of Anninos et al. [ANNI].  

 In this paper we present the mathematical formalism, the methods used and some numerical 
results pertaining to a model of cerebral functioning which was discussed in the preceding paper 
. . . and will be referred to as I. The assumptions made there were, in brief, twofold: the structure 
of the neural net may be approximated by sets of discrete populations of randomly 
interconnected neurons; these were given the term netlets. The netlets are coupled to one another 
in a way which was described as randomness-in-the-small and structure-in-the-large. The 
second assumption concerns the appropriate description of neural dynamics. The statement was 
made in I that the spatial and temporal microstructure of activity may be disregarded. The 
dynamical variables considered significant in this model are the levels of activity, i.e. the 
fractional numbers of neurons firing in each netlet. With these two sets of assumptions the 
dynamics of some of the simpler prototypes of neural nets may be computed [ANNI].  

Anninos et al. were able to obtain a difference equation (equation 6 of [ANNI]) that described 

the expected fraction of neurons in the network that would fire at iteration step n + 1 given that 

some fraction αn were firing at iteration step n. A model of this sort is called a Markov process 

model, and is often called a renewal process. A stochastic model of this sort arises naturally from 

the assumption that all the information a neuron has of its past is summarized in the present value 

of its membrane potential. This assumption is consistent with our physiological models. 

The details of the Anninos equation are not particularly important for our present purposes 

(the interested student can refer to [ANNI]) other than to note that the probabilistic expression 

came out to be a Poisson distribution. Nelken later showed in general, under conditions that 

should pertain to large random neural networks, that the statistics obtained for the excitatory and 

inhibitory signaling processes converge to those of the Poisson process even if synaptic inputs are 

weakly correlated [NELK1].  
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     (A)            (B) 

Figure 7.1: Activity levels at time step t + 1 given activity level at time t predicted from the Anninos function 
for randomly-connected neural networks. (A) Random network in which all neurons are excitatory. (B) 
Random network in which 15% of all neurons are inhibitory. The families of curves (left to right) are for 

increasing firing threshold levels. Points where the activity curves cross the unit slope line (αt+1 = αt) are fixed 
points. Ignition points are points of unstable equilibrium. Above the ignition point the stable fixed-point 

solutions predict nearly 50% of all neurons will be firing at any given time. Below the ignition point the stable 
fixed-point solution is the zero-firing rate solution. The average number of synapses per neuron was 30 for 

both excitatory and inhibitory synapses, and thresholds range from 1 to 7 (left to right). 

Solutions for the Anninos function are shown in Figure 7.1 for two different example cases.3 

Figure 7.1A depicts a random network made up of all excitatory neurons. Figure 7.1B depicts a 

case where 15% of the neurons in the network are inhibitory (which corresponds to the 

percentage found in neocortex). Let αt be the fractional activation, i.e. the fraction of the neurons 

in the network firing at time index t. Let F(αt) be the Anninos function giving the expected value 

of αt+1 at the next time step. Families of curves for F are shown in Figure 7.1 for different values 

of average firing threshold for the neurons. On the average, then, αt+1 = F(αt) at each time step. 

The network dynamics reach a fixed point solution if, for some t, αt+1 = αt. Thus, fixed points 

are identified by the intersection of the F(αt) curve with the line αt+1 = αt shown in the graph. 

There are two types of fixed point solutions we must consider. At a stable fixed point, if there is a 

small perturbation ε made to fixed point αt, the system will return to αt in a finite time, i.e., 

  αt+1 = F(αt + ε), αt+2 = F(αt+1), . . ., αt+n → αt+n-1 = αt 

for some finite n. In contrast, at an unstable fixed point, the system response to a perturbation 

evolves as 

  αt+1 = F(αt + ε), αt+2 = F(αt+1), . . ., αt+n → αt+n-1 ≠ αt. 

An unstable fixed point is called an ignition point and separates two different stable fixed points 

                                                 
3 These curves were generated using a MATLAB® script written by T. Trappenberg [TRAP: 299]. 
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for the Anninos function. Ignition points are identified by arrows in Figures 7.1. 

As the average firing threshold is increased, F(αt) moves down and to the right in Figure 7.1. 

For a sufficiently large average threshold, F(αt) lies entirely below the αt+1 = αt line except at the 

point αt = 0. This zero activity solution is always a stable fixed point for F(αt). If the average 

firing threshold is low enough such that an ignition point exists, then F(αt) has two stable fixed 

points, one at αt = 0 and another at αt ≅ 0.5. Any stimulation of the network that places αt above 

the ignition point for some t will therefore carry the network off to a steady-state condition in 

which approximately half the neurons are firing at every time step. Conversely, if αt is below the 

ignition point for some t, the network is expected to evolve to a steady-state in which no neuron is 

firing. Neither case is representative of actual brain behavior. We might liken the zero activity 

solution to "brain death." Metaphorically speaking, the randomly-connected-network model 

predicts either brain death or an epileptic episode as the only stable states of brain function. The 

actual biological situation is one in which average neural network activity level persists at some 

low but non-zero fraction of the neurons in the network.  

Anninos et al. were also able to derive F(αt) expressions for the case of a constant, non-zero 

level of average stimulus activity applied to the network. In these cases a low, non-zero steady 

state was possible. However, this merely begs the question. How does the network stimulating the 

modeled network obtain its biologically-realistic average firing activity level?  

One might argue that perhaps the neuron models used by Anninos et al. were too simple and 

this might have led to the unrealistic results predicted from the model. This possibility has been 

considered by other investigators, whose findings have been reviewed by Abeles [ABEL1, 

chapter 5]. Findings obtained from different randomly-connected network models have been 

amazing consistent: The only two stable states of expected fractional activity are the zero activity 

and the αt ≅ 0.5 "epileptic" activity levels. Abeles concludes,  

 For a large network of excitatory and inhibitory neurons with small EPSPs it is very difficult, if 
not impossible, to attain steady ongoing activity at low firing rates. The problem of attaining a 
low level of ongoing activity is due to the steep slope of the input-output curve of the excitatory 
population at low firing rates and to the extrasynaptic delay required before the inhibitory cells 
can counteract random fluctuations in activity. If it is at all possible to attain stable ongoing 
activity at low levels, it is likely that the range of fluctuations around which the system can be 
stabilized will be very limited, that the inhibitory neurons will have to switch from no activity to 
maximal activity over a narrow range of excitatory firing rates, and that the inhibitory neurons 
will also have to exert strong inhibitory effects on themselves [ABEL1: 167-168].  

