
Biological Signal Processing  Richard B. Wells 

Chapter 8 

 
Netlet and Population Modeling 
 

§ 1. Characterizing Proxy Neuron Models 

In chapter 7, the idea of a proxy neuron model representing a population of physiological 

neurons was introduced. The key assumption behind the idea of a proxy neuron is the idea that it 

is meaningful to speak of an "average neuron" within the populace of neurons. Like the famous 

"average American family with 2.3 children," the "average neuron" is, to borrow one of William 

James' famous put-downs, "as mythical an entity as the jack of spades." What are we to mean by 

"average neuron," and how does one go about coming up with one?  

One logical starting point is to ask: What do all neurons do so far as their basic signal 

processing behavior is concerned? and can this commonality be meaningfully represented by 

some sort of average descriptive function or functions? One rather obvious answer to the first 

question is: Neurons respond to synaptic stimuli, and if the stimulus is sufficiently large, and if 

the neuron communicates with other neurons via chemical synapses, the neuron fires an action 

potential. If, for now, we ignore non-spiking neurons that communicate via gap junctions, it 

seems reasonable to pick the neuron's responses to chemical synapse stimuli as a likely starting 

point. One of the most common measures of neuronal response is the peak amplitude of its 

excitatory postsynaptic potential (EPSP) in response to single-event synaptic stimulation. 

Studies detailing distributions of EPSP responses to synaptic stimulation are not common, but 
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Figure 8.1: Model distribution of excitatory postsynaptic potentials (EPSPs) to single-event synaptic 
stimulation. The histogram bins are 0.125 mV wide. The model is a tri-modal distribution composed of three 

weighted binomial distributions. See the text for discussion of this model. 
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there have been a few reported findings, e.g. [SMET]. Taking Smetters' findings on layer V 

pyramidal cell neurons as representative, the first noticeable feature of EPSP distribution is that it 

tends to be skewed toward the smaller EPSP values, with occasional low-probability occurrences 

of much larger EPSPs. The shape of the distribution is not well-fitted by standard probability 

functions such as the binomial or Poisson distribution functions, suggesting that we are dealing 

with a multimodal population of responses.  

Figure 8.1 shows a model distribution comprised of three separate populations, each modeled 

as a binomial distribution, P(n, N; p). The model assumes a "unit EPSP" response such that each 

bin in the histogram represents a peak EPSP range from 0.125n to 0.125(n + 1) mV with the bin 

centered on 0.125n + 0.0625 mV, n = 0, 1, 2, . . . N. The model used N = 40 for all three 

populations. The mean value of the EPSP for each population is n  = pN, and the populations 

were weighted to give an overall distribution function 

   ( ) ( ) ( ) ( )332211 ;,;,;,,Pr pNnPwpNnPwpNnPwNn ⋅+⋅+⋅=  .     (8.1) 

The weighting factors and probabilities (wi, pi) were (0.05, 0.01), (0.85, 0.10), and (0.10, 0.29) 

respectively for the three model populations. These values were chosen to give a reasonable 

match to the mean value and skew for the experimental data reported by Smetters [SMET]. 

Smetters' actual data is skewed somewhat more to the left and also shows fairly high-voltage 

outliers as large as about 4.2 mV. However, the mean value, the probabilities in the region from 

0.4 mV to 1 mV, and the flattened "back porch" from 1 mV to 2 mV agree reasonably well with 

Smetters' data (given the constraint of having three subpopulations in the model distribution). The 

binomial function that underlies Pr(n, N) is, of course, 

    ( ) ( ) nNn pp
n
N
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Parameter pi, along with N, determines the mean EPSP response for population i. Weighting 

factor wi models the fraction of the overall population made up of members of subpopulation i.  

Although, undoubtedly, closer empirical fits to the experimental data could be obtained by 

other models, figure 8.1 is nonetheless adequate for making an important first observation: There 

are multiple, statistically-distinct populations producing the distribution of EPSP responses. To 

the extent that figure 8.1 is an adequate approximation for the overall population, we are faced 

with three distinct subpopulations. By itself, this does not necessarily mean a unique proxy 

neuron model cannot be achieved. But it does alert us to the need to understand what mechanisms 

underlie the presence of observably distinguishable subpopulations.  
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The distribution of figure 8.1 does not tell us what these mechanisms are. It merely alerts us to 

the presence of something that systematically results in different neurons exhibiting statistically 

different response properties. There are many possible mechanisms that might produce a 

multimodal distribution of EPSP responses. Differences in EPSP from proximal vs. distal 

synapses in the dendritic arbor of one neuron, due to the "cable effect" (chapter 7), might be a 

contributor. If this is the dominant mechanism for producing the distribution, a single proxy 

neuron with multiple synaptic channel models (a multi-compartment model) might likely suffice 

to model the entire population. But if other significant mechanisms exist as well, differing from 

neuron to neuron rather than from synapse to synapse, then having only a single, unique proxy 

neuron model might not be adequate for modeling a netlet. Figure 8.1 presumes no specific 

neuron model; it only makes a statistical statement regarding the observable values of EPSPs 

exhibited by an overall neuron population (in the case of Smetters' data, a population of 

pyramidal cells). We must therefore examine more closely how parametric differences among 

neurons affect the EPSP response.  

§ 1.1 Single-event EPSP Variations in the Single Compartment Model 

Let us begin with neurons modeled by a single-compartment model such as the Wilson neuron 

model. Naturally, use of a full Hodgkin-Huxley model for this examination would be preferable. 

However, the experiment from which the model of figure 8.1 was deduced does not provide the 

data necessary to determine the details required for full H-H modeling of the neurons in the 

population. What is known is that the neuron population is comprised of pyramidal cells (more 

specifically, layer V pyramidal cells in rat visual cortex). Most pyramidal cells belong to the RS 

class of spiking responses, and so use of the Wilson model will reflect the extent of our actual 

knowledge of the system we are dealing with. However, because the Wilson model is based on 

fitting firing patterns and firing rates in response to injected test current stimuli, we have to ask a 

key question regarding the use of this model for this purpose: Is the subthreshold response of the 

Wilson RS model consistent with the EPSP data when physiological values are used for its 

synaptic conductance and membrane capacitance parameters? If it is, we may proceed with an 

analysis. If it is not, we can attach little significance to whatever we might learn from the Wilson 

model in regard to our present purpose.  

Physiological range values for synaptic gmax and membrane capacitance Cm were presented in 

chapter 7. As we are dealing with subthreshold responses to stimulation, a modeling experiment 

can be run using the six parameter combinations (gmax, Cm) for AMPA channels. Statisticians refer 

to this as a factor level experiment. Table I summarizes the six factor level test cases.  
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A              B 

 
C              D 

 
E              F 

Figure 8.2: EPSP responses to simultaneous stimulation of one, two, and three synapses. (A) and (B): 
Class 3 (small neuron) parameters. (C) and (D): Class 2 (medium neuron) parameters. (E) and (F): Class 1 
(large neuron) parameters. The order in which stimulus is applied is: 3-synapses, 2-synapses, 1-synapse. 

        Table I: EPSP Factor Level Experiment      

     Factor Class Factor Designation gmax (pS)   Cm (fF)   

      3     A     100   0.09 
      3     B     300   0.09 
      2     C     100   0.51 
      2     D     300   0.51 
      1     E     100   1.97 
      1     F     300   1.97 
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       Table II: Peak EPSPs for Single Event Stimuli      

     Factor Class Factor Designation EPSP1  EPSP2  EPSP3   

      3     A    0.75  1.5   2.3  mV 
      3     B    2.25  5.0   8.0  mV 
      2     C    0.125  0.275  0.39 mV 
      2     D    0.39  0.80  1.35 mV 
      1     E    0.03  0.065  0.08 mV 
      1     F    0.10  0.20  0.285 mV 
                          

For discussion purposes the six test cases are divided into three classes according to Cm. We 

will call Class 1 the "large neuron" class, Class 2 the "medium neuron" class, and Class 3 the 

"small neuron" class since it can be presumed that Cm is correlated with the size of the neuron. 

Figure 8.2 shows the EPSP responses to stimulus events involving three, two, and one synapses, 

respectively. Peak EPSP responses in mV are summarized in Table II. The reason for testing 

single stimulus events involving multiple synapses is White's corollary number 2 from chapter 7. 

An axon projecting into a target area will make synaptic contact with all the dendrites of a neuron 

occurring in that target area. Therefore, we must account for the possibility that a single event 

stimulus can simultaneously stimulate more than one synapse. EPSP1, EPSP2, and EPSP3 in Table 

II denote simultaneous stimulation of 1, 2, and 3 synapses, respectively. We will first discuss the 

correspondences between this model simulation and the distributions in figure 8.1. Afterwards, 

we will comment on the shortcomings of the model simulation experiment.  