The conditions that have to be presumed to obtain mathematical descriptions such as the 

Anninos function are precisely those which Weinberg called unorganized complexity. Region II 

models can all be expected to exhibit similar probabilistic functions (Poisson-like distributions 

and renewal process dynamics), and so the implication of Abeles' conclusion is rather obvious. 
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The basic nature of biological neural networks is not one of unorganized but, rather, organized 

complexity. They are Region III systems. The behaviors Abeles describes that must, minimally, 

be exhibited by the inhibitory neurons in the network are conditions that somehow the 

organization of the neural network must produce. This is something no known scheme for a 

randomly-connected network can achieve.  

Although the Region II modeling approaches to network organization fail to produce 

biologically-realistic network behavior, it is a mistake to conclude this research is without value. 

On the contrary, the results obtained from randomly-connected network models provide an 

extremely valuable result. This research has told us what the organization of the nervous system 

is not. The crucial shortcomings of the model lie with fundamental mathematical properties 

inherent in this type of network "un-organization" and it is not likely these fundamental 

mathematical issues can be fixed by tinkering around the edges of this or that probabilistic 

assumption (while maintaining probabilistic characteristics that would have to apply to real 

neurons).  

The sort of presumptive changes that would be needed to overcome these mathematical 

problems inherent in the randomly-connected neuron model also provide us with a glimpse of 

anatomical consequences that would likely have to attend the process of fixing the model. Here 

we find some very tantalizing correspondences with anatomical facts. Abeles goes on to note, 

 The delicate balance between the internal excitation and inhibition in large networks sheds light 
on some of the anatomical detail of the cortex. The need to switch from no inhibition to fast 
inhibition explains why only few inhibitory neurons having very strong effects are found in the 
cortex. The need to have the inhibitory feedback with as short a delay as possible explains why 
there is no use for extracortical inhibitory feedback (conduction times to such subcortical nuclei 
and back are too long). This requirement for a short delay also explains why the axons of most 
inhibitory neurons are thicker than the average cortical axon (fast conduction times), why they 
distribute their effects mostly in their own vicinity (short conducting distances), and why their 
postsynaptic targets are concentrated on cell bodies and the proximal dendrites (shorter electro-
tonic delays to the soma and faster rise time of the EPSP).  
 The synaptic arrangement in which excitatory neurons receive a mixture of excitatory and 
inhibitory synapses on their somata (and large dendritic trunks), whereas the inhibitory neurons 
receive excitation only on more remote dendritic sites, also contributes to fast inhibitory 
feedback and more sluggish positive excitatory feedback. The effective mutual inhibition that is 
exerted by the inhibitory neurons on each other also seems necessary for attaining stability. 
 The conjecture that the inhibitory feedback can stabilize the ongoing activity only over a narrow 
range of firing rates sheds light on the arrangement of thalamic inputs to the cortex. These inputs 
bring strong excitatory effects to the cortex (particularly to sensory areas). The thalamic inputs 
spread their terminals in cortical layer IV, where they make synaptic connections with all the 
neural elements that pass through the layer. . . Layer IV is particularly rich with inhibitory 
neurons. In this manner, the input that increases the activity in the cortical excitatory neurons 
concomitantly activates the inhibitory neurons. This is a feed-forward activation of the inhibitory 
neurons that anticipates the increased excitatory activity and alleviates the problems that the 
extra delay of inhibitory feedback might cause [ABEL1: 168]. 

Anatomists had, of course, documented these synaptic and projection features of neocortex 
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long before Abeles drew out the conclusions stated above. (And it is appropriate to note here that 

excitatory synaptic connections to the somata of excitatory neocortical neurons is very, very rare). 

But knowing how the neocortex is generally arranged is not the same as having an understanding 

of the functional significance of this arrangement. This is one thing the randomly-connected 

network models seem to have provided to us. Naturally, conclusions and imputations such as 

those Abeles draws above are easier to make in hindsight; the mathematical results did not predict 

the anatomical arrangements seen in the laboratory. Still, the incompatibility of the model with 

what is known of cortical arrangement, and the concordance between what goes wrong with the 

model and an anatomical structure which at least grossly agrees with what is needed to eliminate 

the models' undesirable mathematical features, does serve to tell us we must look elsewhere for a 

method of model order reduction.  

§ 3.2 Crystalline Neural Network Models 

It is a mistake to think, as Weinberg's pessimistic appraisal might seem to imply, that Region 

III models have never been successfully developed in any branch of science. The example par 

excellence of a successful Region III model is provided by solid state physics and its models of 

materials composed with crystalline structure.  

A crystal is defined to be "a solid whose regular array of particles has definite polyhedral 

faces meeting at definite angles and showing certain symmetry characteristics." The symmetry 

characteristics of a crystal are what make possible the simplification and solution of the partial 

differential equations that describe the physics of crystalline materials. More particularly, crystal 

structure gives rise to periodic boundary conditions, and these are the key to obtaining solutions 

describing the material. Crystalline solids have organized complexity, and the organization is 

sufficiently regular to permit successful model order reduction. Of course, perfect single crystal 

materials are fairly rare in nature, and most are carefully fabricated in the laboratory or in 

factories whose end product is such a material. Most crystalline materials are polycrystalline, 

which merely means they are composed of many crystals (often called grains) separated by what 

are generally called grain boundaries. Exact solution of the underlying physics equations is 

usually not possible, but approximate solutions are often attainable through perturbation methods. 

These solutions typically are accurate to about 70 to 80% in predicting material properties (or, to 

put it another way, quantitative prediction errors are typically less than 20 to 30% compared to 

measured values). This is better than having nothing at all. 

Now, obviously, biological neural networks are not crystals. They could not really even 

properly be called "solids" unless one wishes to regard a gel-like material as "solid." It is true, of 
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course, that neural anatomy does show particular geometrical features (such as tissue texturing, 

columnar and "blob" structures, etc. [WHIT]) faintly reminiscent of crystal structure. These 

geometrical and morphological features are part of what helps the anatomist classify different 

parts of the brain and spinal cord. But these geometrical features carry no mathematical 

imputation for possible mathematical simplifications of the sort enjoyed by solid state physics.  

But, as any good mathematician worth her salt would tell us, physical scientists often do not 

think "in sufficient generality." Most of us would be indignant if a mathematician were to tell us 

we do not know what "distance" is. (And, of course, most mathematicians are too polite to put it 

so bluntly). We think: Slap a ruler down between two points, read off the calibrated markings, 

and that is "distance." The mathematician would tell us, "That is merely a special case example of 

a metric function in a particular metric space." Mathematicians long ago came up with a more 

generalized definition of "distance" and so today we have Euclidean distance, Hamming distance, 

and an endless repertoire of other "metric functions" that bear no names most of us would 

recognize.  

Is it possible, then, to come up with more generalized ideas for things like "crystal" that might 

do for our ability to describe neural networks what the crystalline symmetry properties do for 

solid state physics? And might such a more generalized idea make it possible to achieve model 

order reduction for neural networks? Put another way, can we generalize the idea of a "crystal" in 

a way useful to neuroscience? There is reason to think the answer to this question is "yes"; 

furthermore, although rarely so called in the corpus of neural network literature, one can argue 

that this is already being done. A critic might argue it is being done piecemeal, but piecemeal or 

not the important idea is that this is how many types of models in neural network theory can be 

viewed. We shall call Region III models of this sort crystalline neural network models. By 

analogy, the randomly-connected network model described in the previous section could be 

called a "glass" model. (A "glass" is an amorphous solid, the geometric opposite of a crystal).  

System theory boldly claims to be "the science of systems in general." Since almost the very 

definition of "science" is that it is an organized doctrine of knowledge4, a somewhat tongue-in-

cheek way of stating the "first principle" of system theory is, "Everything is the same, only 

different." What this is meant to convey is: By some proper way of looking at any object, there is 

a way to describe it such that its description is mathematically homomorphic with the ways in 

which we describe other objects. A less glib description might be to say that system theory relies 

                                                 
4 Immanuel Kant, the great 18th century philosopher, defined "science" as "a doctrine constituting a system 
in accordance with the principle of a disciplined whole of knowledge." His epistemological definition of 
"system" was "the unity of various knowledge under one Idea." Although nowadays it is mostly forgotten, 
Kant was the first to draw a clean distinction between "science" and "natural philosophy." 
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on the fact that the same equations have the same solutions. It is just a question of, as a system 

theorist might put it, "getting things to look the same." How shall we look at the notion of a 

"crystal" so that this more generalized notion can pertain to neural networks?  

§ 3.2.1 How Crystalline Structure Reduces Physics' Models. Compared to the solid 

state theory of crystals, the solid state physics of glasses is extremely formidable and nowhere 

near as universally successful. This is not to say there is no theory of glasses at all. There is, and 

it is a field in which very dedicated specialists labor. However, it is not, by any honest reckoning, 

as generally well-developed and successful as the solid state physics of crystalline materials. 

What does crystalline structure do for physicists? How does it make possible the substantial 

model order reduction that is solid state theory?  

Put vernacularly, the basic answer is that regular crystalline structure makes possible a "divide 

and conquer" approach to modeling the solid. The atoms in a crystalline solid are arranged in a 

lattice made up of a symmetrical arrangement of repeated three-dimensional geometric unit cells, 

each of which contains a small number of atoms. The unit cells divide the solid into spaces of 

equal volume with no space excluded. Each corner of a unit cell is called a "lattice point." Every 

lattice point has identical surroundings with every other point. There are only fourteen possible 

space-filling networks of lattice points, and the arrangement has translational periodicity. This 

periodicity ensures that the Schrödinger equation, which describes the sum of kinetic and 

potential energies in the crystal, has only periodic solutions.  

Even so, an exact solution for the Schrödinger equation in a solid cannot be obtained by any 

presently known method of analysis. Physicists therefore resort to approximate solution methods. 

For solids with ionic or covalent bonds, the approximation method is called the linear 

combination of atomic orbitals (LCAO), which uses the known solutions of the Schrödinger 

equation for the hydrogen atom as "basis functions" for constructing approximate solutions. For 

simple metals, the approximation uses what are known as plane wave methods. Using 

approximation methods, the chemical bond can be worked out for any solid [HARR].  

 The Solid State Table of the Elements, folded into the book near the back cover, exemplifies the 
united view of electronic structure which is sought, and its relation to the properties of solids. 
The table contains the parameters needed to calculate nearly any property of any solid, using a 
hand-held calculator; these are parameters such as the LCAO matrix elements and 
pseudopotential core radii, in terms of which elementary descriptions of the electronic structure 
can be given. The approach used throughout the book has been to simplify the description of the 
electronic structure of solids enough that not only electronic states but also the entire range of 
properties of those solids can be calculated. This is always possible; the only questions are: how 
difficult is the calculation, and how accurate are the results? . . . [The] simplified approaches 
explained in this book, although they give only tolerable descriptions of the bands, can easily be 
applied to the entire range of dielectric, transport, and bonding properties of imperfect as well as 
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perfect solids. In most cases they give analytic forms for the results which are easily evaluated 
with a hand-held calculator [HARR: xiii-xiv].  

It is no doubt obvious that any model which can be computed using a hand-held calculator 

must be quite simple in its mathematical form. In effect, this modeling schema permits the 

physicist to divide up the entire very complicated solid into a small number of interacting 

subsystems, each of which has a Region-I model, and then describe the entire solid by computing 

the interactions among them. Harrison's "Solid State Table of the Elements" provides the factors 

needed to compute these interactions, incorporating the phenomenological "correction terms" that 

compensate for the approximate nature of the solution.  

The problem of organized complexity in a crystalline solid is thus attacked by taking the 

following steps. First, a prototype system that has a Region-I model is selected to serve as the 

basis for analysis. In the case of the crystalline solid, this prototype system is the hydrogen atom 

with its known analytical solutions for the possible orbitals its electron can occupy. Next, other 

more complicated, but still relatively simple, systems are considered in terms of the basis 

prototype. In the case of solid state physics, these are the other atoms. It is found that only certain 

orbitals, known as the valence orbitals, need be considered in modeling the solid. (This is where 

the s-, p-, d-, and f-orbital terminology, familiar from freshman chemistry, come from). The other 

orbitals, those forming what are called the "closed shells" of the atom, can be ignored. Third, the 

arrangement of the constituent systems (the particular atoms in the lattice) is developed. This 

arrangement differs for different materials, which gives the solid to be modeled its specific 

organizational character. The solid is said to have a "hexagonal close pack" or a "face-centered 

cubic" or etc. structure.  