The first thing to note from analysis of the simulation results is that EPSP1 values all fall 

within the distribution range of figure 8.1. This is encouraging because it implies that the Wilson 

model's subthreshold EPSP response is at the least physiologically reasonable, despite the fact 

that the Wilson model itself was not developed using any consideration of subthreshold 

responses. To this extent, we may say the Wilson model does have predictive power, since this 

model result goes beyond the conditions under which it was developed and is therefore not a mere 

curve fit function. This addresses one concern voiced earlier in the text when the Wilson model 

was first introduced. To be useful, an approximation model must have some predictive power, 

and this is our first serious test of whether or not this is true of the Wilson model. 

At the same time, however, a second caution is merited. We are comparing the results of a 

simulation model with the results of a distribution model. A philosopher of science might tell us 

at this point that what we are doing is making comparisons entirely within the Platonic world of 

mathematics. Before we can celebrate clearing this first hurdle of testing the Wilson model, we 

must ask: How do the simulation results compare with the original experimental data from which 

the approximation provided by the model of figure 8.1 was deduced? Here it turns out that there 

is cause for some concern. Smetters' data shows no EPSP responses for amplitudes less than 
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about 0.125 mV. The experimental data shows a relative frequency of about 0.16 for responses in 

the range of 0.250 to 0.375 mV, an abrupt drop in frequency to only about 0.02 in the range from 

0.125 to 0.250 mV, and no observed cases at all for EPSPs less than 0.125 mV. The first three 

histogram bins of figure 8.1 are those most seriously at odds with Smetters' data in the model 

distribution. We should therefore be very cautious in our interpretation of the EPSP1 responses 

involving the Class 1 (large neuron) test cases. At the same time, however, one should also know 

that it is very difficult to accurately measure responses below 0.1 mV in a noisy environment, that 

it seems very peculiar that there should be so abrupt a drop in peak EPSPs between the n = 1 and 

n = 2 bins, and equally peculiar that there should be no heavily attenuated "cable effect" 

responses from distal dendrite synapses of a pyramidal cell in the sub-0.1 mV range. The point is 

that even experimental data, obtained at the edges of measurement capabilities, merits some 

caution in interpretation. Even experimental results are not delivered to us on stone tablets. This 

is not, and never should be used as, an excuse for ignoring experimental results. All it does is 

merely inject into the picture an idea of where the frontier of one's "knowledge of hard facts" lies. 

This is one of the realities of science that makes science such a fascinating and challenging area 

in which to work. The safest conclusion we can draw from this comparison is the following: 

Regardless of whether or not the EPSP1 large neuron simulation results are truly physiological, it 

should be concluded that the pooled EPSP1 results are not typical of the entire neuron population. 

(A "pooled" result is a set of results treated as if they all belong to a single distribution). 

Next we should compare the three simulation test cases against the three putative population 

statistics from which the distribution of figure 8.1 is composed. Because we are taking the factor 

levels for gmax and Cm as parametric ranges, what one should expect is for the simulation results to 

"bracket" the distributions in a statistical sense. To see if this happens, we need the mean and 

standard deviations for the three binomial distribution subpopulations in figure 8.1. The mean 

index in  and standard deviation σn = ( ) ii np ⋅−1  for each of the three probabilities pi for the 

subpopulations in figure 8.1 are shown in Table III, along with the corresponding EPSP values.  

Comparing the statistics in Table III against the values for EPSP in Table II, the following 

observations can be made. The distribution for  p1 = 0.01 is most closely matched by the range for 

       Table III: Subpopulation Means and Standard Deviations     

    pi   in    σn   EPSP( in )   EPSP( in +σn)  EPSP( in – σn) 
                            

    0.01  0.4   0.629  0.115 mV   0.193 mV    – 
    0.10  4.0   1.9   0.565 mV   0.803 mV   0.328 mV 
    0.29  11.6  2.87  1.515 mV   1.874 mV   1.156 mV   
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the Class 1 (large neuron) model for the EPSP2 test case. The Class 1 EPSP2 model responses 

bracket the mean EPSP of 0.115 mV with case F providing a fairly close match to the EPSP for 

one standard deviation above the mean. This implies that the small-EPSP population in the model 

of figure 8.1 is best represented by the class of large neurons with an average of two synaptic 

connections per presynaptic terminal over the typical physiological range of gmax. Although this 

alignment is nothing more than a matching-up of two model characteristics (the EPSP distribution 

and the Wilson RS-type model with the stated parameters), as an "average neuron" range model, 

this assignment does make some physiological sense. Large neurons are more difficult to 

stimulate because the concentration of inflowing synaptic channel charge is smaller for large cell 

bodies, thus implying less effect on membrane potential. Furthermore, it is reasonable to expect 

that a large pyramidal cell will present more dendrite surface area within a given axon's 

projection region, thus implying under White's second corollary a greater average number of 

synapses per axon terminal.  

The best match for the p2 = 0.10 subpopulation is provided by a somewhat complex mixture of 

the Class 2 (medium-sized) neuron cases. Specifically, model responses for case C EPSP2 

through EPSP3 along with case D EPSP1 through EPSP2 fall more or less within the ± one 

standard deviation range about the mean EPSP for p2 = 0.10. Such a mix is not physiologically 

unreasonable, but it resists a simple description similar to that for the Class 1 case, other than to 

say the p2 = 0.10 population seems to represent a wide range of synaptic efficacies, with 

"effective" values for gmax ranging from 200 to 600 pS. This is perhaps not inconsistent with the 

fact that the p2 subpopulation in figure 8.1 represents 85% of the overall neuron population. It is a 

modeling outcome that would tend to implicate a multimodal distribution with more than three 

subpopulations. It is also an outcome that suggests it is functionally possible to represent this sub-

population with a single "average neuron" model (Cm = 0.51 fF) with the variance in the sub-

population being taken into account by means of a distribution in the synaptic weights of the sub-

population.  

Finally, the p3 = 0.29 subpopulation is best matched by the Class 3 (small neuron) cases for 

EPSP1. These responses bracket the mean EPSP in Table III, although the ranges somewhat 

exceed the ± one standard deviation range. The "midpoint" between the two values of EPSP1 

(about 1.5 mV) is reasonably close to the distribution model value of 1.515 mV. EPSP1 implies 

one synapse per presynaptic axon projection, which would seem to be consistent with what one 

could expect from a small neuron.  

In this analysis, "best match" does not denote "best fit." The model distribution (figure 8.1) 

and the Wilson model parameters have been determined independently of one another. The 
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analysis has merely pointed out what aspects of one model are most consistent with specific 

characteristics of the other (see Exercise 5). Put another way, what we have here is a functional 

correspondence rather than a physiological correspondence. This is consistent with the basic 

question we are asking here, namely "What might constitute an 'average neuron' model?" To go 

beyond a mere functional correspondence and attempt to state these conclusions as proof of or 

evidence for physiological implications can only be called speculative. Remember, the "average 

neuron" is "as mythical an entity as the jack of spades."  

Papers in the neural network literature often invoke the notion of the average neuron, and 

speak of it as if to say, "If you take the arithmetic averages of the parameters of individual 

neurons, you will come up with a set of parameters describing behaviors that most of the neurons 

in a biological network will show." Whether an author means to leave this impression or not, the 

analysis conducted above should start to warn us away from this sort of thinking when our 

models are close to the mechanism level. This point will be further illustrated in the following 

section. In the present case, the problem of using a "one-size-fits-all" neuron model stems from 

the wide variance in the distribution of responses. The notion of a single "one-size-fits-all" 

average neuron is a notion owed to thinking about systems in terms of the Region-II paradigm we 

discussed in chapter 7. Large population variance is the deadly enemy of this kind of general 

systems thinking. The analysis just completed implies that capturing population dynamics in 

neural systems with any one "average" approximation model is not to be taken for granted.  

The reason one uses an approximation model, such as Wilson's model, to construct small 

neural netlets is to tie the behavior of the netlet back to its biological substratum. If this tie-back 

is made successfully, then netlet behaviors can be seen as having important implications for brain 

function. But if the tie-back is illusory, then study of the netlet constructed from these kinds of 

"average neurons" might yield interesting and important mathematical findings of 

neurodynamical interest, but the imputation that such a netlet really is a model for an actual 

biological system is illusory as well. This is why the question, "What is an 'average' neuron?" is 

such an important issue for biological signal processing and computational neuroscience. It is as 

important to know what conclusions one may not draw from one's model as it is to know what 

conclusions one may draw.  

When operating at any one "rung" on the modeling hierarchy "ladder" in neuroscience, it is a 

trivial if often tedious accomplishment to "torture your model's parameters until the model tells 

you what you want to hear." But what does it mean to say a model is "true"? The only objectively 

valid meaning science can have for the word "truth" is "congruence between the model and its 

object." Congruence, however, must be both "local" (found on the specific "rung" where one is 
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working) and also non-local (in the "rails" of the "ladder" connecting one rung to the next).  