Fourth, the knowledge of the structure (hexagonal close pack, or whatever) is combined with 

the basis representation (the particular valence orbitals involved) to qualitatively determine how 

to treat the interactions among the atoms in the lattice. This is where model ideas such as the "sp3 

hybrid orbital," familiar from freshman chemistry, are obtained. From this treatment a new basis 

set for representing the solid is obtained from the original basis functions. In chemistry this is 

referred to as the "molecular orbital." Molecular orbitals are obtained as modified versions of the 

original atomic orbitals (in the case of the LCAO method). This step is an important one that 

deserves further comment. The basis set for describing the solid is not the same as the set used to 

describe the isolated atom. It cannot be, because a molecule is not just a pair of atoms in 

proximity. There are interactions between them that alter the orbital solutions, and these 

interactions are responsible for the emergent properties of the molecule – that is, the things that 

are characteristic of a molecule that are not characteristic of any of its constituents considered in 
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isolation.  

Fifth, schematic parametric expressions and specific quantitative parameter values are found 

that provide, with acceptable accuracy, the quantitative mathematical description of the 

interactions. It is necessary to find such expressions because the modeling technique employs 

approximations in lieu of unobtainable exact solutions of the Schrödinger equation for molecular 

orbitals. In Harrison's book [HARR], he shows that only a surprisingly small handful of 

mathematical expressions are needed to describe any solid. These expressions are independent of 

the particular atoms that go into the solid (although which expressions one uses does differ 

between, say, a solid with covalent bonding vs. one with metallic bonding). In our terminology, 

we say these equations constitute a modeling schema. The equations contain unspecified 

parameters, the values of which do depend on the particular atoms present in the solid. His "Solid 

State Table of the Elements" provides the specific values for each of these parameters for every 

atom in the periodic table of elements. These values were obtained from experimental studies 

conducted over many years in Harrison's laboratory at Stanford.  

Sixth, a mathematical description by which the molecular orbital functions are combined in a 

single system is found. This equation reflects the unit crystalline cell. In the case of solids, the 

mathematical form most often used is not the Schrödinger equation in the form set down by 

Schrödinger but, rather, the mathematically equivalent "linear algebraic" form developed by 

Heisenberg (and known, appropriately, as the Heisenberg matrix formulation). In solid state 

physics this form is called a "Hamiltonian." It expresses the sum of kinetic and potential energies 

of the system, just as the Schrödinger equation does, but does so in a mathematical form more 

efficient for the expression of the system of model equations.  

This modeling schema is one of the most successful ever developed for Region-III systems. 

Within a few years of the publication of Harrison's book, researchers in places such as the 

Stanford Research Institute were using this schema to develop new semiconductor devices, many 

of which have played very important roles in advancing microchip technology in the past quarter 

century. Of the many important features contained in this modeling schema, one of the most 

useful and appreciated benefits is the fact that the schema itself provides a way of visualizing 

what is going on inside a solid, so that the researcher does not have to rely solely upon abstract 

mathematics. This goes directly to the heart of, as Harrison put it, "learning the physics of the 

system (or 'learning the chemistry of the system,' if one is of that background)."  

§ 3.2.2 The Notion of Crystalline Neural Networks. We will call any neural network 

model that can be developed by a sequence of analysis steps analogous to the six steps explained 
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above a "crystalline neural network" model. That such an approach is even possible for neural 

networks is perhaps not self-evident, and so some discussion of this is necessary. What features 

of biological neural networks are there which can inform the approach and establish its feasibility 

and, more importantly, its biological significance? After all, anyone can put together an 

arrangement of unit netlets in a "step-and-repeat" crystal-like geometry. This is merely a 

mathematical exercise. The network model used in [RULK1] is an example of an interconnection 

of Rulkov neurons organized in just such an arrangement. This is not the point. The important 

facts are: (1) there are orders of magnitude more neuron types than there are elements in the 

periodic table; (2) there is no single "fundamental law of physics," on par with the Schrödinger 

equation, for describing neurons, much less neural networks; (3) qualitatively, the interactions 

and connections between neurons in a biological network are many times more numerous than 

those presented to the solid state physicist; (4) parametric variances, such as in synaptic 

conductances and membrane capacitances, are far, far greater than their parametric counterparts 

for the atoms in a crystalline solid; and (5) there are no comparable experimental techniques, on 

par with methods such as the x-ray diffraction analysis used by material scientists and physicists, 

for examining neural network organization and structure. Why, then, should one entertain any 

hope at all that any kind of useful methodological approach, analogous to that used for crystalline 

solids, even exists? It must be admitted at the outset that the organized complexity of a biological 

neural network is far more complex than that of a mere crystalline solid. 

On the other hand, neural networks are far, far less sensitive to minute variations in "atomic" 

constituents (neurons, in our case) than are many kinds of solids. For example, addition of trace 

amounts of boron or phosphorus to a silicon lattice profoundly alters the electrical properties of 

the entire solid (without altering its metallurgical properties significantly); this is how transistors 

and diodes are made. The crystal-wide impact of relatively minute amounts of dopants is due to 

the global nature of the Schrödinger equation. Neural networks, by contrast, have very few 

factors that exert a global effect on the network; those which do are for the most part due to 

readily identifiable constituents of the biological structure (e.g. the glial syncytium). Whereas 

inhomogeneities such as grain boundaries affect the entire solid5, inhomogeneities in neuronal 

structures have only local effects on the form of the modeling equations for interactions. This 

localized vs. globalized property difference is one thing we have going in our favor.  

Another thing we have going for us is that nature shows a tendency to repeat certain structural 

                                                 
5 The magnetic coercivity (an important parameter for materials such as iron) can be three to four orders of 
magnitude less in many polycrystalline iron materials than it is for small single-crystal iron samples. The 
very nature of the magnetic behaviors of these two materials is not only quantitatively but also qualitatively 
different. Part of these differences has to do with grain size, but a large part of it is due to grain boundaries. 
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"themes" in neuronal organization. One of the most studied of these "themes" is the functional 

column organization of the mammalian cerebral cortex.  