The analysis just concluded above implies that the notion of the "average neuron" might not 

be so easy to define as one might have thought. However, this analysis by itself does not rule out 

the possibility that perhaps a suitably-chosen distribution of synaptic weight parameters, even a 

functional "phenomenological" one, could capture all the pesky variance seen in the population 

responses to single-event stimuli. We have been working against only a single experimental 

observable, the single-event EPSP, and it is perhaps clear to you that if we are free to choose any 

gmax value we wish, we can force our model to agree with any subthreshold EPSP response. 

Would this suffice to give us an average neuron? To explore this question, we must turn to other 

neuronal behaviors within the netlet environment.  

§ 1.2 Spatial Summation 

Another commonality shared by all neurons in vivo is that they sum synaptic currents arising 

from simultaneous activation of their synaptic channels and they integrate the channel current 

responses over time for successive synaptic events. In this section we will examine the first of 

these behaviors using the neuron models of Table I.  

We begin with spatial summation. A vector of action potential inputs converging on a single 

neuron within the same brief time period is called a volley, and the neuron's response to a volley 

is called its spatial summation response. Let nsyn denote the number of synapses receiving the 

volley. We shall examine the response of our six neuron models to widely-spaced volleys for nsyn 

values of 10, 20, 40, and 60. The simulation responses are shown in Figure 8.3 below.  

Action potential responses differ significantly among the neuron models. Cases A, C, D, E, 

and F all show one or more subthreshold responses for one or more of the volley stimulations. 

Only case B responds with action potentials for all volley strengths nsyn. The firing threshold for 

Wilson's RS-type neuron model is approximately –55 mV, which is approximately 20 mV above 

the resting potential of the model cell. In these simulations, as in those of the previous section, the 

excitatory synaptic channels are modeled by a g(β)-function with time constants of 0.162 and 3.0 

ms. By comparing the peaks of the subthreshold responses against the approximately –55 mV 

firing threshold of the Wilson model, one can see how closely the response for a subthreshold 

value of nsyn approaches the trigger point of the neuron. 

Mathematically, the test conditions for these simulations assigns the same value of gmax to 

each of the synapses of the neuron. This is obviously an "average synapse" assumption built into 

the simulation. If the different synapses are given a distribution of gmax values (by assigning a 

synaptic weight vector W as discussed in the earlier chapters),  nsyn ⋅ gmax  would correspond to the 
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Figure 8.3: Volley responses for the six neuron models defined in Table I. The gently-arcing transient visible 
in subthreshold cases C, E, and F is caused by an initial condition transient in the model. This non-steady-

state initial condition transient is less than 1 mV in range and does not affect whether or not an action 
potential response is generated during the test. 

weighted sum of all synaptic inputs from the volley.  

At first glance it might appear as if these response differences could likewise be accounted for 

by a phenomenological assignment, W, of synaptic weights. This is true to a first approximation. 

However, another interesting response property becomes evident through careful examination of 

the subthreshold volley responses. What we find is that the change in membrane voltage, ∆Vm, is 
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not a strictly linear function of nsyn ⋅ gmax. Rather, the peak subthreshold Vm response increases 

disproportionately faster as the firing threshold is approached. This property can also be seen 

quite clearly in the EPSP1 through EPSP3 responses in Table II. This property is actually observed 

in cortical cells (another success for Wilson's model). Abeles has dubbed this the coincidence 

advantage of synchronous signaling [ABEL1: 230-232]. The existence of coincidence advantage 

has led to a general interpretation that a principal functional role for cortical neurons is in acting 

as a coincidence detector in neural network systems [ABEL2]. Prior to the discovery of 

coincidence advantage, the neuron was generally looked upon as serving as a simple integrator in 

biological signal processing.  

Can coincidence advantage be functionally captured by a single neuron model with a suitably 

chosen synaptic weight distribution W for modeling the response variances demonstrated by 

figures 8.2 and 8.3? To find out, we must conduct an analysis of variance for the peak 

subthreshold responses with nsyn ⋅ gmax treated as an independent variable in the test. Analysis of 

variance (ANOVA) methods are standard tools in the application of statistics to experimental 

results, and a number of available statistics packages exist for carrying it out. For our present 

analysis, the easiest and most general of the available methods is based on linear regression 

models and is called "testing the mean-squared drop in the sum of squared errors" [OTT: 469-

485]. 

Table IV provides the test data from the spatial summation simulations above. The analysis 

factors for the ANOVA are nsyn ⋅ gmax/Cm and Cm, recalling that in Wilson's model synaptic 

conductances are scaled by the factor 1/Cm. (Note that we cannot analyze case B in this modeling 

experiment because all its responses produced action potentials). To carry out the ANOVA by the 

mean-squared drop method we form two regression models. The first, 

   ( ) ( )2max3max210 msynmsynmm CgnCgnCV ⋅⋅+⋅⋅+⋅+=∆ ββββ  

is called the "complete model" because it contains all the parameters we wish to test. The 

coefficients βi are model parameters obtained from a least-squares fit of the data. The β3 term is 

included in order to try to fit the coincidence advantage phenomenon. The significance of the 

parameters in the complete model are tested by setting their respective βi equal to zero, e.g., 

   ( ) ( )2max3max2 msynmsynm CgnCgnV ⋅⋅+⋅⋅=∆ ββ , 

and re-fitting the remaining parameters using a least-squares fit. The second model is called the 

"reduced model." The ANOVA consists of testing the significance of the change in the sum of 

squared errors between the complete model and the reduced model.  
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      TABLE IV: Subthreshold Membrane Response Data    

       Cm   ( )msyn Cgn max⋅     ∆Vm  
       (nF)   (nS/nF)      (mV)     

       0.09   11.11      8.79 
       0.51   1.96      1.29 
       0.51   3.92      2.65 
       0.51   7.84      6.00 
       0.51   11.76      10.45 
       0.51   5.88      4.29 
       0.51   11.76      10.39 
       1.97   0.508      0.32 
       1.97   1.105      0.66 
       1.97   2.03      1.35 
       1.97   3.046      2.06 
       1.97   1.523      0.98 
       1.97   3.046      1.99 
       1.97   6.091      4.41 
       1.97   9.137      7.29      

Carrying out a linear regression for the complete model, we obtain 

   ( ) ( )2maxmax
3 026.0557.0043.010244.1 msynmsynmm CgnCgnCV ⋅⋅+⋅⋅+⋅+⋅−=∆ −  

with a total sum of squared errors SSEc = 0.534 and mean-squared error MSEc = 0.0485. The 

regression fit has 11 degrees of freedom. Comparing the regression coefficients against the square 

root of the MSE (= 0.22) immediately suggests that the β0 term is probably negligible. Computing 

a reduced model with β0 = 0 and testing the change in the total SSE which results verifies this. 

We do not require the β0 term in the model. This same examination also suggests the β1 and β3 

terms might also be set to zero, leaving only the β2 term in the reduced model. However, when 

this is tested we find that the change in SSE is significant at the 0.05 level of statistical 

significance, which tells us that at least one of the terms β1 or β3 must be retained in the reduced 

model. Keeping the β3 term (and noting that 0.026 = 0.1612) results in a reduced model  

   ( ) ( )2maxmax 024.0582.0 msynmsynm CgnCgnV ⋅⋅+⋅⋅=∆ .        (8.2) 

The reduced sum of squared errors, SSEr for this model is 0.558. The mean-squared drop in the 

comparison of the reduced model to the complete model is MSdrop = (SSEr – SSEc)/2 = 0.012, 

where the 2 in the denominator of MSdrop is the degrees of freedom for this statistic (equal to the 

difference in the number of terms in each model). This change is not statistically significant, and 

so the conclusion is: the reduced model does not have a variance different from that of the 

complete model. The largest error term in the reduced model is –0.618 mV and occurs at the Cm = 

0.09 nF data point in Table IV. 

We can also test the hypothesis β1 ≠ 0 and β3 = 0. This is tantamount to making the hypothesis 
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that the neuron size (represented through Cm) is a separate factor in addition to synaptic strength 

factor nsyn⋅gmax/Cm. In this case, however, the change in SSE measured by the mean-squared drop 

statistic turns out to be significant at the 0.05 level of significance, and therefore this reduced 

model must be rejected.  

The conclusion drawn from this analysis is the following. The subthreshold stimulation 

response of the membrane voltage does not depend separately on neuron type (Cm) at least within 

the range of subthreshold responses examined in the simulations. (Because the largest ∆Vm in the 

data set is about half of what is required to trigger an AP, a cautious examination would add a few 

more stimulation test points to provide ∆Vm data closer to the trigger point, ∆Vm ≈ 20 mV). This 

means that the subthreshold responses can be obtained using a single neuron model, with the 

variability across the population taken into account by a distribution of "normalized" synaptic 

weight parameters nsyn⋅gmax/Cm. Thus, we are a step closer to being able to answer the original 

question, namely: Can the population of (in this case) pyramidal cells in a netlet be represented 

by a single "average" pyramidal cell with phenomenologically-chosen synaptic conductance 

parameters? So far, it looks like the answer is turning out to be "yes." However, we have one 

more behavior to examine before finalizing this conclusion. 

§ 1.3 Temporal Integration 

Temporal integration refers to the build-up of membrane potential in response to closely-

spaced volleys arriving sequentially in time, each of which alone would produce only a sub-

threshold membrane response. Because we have just tentatively concluded that we can capture 

the variability in neuron responses by a suitably-chosen synaptic weighting, let us examine the 

temporal integration responses of our six test case neuron models by choosing nsyn values that 

produce subthreshold responses. We will apply four successive volleys at a spacing of 5 ms 

between each volley and simulate the membrane voltage responses of our six neuron models. The 

test data is tabulated in Table V. 

Figure 8.4 illustrates the responses of the model neurons to the successive subthreshold 

volleys.  In all cases except case E, the volley stimulus is sufficient to produce an AP response on 

         TABLE V: Temporal Integration Test   

         Neuron Test Case    nsyn    

            A      10 
            B       3 
            C      60 
            D      20 
            E      60 
            F      60    
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Figure 8.4: Temporal integration responses for the six model neurons in response to subthreshold synaptic 
stimulation. 

the second volley. Integration action is clearly visible in all six test cases, but particularly so in 

case E. The absence of a second AP in response to the fourth volley is an indicator of the 

refractory behavior of the neuron model. It was noted in the chapter introducing the Wilson 

approximation model that Wilson's approximations remove the mechanisms responsible for the 

absolute refractory period characteristic of the neuron. The simulations shown above tell us that 

at least some relative refractory behavior is still maintained in the Wilson model if the stimulus is  
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Figure 8.5: Test case B when nsyn = 5. This stimulus is sufficient to produce an action potential at the first 
volley input. The neuron has sufficient refractory-like behavior to suppress a second AP for the volley 

occurring 5 ms later, but the model does produce a second AP upon receipt of the third volley. This 10 ms 
spacing between AP responses is somewhat faster than is physiological for most RS-type pyramidal cells. 

not too great. There are, however, limits to this. Figure 8.5 illustrates the temporal integration 

response for test case B when nsyn = 5 is used. At this level of stimulation, the model is capable of 

producing APs at a 10 ms spacing, which is somewhat faster than is physiologically realistic for 

most RS-type pyramidal cells.  

The principal lesson we learn from examining the temporal integration responses is the 

following. Our first two studies from the previous sections provided us with some confidence that 

it is realistic to represent a population of neurons (RS-type pyramidal cells in our present case) by 

means of one "average" neuron model with suitably chosen synaptic weight parameters. But of 

the six different model cases we have examined, is there a way to decide which of the three "size" 

models would best serve as the "average" neuron? The temporal integration simulations illustrate 

that "size matters" in the context of modeling functional microcircuits and netlets. The "small 

neuron" cases (A and B) also have small thresholds for nsyn, which acts as a limitation on the 

number of converging inputs from other model neurons that will be realistically represented by 

the model. In computer engineering language, Cm determines the fan-in property of the neuron 

model. Likewise, the "large neuron" cases (E and F) have a likewise large fan-in for nsyn. Thus, 

the functional selection of an average neuron model must be made within the context not only of 
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the neuron signaling type (RS-, FS-, IB-, or CB-type), but also within the context of the netlet 

model being considered. Because all the neuron models in a functional microcircuit or a netlet 

will be "average neurons" of one type or another, if the modeler wishes to tie the netlet model to 

an identifiable biological system, such as a cortical functional column, the population of 

biological neurons for which one average neuron acts as proxy determines in part the number of 

proxy neurons in the functional microcircuit or netlet. Thus the fan-in to be represented for each 

proxy is tied to the anatomical system it is to represent, and this in turn affects what one should 

select as the "size model" for the proxy neurons.  

To date there has been no general rule-of-thumb put forward to guide this selection process. 

Indeed, the number of proxy neurons used in functional microcircuit models often seems to be a 

rather arbitrary choice on the part of the modeler. We can, however, find a qualitative sort of 

consideration that ought to go into this decision. Is there any sort of "reference center point" that 

might usefully serve to "calibrate" this decision-making process? In the case of neocortical model 

networks, the answer is, "Yes, somewhat." It is provided by another of Abeles' ideas, which he 

calls the synchronous gain 50 (SG50) characteristic for cortical neurons [ABEL1-2]. 

SG50 is a parameter emerging from Abeles' 1982 statistical model of the integrative properties 

of the neuron. Its mathematical development is found in the original citations, but as a statistical 

parameter SG50 has a simple meaning. It is the inverse of the number of synchronous synaptic 

inputs required for a 50% probability of generating an action potential for an "average" synapse. 

Using model parameters in the physiological range found in neocortex, Abeles found the average 

value for SG50 to be 1/37 (37 synchronized inputs to produce an AP with 50% probability).  

Let us compare this statistic with the response of the Wilson RS-neuron using the "medium 

sized neuron" parameter value Cm = 0.51 nF with mid-range maximum conductance parameter 

gmax =  0.2 nS. Setting x = gmax/Cm = 0.392, nsyn = 1, and using our reduced model equation (8.2) 

from the previous section gives us 

  . mV23.0024.0582.0 2 =⋅+⋅≈∆ xxVm

This estimate is consistent with the most commonly observed experimental EPSP responses for 

neocortical and other pyramidal neurons and, likewise, agrees with the "average" cortical neuron 

single-event EPSP of 0.22 mV used by Abeles [ABEL1: 121-123]. The simulated Wilson RS-

type neuron response using these parameters returns a peak simulated EPSP of 0.255 mV, which 

is in quite good agreement with both Abeles' "typical" model values and with laboratory results. 

Unfortunately, we cannot trust our reduced model formula to estimate the nsyn required to 

evoke an AP response. This is because an AP requires ∆Vm ≈ 20 mV for Wilson's model, and this 
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value is well outside the range of values used in finding our reduced model curve fit expression. 

(Regression models break down outside the parametric range from which they are determined). 

Setting x = nsyn⋅gmax/Cm with nsyn = 37 gives us x = 14.5 and ∆Vm ≈ 13.5 mV. As it happens to turn 

out, the Wilson simulation agrees fairly precisely with this value even though it is outside the 

range of the parameters for our reduced model formula. However, setting ∆Vm = 20 mV and 

solving for the required value of x tells us we must have x = 19.1855, which implies nsyn = 48.9. 

Simulations demonstrate that the AP can be evoked for much smaller values of nsyn. For the 

neuron at steady-state at its resting potential, simulation results show that the fractional value nsyn 

= 39.17 produces ∆Vm ≈ 20 mV, and APs are evoked for higher values of nsyn. The curve fit 

model, in contrast, predicts ∆Vm ≈ 14.6 mV for nsyn = 39.17. This tells us that the fit rather badly 

underestimates the coincidence advantage near the neuron's firing threshold. To obtain an 

improved reduced model curve fit expression, one must simulate additional data points and re-fit, 

possibly adding a cubic term, x3, to the curve-fit expression to boost its prediction of coincidence 

advantage near firing threshold (see Exercise 8).  

If we take nsyn = 39.18 to represent a kind of statistical measure for SG50, we obtain a 

simulation value for SG50 of SG50 = 1/39.18 = 0.0255, compared to Abeles' value of 0.0270. 

The simulation result is therefore about 5.5% different than the value coming out of Abeles' 

statistical model. Given the variances in neural systems we have been discussing, this is 

reasonably good agreement. The conclusion to be drawn from this exercise is the following: The 

"medium-sized neuron" model (gmax = 0.2 nS; Cm = 0.51 nF) appears to represent a reasonable 

best choice for a base "average neuron" model to serve as proxy in functional microcircuit models 

of neocortex. Thus, at least for the case of neocortical pyramidal cells of the RS-type, we have 

finally completed our first objective for this chapter, which was to determine how one can define 

an "average neuron" proxy with physiological validity.  

A moment's reflection will raise a rather obvious question pertaining to what we have just 

seen. Abeles' SG50 parameter is statistical and it carries the qualifying statement that the number 

of synchronized synaptic inputs it imputes has only a 50% chance of evoking an AP. The Wilson 

model, on the other hand, is not a stochastic model. Wouldn't its "SG50" nsyn evoke an AP every 

time?  

The answer to this question is, "no." The reason lies with the qualifying phrase used above, 

namely, " for the neuron at steady-state at its resting potential." The nsyn value of 39.18 is a value 

just sufficient to reach the AP firing threshold when the neuron is at rest. Figure 8.6 illustrates 

what happens when this "at rest" condition is violated even slightly. The first stimulus arrives at t 
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Figure 8.6: Response of the average RS-type neuron model to stimulations with nsyn = 39.18 spaced at 150 
ms intervals. At the first stimulus the neuron is in its steady-state resting condition. The EPSP at the second 

stimulus reflects the very slight change from equilibrium produced by the aftereffects of the first AP. 

= 175 ms with nsyn = 39.18. The wide, slow base of the action potential is typical for a stimulus 

that just barely reaches the firing threshold. The second stimulus, arriving 150 ms later, sees a 

neuronal state that has not quite returned to the rest condition (a relative refractory period effect). 