 The notion that the cerebral cortex of different species is built according to some common, basic 
plan is woven throughout the following treatise. Substantial evidence in support of this thesis has 
surfaced regularly since the outset of anatomical studies of cortical organization . . . and has 
been confirmed by the many experimental approaches that have been used to elucidate different 
functional aspects of the cerebral cortex. For instance, direct electrical stimulation of the brain or 
recording of evoked potentials from it have established that the cerebral cortex can be 
parcellated into functional areas whose relative positions are similar in all mammalian species[.] 
Subsequently, recordings of single-unit activity have confirmed the existence of functional 
columns in various areas of the cortex in the mouse, rat, cat, monkey, and man . . . and have 
provided evidence that cortical neurons in a variety of species display similar functional 
properties [WHIT: 1-2].  

If neurons play the role of "atoms" in a neural network model, then functional columns are a 

prime candidate for the role of lattice analogue – perhaps even "unit cells," but at least structures 

composed of unit cells (so-called minicolumns). If this idea proves successful, then it brings 

down the degree of organized complexity by a gigantic amount – from the complexity of a system 

composed of hundreds of thousands or millions of neurons to one with "only" on the order of 

hundreds or thousands of neurons. This is, clearly, still a formidable problem, but one which is 

now coming within range of the computational capacity of today's extremely powerful computer 

technology (overcoming the "Square Law of Computation" problem).  

This idea of a "basic plan architecture" for neural networks is not unique to cerebral cortex. 

Another much studied brain region, the cerebellum, displays its own highly regular layout within 

the cerebellar cortex. In detail it is quite different from the organization of the cerebral cortex, but 

the point is that it does apparently have the sort of "lattice-framework" regularity and "functional 

circuit" organization the modeler can exploit [LLIN]. The thalamus, a subcortical structure 

through which passes almost all the peripheral information coming into the neocortex, has its own 

brand of regular organization, referred to by anatomists as "nuclei" rather than "columns" 

[SHER]. As more is learned about the various brain regions, there is a rising hope, almost 

amounting to expectation, that parsimony of organization schemata in the central nervous system 

is more the rule than the exception.  

There is yet another advantage we have working for us. In recent years hard evidence has been 

found that firing patterns of neurons within closely connected cell groups are highly, highly 

correlated [STER], [FRIE1-2], [ECKH1-2], [GRAY2], [KREI]. Stimulating action potentials 

from just a few members of the neuronal cell group leads to the firing of action potentials by all 

or nearly all members of the cell group. What this means is that the signals from the different 

neurons in a cell group are highly synchronized in time. It is also thought likely that subgroups 

within the cell group – and perhaps sometimes even the entire group – all project to the same 
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target areas (other cell groups). When this is the case, the actions of the entire group, which might 

consist of hundreds or more neurons, can be represented by just one or a few members of the 

group. Put another way, a few model cells might proxy for the entire population of cells in the 

group. This, of course, is clearly analogous to the "unit cell" of solid state physics.  

Aside from the physiological evidence supporting the idea of the cell group, there is also a 

very practical reason, in evolutionary terms, for why the central nervous system would be 

organized in terms of cell groups. Neuron cells die, with more or less regular death rates, and, 

unlike other cells in the body, they are not replaced. The statistics are fairly grim. If the central 

nervous system were not organized with a great deal of redundancy in the signal processing 

functions carried out by its neurons, no human being would be likely to live past childhood.  

Beyond the biology of the central nervous system, there are mathematical grounds as well in 

support of the cell group hypothesis. Perhaps the earliest mathematical arguments for this were 

put forth by Christof von der Malsburg in 1981. Malsburg's theory, regarded as radical at the 

time, is known as the "correlation theory of brain function" [MALS2]. Today it has become 

widely accepted, at least in part, by many theorists. It has received further support from 

neurological studies, carried out by Damasio and his co-workers, for explaining a number of 

findings on the effects of various forms of brain damage caused by injury, stroke, tumor, and 

surgery [DAMA1-2].  

When one combines the two notions of local functional organization and highly synchronized 

firing behaviors from cell groups, we arrive at what is often termed the idea of the functional 

microcircuit. Although functional microcircuits might vary parametrically from one to the next, 

the implication of this modeling approach is simple and important: Models of neural networks 

can be approached by representing the behaviors of large numbers of neurons by a relatively 

small number of proxies, locally interconnected to form neural processing units, and linked to 

other neural processing units by synaptic pathways. The steps necessary for constructing such a 

model are: (1) identifying the membership of the neuron population making up "kernels" within a 

subunit; (2) identifying the key features of neuronal signaling by which information is conveyed 

within the subunits; (3) constructing the local architecture and topology of the different subunits; 

(4) determining the connectivity forms for interactions between subunits making up the functional 

minicolumn, and the connectivity forms between different processing units; (5) determining the 

quantitative mathematical descriptions for these interconnects; and (6) studying the gross 

behavior of the network so constructed to simplify and reduce its mathematical description as 

much as possible without significantly altering the behavior of the network as a whole. These are 

the steps closely analogous to those presented earlier in describing how the solid-state physicist 
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accomplishes his modeling task, and so we can see that this indeed constitutes what has here been 

called a crystalline neural network model. A specific example will serve to further clarify and 

illustrate these general ideas. 

§ 4. Networks in the Neocortex 

In neuroscience the neocortex is often accorded a status somewhat like that of a rock star. It is 

thought to be the principal brain region for all the "higher" cognitive functions in mammals. As 

such, its study has always attracted much attention. Along with the hippocampus and the 

cerebellum, the general organization of the neocortex is one of the best understood of the major 

functional areas of the brain.  

Figure 7.2 illustrates the general column layout, interconnectivity, and afferent pathways of 

the neocortex as it is presently understood [DOUG1, 3], [WHIT]. Although the major 

interconnect pathways shown in the figure are well documented,  the internal circuitry connecting 

 

Figure 7.2: General column layout, interconnectivity, and principal afferent and efferent pathways of the 
neocortex. Efferent projections at the bottom of the figure are by means of the white matter below layer VI. 