Even though the volley bombardment rate is only 6.67 Hz, the peak EPSP for the second stimulus 

reaches only about –60 mV (equivalent to an nsyn of about 37 for the neuron completely at rest). 

This means the coincidence advantage is a strong function of the neuron's state for stimuli in the 

vicinity of the firing threshold. 

This phenomenon is one of the characteristics of cortical neurons Abeles studied with his 

statistical model. Indeed, variations about the steady-state condition of the neuron is a principal 

component of Abeles' statistical model and is why SG50 is defined in the way it is. This effect is 

further illustrated in Figure 8.7 below. The neuron receives three volleys with nsyn = 15, 38, and 

39.18, respectively, at t = 175, 200, and 325 ms, respectively. 

When the neuron is at rest in the steady-state, nsyn = 38 would be insufficient to evoke an 

action potential response. In this case, however, it does suffice even though the second volley is a 

full 50 ms later than the mild first volley. Examination of the figure reveals that Vm has actually 

returned to, and perhaps is even slightly below, its resting level at the time the second volley is 

applied. Looks, however, are deceiving in this case. Although Vm appears to have returned to its 

initial value before the second volley arrives, the voltage-gated channels have not returned to 

their respective resting conditions.  The neuron sensitivity to stimulation is, accordingly, different 
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Figure 8.7: Illustration of effects of neuron state on coincidence advantage. The neuron receives three 
volleys of nsyn = 15, 38, and 39.18 at t = 175, 200, and 325 ms, respectively. Normally nsyn = 38 is insufficient 
to evoke an AP in the neuron at rest, but in this case the residual effect on the neuron's state due to the first 

volley makes nsyn = 38 sufficient to trigger an AP. 

when the second volley arrives and produces an AP even though nsyn = 38 is less than that 

implicated by our "SG50 value" for nsyn = 39.18. We may also observe that the third volley, 

which is "at the SG50 value," fails to evoke an AP response.  

When modeling functional microcircuits by means of proxy neuron models, the modeler must 

bear considerations of these nonlinear dynamics in mind for designing targeted fan-in properties 

in the proxy model. AP triggering is more dependent on the state of the underlying VGCs than it 

is on merely the membrane potential or nsyn. Coincidence advantage is more of a statistical than a 

mechanistic characterization of neuronal response.  

§ 2. Proxy Neuron Mimic Models 

The discussions in §1 remained very closely focused on maintaining a linkage between the 

proxy model and physiology in its use of Wilson's approximation model. We have seen that for at 

least the case of RS-type pyramidal cells of the neocortex, Wilson's model proves to be 

impressively accurate across an impressively large scope of neuronal behaviors it can 

successfully exhibit. Unfortunately, the Wilson approximation model does suffer the drawback of 

being computationally expensive, and this limits our ability to use it efficiently above the level of 

functional microcircuit modeling of neural netlets.  

To proceed further – say to the level of functional minicolumn modeling – we need a practical 
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method to overcome the "Square Law of Computation" limits for the Wilson model. To ascend to 

this next rung in the modeling hierarchy of computational neuroscience and biological signal 

processing, we turn to the mimic models. Of the two principal mimic model schemas presently 

favored in active research (Izhikevich's schema and Rulkov's map schema), we will consider only 

Rulkov's schema. This is because its per-iteration computational cost is comparable to that of the 

Izhikevich schema but its ∆t (0.495 ms) is much larger than the practical limit needed for the 

Izhikevich schema (0.01 ms) using Euler's method. It therefore achieves a nearly 50-fold 

computational cost advantage over differential equation based mimic models.  

At the time this is being written, the Rulkov schema is still quite newly arrived on the scene. 

Consequently, our science has not yet had very much time in which to give proper consideration 

to how to best use this exciting new modeling schema, nor to develop the sort of research 

programs needed to establish and ensure its linkages with its lower neighboring rung on the 

modeling ladder (that of the approximation models). For this reason, the discussion in this section 

is considerably more qualitative than was the discussion given Wilson's model in §1. 

In §3 we will be introducing even more abstract functional models for neuron population 

proxies, and so one pertinent question to raise in this section is: Why bother with this 

intermediate level of abstraction in neuron proxy modeling? Why not just jump ahead to the 

models in the next section? As you might by now suspect, the answer is: linkage. The models we 

will be discussing later are older than Rulkov's model, and they are very widely used in neural 

network research. However, the very nature of the abstractions employed in them quite 

effectively severs the direct link between them and physiology.  

The neuronal world is a world filled with marvelous diversity: neurons with regular-spiking 

responses, neurons with fast-spiking and non-accommodating responses, neurons with bursting 

responses, and so on. The obvious question – and a question that as of yet has not been clearly 

settled at the present state of our science – is: What does this marvelous signal processing 

diversity "do" for the animal whose nervous system possesses it? One can argue – and this often 

is argued – that there must be some important evolutionary advantage gained from this diversity. 

We are still very far from having a clear understanding of what this advantage or advantages 

might be. 

But there is another attendant question. We do not even know for a fact that such a putative 

advantage exists. Evolutionary changes that result in varieties and species are brought about by 

gene mutations. Many of these mutations are disadvantageous rather than advantageous (when 

other environmental factors are more or less constant), and some few are advantageous. However, 

these very same genetic mutation mechanisms also produce neutral variations –  variations that 
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bring no survival advantages or disadvantages whatsoever. The genetic mutation that gives rise to 

the individuality of fingerprints is one example of this. The success of one's Cro-Magnon 

ancestors can hardly have been due even in the tiniest part to the individuality of fingerprints; the 

extinction of the Neanderthals could hardly have been due to the individuality of fingerprints 

(assuming that in Neanderthals this individuality did in fact exist) or to its lack (if Neanderthals 

did not have this trait; no one knows whether or not they did).  

Are a few, many, most, or even all the varieties in neuronal signaling types functionally 

advantageous? Most neuroscientists assume that at least some of them are (but which ones?), yet 

the fact is we do not actually know for sure. Your author is inclined to think this variety is 

probably very, very important, but this is just a speculation on his part. He has no convincing 

evidence, yet, to back up his opinion. It is an area of computational neuroscience research that is 

queerly lacking in research investment.  

Of course, such an investment in research time and effort has only recently become practically 

feasible. The Rulkov model is the development that makes it practical.  

In its brief time on the computational neuroscience stage, Rulkov's mimic model has already 

been used to construct impressively large crystalline neural network models, comprised of up to 

hundreds of thousands of Rulkov proxy neurons. However, and this is not really a criticism of the 

work done to date, the network models that have so impressively demonstrated the computational 

power of the Rulkov schema are of more mathematical than biological interest. The crystalline 

neural network structures so far reported are very crystal-like in the sense that they are step-and-

repeat structures with no identified biological model of what they supposed to represent. Some 

very tantalizing phenomena have emerged from these mathematical constructions – e.g. the 

finding of an interesting emergent wave propagation property that only shows up in simulation 

when the network exceeds a certain large number of neurons in its matrix [RULK1].  

There is no shortage of fascinating research questions for the mathematics of nonlinear neuro-

dynamics. There cannot be all that much doubt that the Rulkov neuron models will eventually 

prove to be important contributors to this research. There can be almost no doubt at all that some 

yet-to-be-reported mathematical discovery will one day prove to be an epic, groundbreaking 

discovery for the advancement of neuroscience. Yet all of this remains merely Platonic if it is not 

accompanied by research that forges the linkage between mimic-based netlets and neural 

physiology and anatomy. This, too, is a difficult and challenging research area, and we must scout 

out how this particular trail might be blazed.  

As an illustration of why the question of neuron firing-type is at issue, let us look at a 

comparison of RS-  and IB- type neuron responses for volley stimulation and co-localized NMDA  
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Figure 8.8: Comparisons of RS-type and IB3-type firing patterns for co-localized AMPA and NMDA channel 
synapses. (A) RS-type neuron with nsyn = 50 volley inputs. (B) IB3-type neuron with nsyn = 50 volley inputs. 

(C) RS-type neuron with nsyn = 100 volley inputs. (D) IB3-type neuron with nsyn = 100 volley inputs. 

and AMPA channels present in the excitatory synapses. Co-localization of NMDA and AMPA 

channels is common in cortical neurons, although the ratio of NMDA to AMPA channels within a 

synapse is highly variable, ranging from NMDA-dominated synapses to AMPA-dominated 

synapses. Recall that NMDA channels are glutamate-enabled/membrane voltage activated 

channels. Thus, they contribute very little current flow until Vm is depolarized to about –50 mV. 

IB-type neurons [McCO2] are found mainly in neocortex layers IV and V (along with RS-type 

neurons). The layer V IB-type pyramidal cells, like the RS-type pyramidal cells, make long 

distance white-matter projections to many different cortical and subcortical targets. Thus, both 

neuron types play an "output neuron" role in the functional column architecture of the neocortex. 

For this reason, any differences found in the firing patterns they produce in response to synaptic 

stimulation is clearly of interest for understanding neural network functioning.  

It is now known that intrinsic bursting neurons come in a wide variety bursting responses. 

McCormick et al. noted, 

 The vigor with which neurons could burst was quite variable. . . These data suggest that there is 
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actually a continuous distribution of spiking modes among pyramidal neurons. The molecular 
mechanisms underlying the burst mode may thus be expressed in various degrees in cells with 
similar somadendritic structure. The distinct laminar distribution of bursting cells may imply that 
this trait is determined at an early stage of cortical development, since the laminar position of a 
neocortical cell is strongly determined by its birth date [McCO2]. 

The burst characteristics for the IB-cells found by McCormick et al. [McCO2], [GRAY1] are not 

particularly well matched by either Wilson's IB1 or IB2 model parameters. A fairly reasonable 

match can be obtained by modifying several of the model parameters. We will call this modified 

model the IB3-cell. Its unique parameters (in scaled units, as presented in chapter 6) are: τT = 9, 

τH = 17, τR = 5.7 (all in ms), gT = 1.5, and gH = 2.4. These parameters were used for the 

simulation. 

The Wilson model simulations are shown in Figure 8.8. The synaptic gmax is 0.2 nS for both 

the AMPA and NMDA channels. The AMPA channel time constants are τ1 = 0.162 ms, τ2 = 3.0 

ms (which is the same as was used in §1 earlier). Cm = 0.51 nF for the RS-type neuron and 0.53 

for the IB3-type neuron. The NMDA time constants are τ1 = 3.0 ms and τ2 = 40.0 ms. The 

NMDA channel model is the modified g(β)-function described in chapter 4. Figures 8.8A and C 

are the RS-type responses; figures 8.8B and D are the IB3-type responses. Figures 8.8A and B are 

responses with nsyn = 50. Figures 8.8C and D are responses with nsyn = 100.  

Comparing figures 8.8A and B, the first thing to note is the marked difference in output firing 

rates and patterns. Although both neurons receive an identical volley tetanus with an incoming 

firing rate of 20 Hz, the RS-type neuron response is a "divide by two" response producing an 

output firing rate of 10 Hz. In contrast, the IB3-type cell responds to all four volleys in a "relay-

like" mode. When nsyn is increased to 100 for the input tetanus (figures 8.8C and D), the two 

output responses are altogether different. The RS-type neuron is able to "follow" the input tetanus 

in this case, passing along one AP spike for each volley input. The IB3-type neuron, on the other 

hand, responds to the first and third volleys with a two-spike burst, and responds to the second 

and fourth volleys with a single AP spike.  

This very interesting contrast in neuron behaviors suggests the possibility that the two neuron 

types, working in concert and projecting to the same target areas, might be viewed as constituting 

a very sophisticated encoding system based on the intensity (and frequency) of the input tetanus. 

There is a fairly wide range, between nsyn = 50 and nsyn = 90, over which the IB3-cell does not 

burst, whereas by nsyn = 75 the RS-cell is following the input volleys in "relay" fashion. At nsyn = 

40 the IB3 response is similar to figure 8.8A. In comparison, the RS-type neuron responds with 

only a single spike for nsyn = 40. It would appear, then, that the two neuron types encode the 

strength and the firing rate of the volley stimulus over fairly broad ranges of values, and represent 
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this encoding in the firing patterns they produce in response. The two neural responses, taken 

jointly, therefore appear to be capable of classifying the nature of their stimuli into different sets 

of stimulus conditions that are identifiable by looking at the spiking patterns of the neuron pair.  

A scientific question of long-standing interest to computational neuroscience – one might 

almost call it the "holy grail" of the field – is the question of how the brain encodes the 

information that its neurons process. Historically, the two most-pursued hypotheses for "the 

neural code" have been the firing rate hypothesis ("information is carried by the firing rate") and 

the synchronized signaling hypothesis ("information is carried in vector form by the synchronized 

firing of specific 'feature fragment' netlets"). The firing-rate hypothesis was first proposed by von 

Neumann in the 1950s, and the thinking in regard to this hypothesis has always born a very 

noticeable analogy to the frequency-modulation methods of communication system theory. The 

synchronized-signaling hypothesis is one of the major cornerstones of Malsburg's correlation 

theory of brain function, and it presently is commanding a great deal of attention from both 

physiologists and neural network theorists. It is an hypothesis closely tied to the research interest 

in activity-wave propagation through neural networks, e.g. [RULK1].  

Both these long-standing hypotheses owe much of their justification to the habit of thinking of 

network models in terms of the traditional, one-size-fits-all proxy neuron presupposition 

generally used in neuroscience for many years. However, the example just given suggests that it 

might be the case where "the neural code" follows a much more complicated and elegant plan. 

Does the coexistence of RS- and IB- type neurons in the primary output layer of the neocortex 

mean that information is being coded for transmission by an encoding scheme such as the one 

conjectured here? We do not know. Clearly the possibility exists in principle. The only way to 

find out is to study it with neural netlet and network models capable of dealing with this sort of 

signaling behavior. Almost no work, either mathematical or physiological, has to date been 

widely reported which addresses this question.  

This brings us around to the role for mimic models in netlet modeling. If in fact there is an 

information encoding system operating in neural networks according to the diversity of firing 

patterns possible with differently-responding neuron signaling types, a root question is: How 

much information can such an encoding scheme represent? We find ourselves here at that fine 

gossamer boundary that separates "signal processing" from "information processing." It is good to 

recall Weaver's comment from chapter 1 that, "information relates not so much to what you do 

say, as to what you could say." Referring to our example above, the classification-encoding 

scheme (if that is what it is) made possible in principle by this pair of cortical output cells would 

be a rough classification indeed. There is a range of stimulus intensity, from approximately nsyn = 
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65 to nsyn = 90 at the tetanus rate of 20 pulses per second, where the joint output patterns of the 

RS- and IB3- cells do not change. Thus, at this tetanus frequency, there is a fairly wide range of 

stimulus activity levels that are "all the same to the output neurons." If different levels of stimulus 

activity within this range do in fact represent "different messages" for the neural system to 

process, then the encoding capability of just our two pyramidal cells is information lossy, i.e. 

information being presented to them is not passed on to other cell groups.  

Information loss is not necessarily a bad thing. Information theory's technical definition of 

information loss, in non-mathematical language, merely says "if you can't tell what the original 

information at the source was from the signals you receive, information loss has occurred." Under 

information theory's definition, the adder used in a computer is an information-lossy device 

because if its output is "7" you cannot tell if its input was "3 + 4" or "6 + 1" or etc. The adder 

inside a computer is useful precisely because it is information lossy in a very specific way.  

A neural network that always exhibits the same response to a wide variety of different stimuli 

is said to have a stereotyped response. The wider the variety of stimuli that evokes the same 

response, the more stereotyped the neural network is said to be. The more stereotyped is a neural 

network, the more information lossy it will be. Some parts of the central nervous system, e.g. the 

brain stem and many of the neural reflex circuits of the ventral horn of the spinal cord, are 

regarded as being highly stereotyped. This suits the specific and specialized nature of their 

functions. Other parts of the brain, e.g. the cerebral hemispheres, are wondrously diverse in their 

responses – the functional opposite of being stereotyped. This is both blessing and puzzle for us 

as human beings. William James wrote,  

The dilemma in regard to the nervous system seems, in short, to be of the following kind. We 
may construct one which will react infallibly and certainly, but it will then be capable of reacting 
to very few changes in the environment – it will fail to be adapted to all the rest. We may, on the 
other hand, construct a nervous system potentially adapted to respond to an infinite variety of 
minute features in the situation; but its fallibility will then be as great as its elaboration. We can 
never be sure that its equilibrium will be upset in the appropriate direction. In short, a high brain 
may do many things, and may do each of them at a very slight hint. But its hair-trigger 
organization makes of it a happy-go-lucky, hit-or-miss affair. It is as likely to do the crazy as the 
sane thing at any given moment. A low brain does few things, and in doing them perfectly 
forfeits all other use. The performances of a high brain are like dice thrown forever on a table. 
Unless they be loaded, what chance is there that the highest number will turn up oftener than the 
lowest? [JAME, vol. I: 140].  

Can a "high brain" emerge as the consequence of vast numbers of interacting "low brain" 

neural netlets? Artificial intelligence and neural network pioneer Marvin Minsky thinks so:  

 We think the difference in abilities comes from the fact that a brain is not a single, uniformly 
structured network. Instead, each brain contains hundreds of different types of machines, 
interconnected in specific ways which predestine that brain to become a large, diverse society of 
partially specialized agencies. . . Why did our brains evolve so as to contain so many specialized 

229 



Chapter 8: Netlet and Population Modeling 

parts? Could not a single, uniform network learn to structure itself into divisions with 
appropriate architectures and processes? We think this would be impractical because of the 
problem of representing knowledge. In order for a machine to learn to recognize or perform X, 
be it a pattern or a process, that machine must in one sense or another learn to represent or 
embody X. Doing that efficiently must exploit some happy triadic relationship between the 
structure of X, the learning procedure, and the initial architecture of the network. It makes no 
sense to seek the "best" network architecture or learning procedure because it makes no sense to 
say that any network is efficient by itself; that makes sense only in the context of some class of 
problems to be solved. Different kinds of networks lend themselves best to different kinds of 
representations and to different sorts of generalizations. This means that the study of networks in 
general must include attempts, like those in this book, to classify problems and learning 
processes; but it must also include attempts to classify the network architectures [MINS: 273-
274]. 