Lateral (left-right) connections shown also continue reciprocally into and from adjacent cortical columns. 
Afferents at the left side of the figure primarily enter via white matter axons. 
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neuron-to-neuron within a column is much less well understood in detail, especially in regard to 

the population of inhibitory neurons. Anatomists have uncovered some general themes that 

appear to operate at the circuit level in neocortex. These can be summarized in six statements, 

which we will call White's rules [WHIT: 82, 157-158]: 

1. Every neuron within the target region of a projection receives input from the 
projection. 

2. Different dendrites of a single neuron form similar synaptic patterns; that is, the 
numbers, types, proportions, and spatial distribution of synapses is similar, 
provided the dendrites are exposed to similar synaptic inputs. 

3. Neuronal types receive characteristic patterns of synaptic connections; the 
actual numbers, proportions, and spatial distribution of the synapses formed by 
each neuronal type occur within a range of values. 

4. The receptive field properties of every cortical neuron are shaped by the spatial 
and temporal integration of inputs from a variety of excitatory and inhibitory 
sources. Inputs from a single source cannot be the sole determinants of the 
receptive field properties of cortical neurons. 

5. Only a fraction of the synaptic inputs to a cortical neuron are activated at one 
time. Therefore, the receptive field properties of cortical columns are transitory 
and are determined by the cortical circuitry active at a given time. 

6. Excitatory and inhibitory synaptic interactions between cortical neurons 
preferentially link neurons situated in close proximity to one another, and these 
interactions typically link neurons having similar receptive field properties. 
Synaptic interactions between closely spaced neurons, having similar receptive 
field properties, provide a basis for the similarity of receptive field properties of 
neurons within a functional column. 

In addition to these six rules, we also have three White's corollaries:  

1. Axon terminals from any extrinsic or intrinsic source synapse onto every 
morphological or physiological neuronal type within their terminal projection 
field. In practice, this means that a pathway will form synapses with every 
element in its target region capable of forming the type of synapse normally 
made by the pathway (i.e., excitatory or inhibitory). 

2. Axonal pathways form similar synaptic patterns onto all the dendrites of a 
single neuron, provided the dendrites occur within the target region of the 
axonal pathway. 

3. Different extrinsic and intrinsic synaptic pathways form specific proportions of 
their synapses with different postsynaptic elements (spines vs. dendritic shafts, 
one cell type vs. another). 

Numerous studies have shown that cortical neurons sharing similar receptive fields are 

arranged vertically in columns [WHIT: 109-112]. Thus, the structure illustrated in Figure 7.2 can 

be provisionally regarded as the prototype network structure for a functional column. However, a 

certain degree of caution is merited in considerations involving functional columns. Studies have 
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demonstrated that functional columns fall into two broad classes: (1) functional columns with a 

well-defined anatomical structure; and (2) functional columns that lack clearly defined 

anatomical substrates [WHIT: 199-201]. Anatomical structures corresponding to the first class 

bear such names as barrel cortex, slabs, and blobs. Columns of class (2) appear to be of a more 

transitory and dynamical nature, as suggested by Rule 5 above. In this context, we may also 

observe that the lateral connections (left-right) depicted in figure 7.2 can allow neurons to 

"overlap" such that a particular neuron might at one moment in time "belong" to one functional 

column, and at a different moment in time belong to another column, depending on its receptive 

field and the active stimuli it is receiving. Thus, class (2) functional columns can be said to 

exhibit "dynamic links" and support what Malsburg calls a "dynamic link architecture" (DLA) 

[MALS3].  

This dynamical characteristic of functional columns makes them structures that are a bit too 

complex to serve as a basic "unit cell" in a crystalline network model. Ideally, the "unit cell" (a 

netlet) should have stable and well-definable neuronal membership and not be subject to being 

"divided up" such that at any given time part of it "belongs to" one functional column while 

another part of it "belongs to" a different functional column. Rather, it would be computationally 

preferable, as a practical matter, if the unit cell as a whole participated entirely in one or another 

functional column at any given time. Whether or not such an ideal structure actually occurs in 

neural anatomy is not known at present, but Rule 6 implies that the idea of such an ideal unit cell 

should be at the least a useful and realistic approximation to actual cortical behavior. Such a 

netlet is called, by different authors, either a functional microcircuit or a canonical microcircuit 

[CONNb3]. Functional netlets are Region-I structures exhibiting organized simplicity.  

One of the earliest computational models of a functional microcircuit for neocortex was 

published by Douglas and Martin in 1991 [DOUG2]. The primary requirement a functional 

microcircuit model must meet is that it provide a functionally realistic input-output characteristic. 

When we are working at levels fairly close to the physiological level (involving only one or a few 

steps in model order reduction in making abstraction from the physiological neuron model level), 

the neuron models comprising the functional microcircuit should present input-output responses 

that are good approximations to measurable physiological membrane responses. This is the level 

Douglas and Martin worked at in their 1991 paper. For neurons they used an abstract, multi-

compartment neuron model. The dynamics of this model were very simplified, as was practically 

required by the computational horsepower available in 1991, but were "tuned" to reproduce their 

measured membrane responses with sufficient accuracy for their purposes. One neuron was 

regarded as representing a population of neurons of a given type.  This is a simplification justified  
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Figure 7.3: Canonical netlet of Douglas and Martin used to construct functional microcircuit models of 
neocortex. (A) Recurrent two-layer netlet of excitatory and inhibitory neurons. (B) Schematic representation 

of the microcircuit of (A). 

by the implications of White's rules.  

Douglas' and Martin's basic schema for neuron-level canonical microcircuits is illustrated in 

Figure 7.3. It is a recurrent, two-layer schema in which excitatory and inhibitory neurons are 

segregated by layer. Figure 7.3(B) is a schematic representation of the netlet shown in (A). The 

microcircuit incorporates a connection feature commonly found in neuron-level circuits, namely 

lateral connection among neurons in the same layer (note the center excitatory neuron in the 

excitatory layer; it projects to both its neighboring excitatory neurons; likewise, the left-most 

inhibitory neuron in the second layer projects to its inhibitory neighbor). It also reflects another 

feature generally regarded as being typical of neuronal organization, namely feedback from the 

inhibitory neurons in the second layer to their source neurons in the first layer. Unfortunately, the 

authors were somewhat equivocal in discussing the details of their microcircuits inasmuch as they 
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Figure 7.4: Functional microcircuit minicolumn model of Douglas and Martin. 

did not make altogether clear whether the circuit of Figure 7.3(A) was used exactly as depicted in 

the construction of the larger functional microcircuit models they went on to present. (This is a 

common if unfortunate tendency in much of the literature on network models).  