A computer's adder cannot function as its instruction decoder. Complex systems tend to be 

systems comprised of multiple "specialist" functions, and from a purely mathematical point of 

view such specialization often depends on the ability to classify multiple different input 

conditions into a smaller set of outcomes; and this is what the word "generalization" in neural 

network theory actually means.  

However, it seems almost self-evident that Minsky's "hundreds of different types of machines" 

is something of an underestimation. If, as James' and Minsky's comments imply, high brain 

behavior involves the cooperative efforts of a legion of specialist netlets and networks, it is clear 

that developing a functional understanding of such a brain organization must involve the study of 

increasingly complex and interacting neural assemblies with increasingly large numbers of 

neurons. It does not take very long for Weinberg's Square Law of Computation to overwhelm the 

ability to model netlets and functional columns using approximation models such as Wilson's.  

But to push back the onset of our computational limitations and yet retain the needed linkage 

to real biological function, it is necessary that mimic models, such as Rulkov's, must be 

calibrated not only against those approximation models at the neuron level, but against netlet 

architectures that are adequately representative of the biological substrate. Functional biological 

phenomena, not merely biological "plausibility," must be the standard of comparison. This cannot 

be demonstrated using the traditional "one-size-fits-all" proxy approach until and unless it is first 

shown that this highly abstract level of representation actually does correspond to outcomes 

emerging from intercourse among more minute biological signal processing netlets.  

Chapter 6 provided Rulkov parameters for an RS-, FS-, and one type of IB- class neuron 

model. In view of what has just been said about the need to match Rulkov neuron responses 

against a physiological standard and the need to go beyond the "one-size-fits-all" approach to 

netlet modeling, one can anticipate that a broader suite of Rulkov model parameters is likely to be 

necessary. The discussion of Rulkov neurodynamics in chapter 6 provides some guidance for 

carrying out the calibration process, but no general "design procedure" has yet been presented. 
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Clearly, this rhetoric is more of a "go west, young man" type of dictum than a specific recipe 

for how one develops a practical research program. But, at the present state of knowledge, this 

vague theme is perhaps about the best one can do in advance of more specific findings – not from 

crystal networks involving hundreds of thousands of cells, but from less lofty explorations of 

netlet architectures capable of predicting effects the anatomists and physiologists can test in their 

laboratories. At the very dawn of what came to be known as "the Age of Reason," Francis Bacon 

wrote,  

19. There are and can exist but two ways of investigating and discovering the truth. The one 
hurries on rapidly from the senses and particulars to the most general axioms, and from them, as 
principles and their supposed indisputable truth, derives and discovers the intermediate axioms. 
This is the way now in use. The other constructs its axioms from the senses and particulars, by 
ascending continually and gradually, till it finally arrives at the most general axioms, which is 
the true but unattempted way. 

22. Each of these two ways begins from the senses and particulars, and ends in the greatest 
generalities. But they are immeasurably different; for the one merely touches cursorily the limits 
of experiment and particulars, whilst the other runs duly and regularly through them; the one at 
the very outset lays down some abstract and useless generalities, the other gradually rises to 
those principles which are really the most common in nature.  

104. Nor can we suffer the understanding to jump and fly from particulars to remote and most 
general axioms . . . and thus prove and make out their intermediate axioms according to the 
supposed unshaken truth of the former. This, however, has always been done to the present time 
from the natural bent of the understanding, educated to, and accustomed to, this very method by 
the syllogistic mode of demonstration. But we can then only augur well for the sciences, when 
the ascent shall proceed by a true scale and successive steps, without interruption or breach, 
from particulars to the lesser axioms, thence to the intermediate (rising one above the other), 
and, lastly, to the most general. For the lowest axioms differ but little from bare experiments; the 
highest and most general (as they are esteemed at present), are notional, abstract, and of no real 
weight. The intermediate are true, solid, full of life, and upon them depend the business and 
fortune of mankind; beyond these are the really general, but not abstract, axioms, which are truly 
limited by the intermediate. 

 We must not then add wings, but rather lead and ballast to the understanding, to prevent its 
jumping or flying, which has not yet been done; but whenever this takes place, we may entertain 
greater hopes of the sciences [BACO: 108, 128].  

This is still as good a bit of advice today as it was in 1620.1 Let us follow it and add some ballast 

to our discussion.  

In chapter 7 the idea of the functional microcircuit model was introduced by means of the 

example provided by Douglas and Martin. Using a handful of approximation neuron models, each 

said to represent a whole population of neurons, they were able to successfully imitate certain 

features of neocortical response to particular patterns of thalamic inputs. Without prejudice to the 

                                                 
1 Bacon himself made no important scientific discoveries, but he performed an even more valuable service 
as a sort of Field Marshal who issued the call to science and the rejection of authoritarianism in the 17th 
century. Although it is not widely remembered today, the founding of the Royal Society was inspired by 
another of Bacon's books, New Atlantis. 
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real accomplishments of this model, let us look at some of the things this model did not achieve. 

The model did not address cortico-cortical afferents (inputs coming in from elsewhere in the neo-

cortex). The model did not simulate all the phenomena of interest to Douglas and Martin using 

one single neural netlet structure (cf. figures 7.4 and 7.5). It was not very specific in modeling 

the interactions between neighboring chain links of cortex even within the one functional micro-

circuit, and it did not at all model interactions between adjacent functional microcircuits or 

adjacent functional minicolumns (refer to figure 7.5).  

In fairness to Douglas and Martin, most of the general (if not overly specific) interconnection 

pathways in neocortex (figure 7.2) were not known in 1991. They did what could be done at that 

time. However, as the saying goes, that was then and this is now. If we still do not possess 

complete detailed knowledge of cortical (or thalamical, or hippocampal, or cerebellar, or etc.) 

anatomy and physiology, we do know much, much more than was known in 1991, and the power 

of our computational resources today is tremendously greater than it was then. What shall we do 

with all this knowledge and computational capability? 

Douglas and Martin provide us with an example to follow, namely in the idea of using 

physiological (approximation) models to represent well defined, small functional microcircuits. 

General estimates are available for making approximate determinations of general organizational 

features of some specific cortical regions, e.g. [ABEL1: 50, 53, 59], [GIBS], [SCHÜ]. We also 

know a few details about what sort of neuron-type to neuron-type connections are factually 

present in cortex, e.g. [WHIT: 81]. From these we can at least begin to explore what sort of signal 

processing modalities are likely to exist in various netlet structures, based on approximation 

models and with recourse to anatomical and physiological findings whenever these are available.  

We also have, from above, a speculation on what sort of signaling characteristics we might 

expect to be phenomena of interest – namely set classifications with stereotyped responses. (A 

small microcircuit most likely cannot do very much by itself). Simple classifier and logic function 

problems were the first signal processing tasks studied by neural network theory in its infancy 

half a century ago, and they are tasks neural networks do very well. The issue, of course, is "what 

sort of things are to be classified?" What we can do now, that the pioneers back then were in no 

position to do, is: classify according to signaling patterns more accurately representative of the 

physiology of real cortex.  

Except for the bothersome amount of detail this task entails, this might seem a trite thing to 

spend one's time on. As was said, classifiers and classifier theory have been around since the 

early days of the science. But, and this is a point not to be under-appreciated, classification is the 

first and most elementary step in understanding mathematical structure. The three most basic 
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structures of pure mathematics – algebraic structure, order structure, and topological structure – 

all must presume a classification structure at the first step. To understand this, one must first 

know that modern mathematics is based on set theory. But a set is nothing other than a 

classification, a subset nothing other than a sub-classification. To understand neural classifiers is 

to better understand how to develop mathematical descriptions of neuronal function.  

Functional microcircuit classifiers are likely to be pretty elemental and limited in capability. If 

we liken a neuron to a single "logic gate" (borrowing from the language of computer engineers), a 

functional microcircuit modeled with approximation neuron models is likely to rise no higher 

than the level of a "medium scale" function (analogous to a basic adder). The limitation here is 

simply the cost of computing. To go beyond this, to explore the nature of interactions among 

such circuits in a functional column (Minsky's "different types of machines") we must be able to 

put many such functional microcircuits together in a larger system. This is the real significance of 

efficient mimic models such as Rulkov's. The mimic model enables us to put together functional 

microcircuits to form larger functional netlets, just as the "medium scale logic circuit" lets the 

computer engineer put together functionally useful computing subsystems. This, however, does 

presume that the mimic netlets correctly reproduce the behaviors of the approximation-model 

functional microcircuits and correctly account for the interactions among them. We must not 

merely assume they do so; we must demonstrate they do so.  