Figure 7.4 illustrates their functional minicolumn model of neocortex. Again, Douglas and 

Martin did not provide enough detailed description of the specific neuron microcircuits within 

each block in the diagram to permit independent reconstruction and verification of their results. It 

is also important to note that the canonical minicolumn structure represented in the figure was 

tuned for giving proper responses to thalamic input afferents and did not deal with cortico-cortical 

afferents. What this means is that Figure 7.4 is a starting point rather than an ending point for the 

construction of unit cell netlets in a general functional microcircuit model of neocortex. Still, 

despite these shortcomings, the Douglas-Martin model represents an important step in the theory 

of cortical neural networks. Figures 7.3 and 7.4 provide us with important illustrations of the 

basic considerations and approach to be taken in a crystalline network model. One might call 

[DOUG2] an important early essay in the craft of Region-III neural network modeling, this craft 

not yet being full-grown even in the present day.  

Douglas and Martin were able to use their modeling schema to capture an important known 

property of the neocortical functional column, namely its ability to function as a spatial filter for 

thalamic inputs. It is known that the neocortex responds to inputs from the thalamus with a 

preferred spatial direction. The functional circuit model capturing this effect is shown in Figure 

7.5. The model depicts two links in a horizontal "chain" of connections between adjacent areas in 

the cortex. This chain has a "preferred direction" for receiving successive thalamic stimulation. In 
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Figure 7.5: Douglas-Martin spatial filter structure for modeling the preferred direction of sequences of 
cortical afferents from the thalamus. The preferred direction is left-to-right. Two links in a crystal-like chain of 

adjacent cortical areas are depicted in the figure. 

the case where the left-most thalamic input arrives before the right-most input, the excitatory 

neurons in the left-hand link are activated, their maximal activity being restricted by their 

interaction with the local population of inhibitory cells. Subsequent thalamic excitation applied to 

the next link excites that region's excitatory cells and increases the inhibition in the left-hand 

circuit. However, if the direction in which thalamic afferents arrive is reversed, the excitation of 

the inhibitory population in the left-most mini-column prevents the response of the excitatory 

population to the thalamic afferent. (Note how the excitatory populations are self-exciting; when 

the inhibitory population activates before the excitatory population has had a chance to do so, the 

nonlinear interaction is sufficient to block the excitation of the excitatory population).  

[DOUG2] does not claim to present a complete model of a cortical functional column. This is 

evident by examining the differences between figures 7.4 and 7.5, and by comparing both to the 

general layout of the neocortex in figure 7.2. Clearly there are plenty of opportunities remaining 

for computational neuroscience research directed at neocortex. But [DOUG2] does serve to 

provide us with a "case study" of the general approach to dealing with the organized complexity 

of Region-III systems, and, within the limitations of the purposes for which the Douglas-Martin 

model was constructed, it is as successful a model as any that have been proposed thus far for 

network-level modeling of neocortex.  

§ 5. Rungs of the Ladder: Model Order Reduction vs. Scientific Reduction 
Our discussions up to this point have all maintained a relatively close proximity to physiology. 

This is natural for the method of pedagogy presented in this text, in which we have begun with 
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the biological roots of computational neuroscience and have been building upon these roots in all 

the chapters thus far. The phenomena to be modeled and explained thus far are all phenomena 

uncovered in the biologist's laboratory, and our models have been slowly climbing up toward 

increasing levels of abstraction as we advance from neural mechanism to individual neuron 

behavior to, now, the behavior of small neural netlets. Each step we take makes abstraction from 

the mechanistic world of the anatomist and physiologist, and we do this in the service of a very 

real need to simplify the amount of detail needed in obtaining computationally tractable models 

of ever more complex systems of the central nervous system. This ascending of the ladder of 

model representations in the hierarchy of neuroscience is called model order reduction. 

But there is another starting place for computational neuroscience research, and this starting 

place takes its point of reference and its scientific data from a different science altogether, namely 

psychology. In this endeavor, neuroscience seeks to explain extraordinarily complex phenomena 

in the behavior of the living animal. The behavioral phenomena of most interest are perceptual, 

cognitive, emotional, motivational, and social. This is the province of mind rather than brain – a 

province that stands, philosophically as well as scientifically, at as great a distance from the 

mechanistic world of biology as any gulf between any two topics in science ever gets. Ideas such 

as perception, emotion, cognition, or motivation play no part whatsoever in our models of the 

neuron. Nor is it scientific for us to adopt a happy thought and expect these mental phenomena to 

suddenly appear, as if by elfin magic, when we collect enough neurons together in a network. 

William James, the father of American psychology, wrote,  

Already, in discussing the localization of functions in the brain, I had said that consciousness 
accompanies the stream of innervation through that organ and varies in quality with the character 
of the currents, being mainly of things seen if the occipital lobes are much involved, of things 
heard if the action is focalized in the temporal lobes, etc., etc.; and I had added that a vague 
formula like this was as much as one could safely venture on in the actual state of physiology. . . 
The consciousness, which is itself an integral thing and not made of parts, 'corresponds' to the 
entire activity of the brain, whatever that may be, at the moment. This is a way of expressing the 
relation of mind and brain from which I shall not depart during the remainder of the book, 
because it expresses the bare phenomenal fact with no hypothesis, and is exposed to no such 
logical objections as we have found to cling to the theory of ideas in combination. 

 Nevertheless, this formula which is so unobjectionable if taken vaguely, positivistically, or 
scientifically, as a mere empirical law of concomitance between our thoughts and our brain, 
tumbles to pieces entirely if we assume to represent anything more intimate or ultimate by it. 
The ultimate of ultimate problems, of course, in the study of the relations of thought and brain, is 
to understand why and how such disparate things are connected at all. But before that problem is 
solved (if it ever is solved) there is a less ultimate problem which must first be settled. Before 
the connection of thought and brain can be explained, it must at least be stated in an elementary 
form; and there are great difficulties about so stating it. To state it in elementary form one must 
reduce it to its lowest terms and know which mental fact and which cerebral fact are, so to speak, 
in immediate juxtaposition. We must find the minimal mental fact whose being reposes directly 
on a brain-fact; and we must similarly find the minimal brain-event which will have a mental 
counterpart at all [JAME: vol. 1: 176-177].  
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The art and science of connecting a "mental fact" and a "brain-fact" is called the psycho-

physical study of neuroscience. The close of the twentieth century saw the delivery of important 

new instruments for exploring this field – such as functional magnetic resonance imaging (fMRI) 

and positron emission tomography (PET) among others – and these instruments have greatly 

empowered neuroscience's ability to construct map models and network systems of the brain in 

correlation with psychological phenomena of mind, e.g. [BULL], [LEVId]. Researchers engaged 

in making this psychophysical "mind-brain connection" are engaged in climbing down the ladder 

of the neuroscience hierarchy. They are engaged in scientific reduction.  

Today a great gulf still lies between the psychophysical phenomena addressed by ART-map 

network system models and the biophysical phenomena addressed by neural network models. We 

will know we have bridged this gap only when James' statement regarding "the less ultimate 

problem" can be made with scientific rigor. Metaphorically, the researchers engaged in these two 

disparate wings of the science are working to construct a transcontinental railroad of sorts. The 

job will be done when the tracks running in from the east meet those running in from the west and 

the "golden spike" is finally driven.  

But, of course, to drive this golden spike the tracks must meet in one place. To switch 

metaphors, it is not enough to have rungs on a ladder of representational hierarchy. The rungs 

must be connected by the rails of the ladder. Each higher rung in model order reduction has to be 

tied to the rung immediately below it; each lower rung in scientific reduction has to be tied to the 

rung immediately above it. The ultimate goal toward which all of neuroscience labors is to come 

at last to the final rung somewhere in the middle, where the rails connect in both directions.  

Now, a map (as we use that term in this book) is a network of neural networks. A network 

system is a network of maps. Given our previous discussion of the Region-III issues confronting 

the modeling of a neural network, it is no doubt immediately evident how much the issue of 

organized complexity is likely to be in play at the levels of maps and network systems. We can 

therefore rightly anticipate that as we progress in this textbook, we will be obliged to introduce 

increasingly more abstract models to be able to deal with the greater and greater span of 

phenomena represented at successively higher rungs of the reductionist ladder. The common 

theme throughout, from functional microcircuits to ART-map network systems, is the same: 

Dealing effectively with the organized complexity of the system we have chosen to study. We 

take our next step in this progression up the ladder in chapter 8.  

Exercises 

1. Most introductory textbooks on economics, available from any good university library, 
recognize and define four distinct types of economic markets: (1) perfect competition; (2) 
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monopolistic competition; (3) oligopoly; and (4) monopoly. Write a short essay 
explaining which of the systems regions (I, II, or III) each of these falls under and what 
factors lead you to make your classification.  

2. Professor of History and Political Science Charles A. Beard, writing in 1929, said, "No 
science of politics is possible; or if possible, desirable." Beard cited such factors as the 
uniqueness of each political situation, the fact that different people hold different political 
views (and do so more or less unpredictably), and that controlled experiments in political 
science are not possible. Beard's view is opposed by many present day political scientists 
who distinguish between "traditional political science" (prior to 1950) and "behavioral 
political science" (post 1950). If it is true, as Beard claimed, that political science cannot 
be a science, then it is a subject that cannot be treated by system theory. Write an essay 
speculating on how systems theory might be applied to political science, which regime of 
systems (I, II, or III) such a theory might fall into, and what factors lead you to categorize 
the system-theoretic treatment of political science in the way you do.  

3. Many physicists intermingle the terms "thermodynamics" and "statistical mechanics" in 
everyday conversation to such a degree that non-physicists are often taken aback to hear 
that thermodynamics and statistical mechanics are distinct sciences. Using the definition 
of "system" given in chapter 1, explain how and why a system theorist regards statistical 
mechanics and thermodynamics as distinct sciences. Hint: pay attention to the objects of 
these sciences. How do you think thermodynamics and statistical mechanics stand in 
relationship to the actual physical phenomena these disciplines seek to explain? 
Represent your explanation in the form of a diagram.  

4. For this exercise, you will need a cup of hot coffee and a half-dozen small, well-frozen 
ice cubes. The cup should be about 2 7/8 inches in diameter and about 3 ½ inches deep. The 
ice cubes should be no larger than about 5/8ths of an inch along the sides (to leave plenty 
of room for them to float around freely in the coffee cup). Being careful not to splash the 
coffee out of the cup, drop an ice cube in the center of the cup. Observe and carefully 
record everything that happens from the time you release the ice cube until the time it 
melts completely. Replicate the experiment 5 more times, replenishing the coffee as 
needed to keep it from cooling off too much. From your observations, what phenomena 
would a model of this system be required to explain? What are the likely object variables 
that must go into such a model? What system region (I, II, or III) will this model likely 
fall into?  

5. A common approach in neural netlet modeling is to represent all the neurons of a given 
type (e.g. RS-type pyramidal cells) using an "average neuron" model. Modify your 
Wilson RS-type neuron model program you wrote in chapter 6 to add AMPA synaptic 
inputs modeled by the g(β)-function. Use τ1 = 0.16 ms and τ2 = 3.00 ms for your time 
constant parameters. Run simulations for different models using the smallest and largest 
values for gmax given in Table I and the minimum, typical, and maximum values for Cm 
given in Table II (a total of six different simulations). Apply synaptic inputs weighted for 
1, 10, 20, 30, and 40 synapses receiving simultaneous stimulation arriving at t = 10, 60, 
110, 160, and 210 ms, respectively, for these 5 different levels of synaptic input (one 
simulation run for each of the six neuron parameter sets). Judging from your simulation 
results, what kind of "average neuron" do you think might be able to represent all RS-
type neurons in the network? How would you model it? If you do not think one single 
"average neuron" could realistically be used in a network model, what are your modeling 
alternatives? Comment on the effect these alternatives have in regard to the Square Law 
of Computation.  
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