This is the research in pursuit of Bacon's movement "from the lesser axioms to the 

intermediate axioms." Through this work we find the promising potential for building up a 

"library" of functional microcircuit modules, which then in turn can support even more complex 

neural netlets at the next rung up the ladder. Equally important, the functions held in this library 

will unavoidably pose new questions for the anatomists and physiologists to pursue. In a manner 

of speaking, the computational theorist will be able to walk down the hall to his colleagues in the 

biological arm of the science and say, "My model says such-and-such. Can you look to see if 

that's true, please?" Neural network theory is thereby made predictive rather than merely 

descriptive, and this is what every proper science should strive to be. There is no more fertile and 

untilled research territory in all of computational neuroscience than this today.  

§ 3. Spiking Population Proxy Models 

As we move up to the next rung of the modeling ladder, one can expect to encounter a new 

limitation – different in kind from Weinberg's Square Law of Computation limit – which may 

well prove to be more of a limiting factor than computational horsepower. Rulkov et al. have 

already successfully demonstrated that simulating large "crystal" neural networks containing 
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hundreds of thousands of mimic neurons is both possible and practical right now. It is one thing 

to stand and watch the intricate and beautiful activity patterns these networks show themselves 

capable of producing, and to appreciate the unexpected novel features these displays reveal. It is 

quite another thing altogether to understand what these behaviors mean and what the model has 

to tell us. Without comprehension of function, we can no more claim a scientific understanding of 

brain theory than the ancient Egyptian surveyors could claim to understand geometry.  

§ 3.1 Populations and Local Functions 

The great difficulty in understanding network function stems from this: The great majority of 

neurons in the brain have no direct contact with either sensory inputs or motor outputs. This 

makes it very, very difficult to understand what precisely is the functional role of most small 

regions of neurons in central systems. For some time now, much research attention has been 

focused on the phenomenon of activity wave propagation in one- and two-dimensional chains of 

crystalline neural network structures. An activity wave is a somewhat abstract concept, but in its 

simplest examples it is merely the totality of more or less synchronized neuron output activities 

across some smaller region of the network. The regions exhibiting firing activity move from one 

place to another in a more or less continual fashion reminiscent of waves rippling across a pond. 

Simulations of activity wave behavior in crystal-like neural networks typically focus on just the 

activities of the excitatory neurons, although the networks themselves usually also contain local 

inhibitory neurons as well. (We do not have evidence of inhibitory activity wave propagation, 

except as a localized response to propagating excitatory signaling).  

What the spatial extent and functional significance of activity wave propagation may be is far 

from certain at present. We know that activity waves do exist in neocortex, and we do know they 

propagate for some distance, although how far this distance extends is less certain. Evidence 

suggests the propagation distance may not be very far (on the order of a few millimeters across 

the surface of the cortex). What the functional significance of these waves may be – and even the 

issue of whether there is any functional significance to them at all – is currently still somewhat 

controversial. Not the least of the factors involved in this controversy is due to the non-

anatomical nature of the crystal-like neural networks used to study the mathematical properties of 

activity wave propagation. Neural network theorists have their reasons for selecting the one- and 

two-dimensional chain models they use, of course. But these reasons usually do not impress 

neurobiologists, who demand to know what any of this has to do with real networks and ignore 

the mathematical findings if the network theorists cannot answer this question to their 

satisfaction.  
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One reasonable question that can be asked in regard to any crystal-like chain model of neural 

networks is, "Chains of what? What are the links in the chain supposed to represent?" The usual 

answer is, "activity levels of the local neural population." But this is a rather vague answer and is 

difficult to connect to the idea that a "local population" has some "local function." How might this 

question be more specifically addressed?  

There is reason to think local neuron populations do perform some kind of local function or 

functions. (It is pointless to ask what the local function is unless one thinks there is local 

function). The reason par excellence to think so is the documented existence of functional 

columns in the neocortex across a wide range of mammalian species. White tell us,  

Coexisting with the horizontal, laminar aspect of cortical organization is a vertical one 
envisioned by Lorente de Nó (1938) to consist of chains of interconnected neurons extending 
across all layers of the cortex. Confirmation of the notion that the cerebral cortex has a distinct 
vertical aspect to its organization was provided subsequently by the observation of functional 
columns in both sensory and motor areas . . . Functional columns, demonstrated initially by 
electrophysiological methods, are composed, in sensory areas, of neurons that share similar 
response properties. . . Columnar arrangements also have been identified in motor cortex where 
stimulation of discrete groups of neurons causes specific muscles to contract. . .  

 These efforts have resulted in the following discoveries: (1) Functional columns in many areas 
of the cerebral cortex may be shaped more like bands or slabs than like columns; (2) columnar 
arrangements based on the distribution of afferent fibers are a general feature of cortical 
organization; and (3) in most instances, clear structural correlates for functional columns have 
yet to be identified [WHIT: 12-13]. 

Two important attributes of functional columns are the fact that they are populations that 

respond to the same or almost the same set of afferent inputs, and these populations project their 

responses to the same or almost the same set of target populations. These two attributes certainly 

suggest some kind of "input-output" organization of local cell populations, and any relationship 

between input signals they receive and output signals they produce would be, by definition, the 

mathematical function or functions of that population. A system theorist is obliged to think that 

where one finds a mathematical function, there must also be some sort of biological function 

underpinned by it. To understand the latter, we must first figure out the former. 

Is there any common enough architectural "theme" we can exploit in pursuit of obtaining an 

improved understanding of population function? Many neurobiologists think there is, at least 

insofar as specific regions (neocortex, hippocampus, cerebellum, etc.) are concerned. (The 

functional organization almost certainly differs between brain regions, e.g. neocortex architecture 

differs from cerebellar architecture). Of course, the picture is made somewhat more complicated 

by observed evidence suggesting many functional columns can "re-wire themselves" in 

responding to different patterns of stimulating afferents. Nonetheless, qualitative models have 

been proposed as a first step in understanding functional column organization. Figure 8.9 presents 

235 



Chapter 8: Netlet and Population Modeling 

 

Figure 8.9: Functional column organization model proposed by Szentágothai. 

one such model proposed by Szentágothai [SZEN]. It is instructive to compare this architectonic 

theme with the functional microcircuit models and the overall cortical model presented in chapter 

7. The Szentágothai column is approximated as a cylinder with an approximate diameter of about 

0.6 mm (600 microns). Cortico-cortical afferents, which make up the great majority of input 

signals in neocortex, project up through the center of the column, which is divided into an 

"inhibitory filtering" subcolumn and an "excitatory selection" subcolumn. Thalamic afferents 

project primarily into layer IV of the cortex, where a small, offset sub-cylinder structure is 

situated which overlaps adjacent columns. (It is instructive to compare this with Douglas' and 

Martin's functional microcircuit model in figure 7.5). The current findings on cortical signal flow 

organization [DOUG1] tell us layer IV makes its local output projections into layers II/III of the 

cortex (see figure 7.2). Roughly speaking, pyramidal cells receive about half of their inputs from 

white matter projection ("external inputs") and the other half from local circuits ("intra-columnar" 

and neighboring column inputs) [ABEL1: 58]. Thalamical afferents, again roughly speaking, 

make up less than 10% of the synaptic connections in layer IV [DOUG1] but appear to have 

synaptic strengths on the order of twice that of the synapses made with local pyramidal cells. 

For neocortex the architectonic of figure 8.9 is the obvious candidate to serve as the "unit" of a 

local population model, with its connections to and from neighboring columns serving as the 

"links of the chain." Because the functional column structure is vertical, this implies that a two-

dimensional population network model ought to be able to represent the neural network topology. 
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The obvious next question to ask is, "How many neurons per 'unit column' do we have to deal 

with?" 

This number is going to be very species-dependent as well as dependent upon what specific 

area of the neocortex (somatosensory cortex, motor cortex, etc.) we are dealing with. A rough 

estimate of neuron density for human neocortex is 20,000 neurons per mm3. Using an average 

cortex thickness of 3 mm and the diameter of the column in figure 8.9, this places the number of 

neurons per unit column at about 17,000 neurons, with roughly half allotted to each subcolumn. 

That, as they say, is a lot of neurons. Rulkov et al. have demonstrated the practical capability 

of simulating a neural network of this size (although in [RULK1] the network was not organized 

around the functional column architectonic), but it is clear that current computational capabilities 

do not much exceed the capacity for modeling one column at the neuron-by-neuron level. To this, 

of course, is added the problem that we do not know the specific "wiring" within a column to 

very much level of detail beyond that of White's rules and corollaries.  

We are, however, aided by the fact that some significant fraction of the column population 

will fire synchronously or nearly synchronously (when they fire) in response to stimuli. Again, it 

is not clear how large this fraction will be; this is why functional microcircuit and netlet modeling 

levels are important for understanding biological signal processing. Putting all this together 

illustrates why we need population models. It also illustrates why, as we move from the 

functional microcircuit and netlet level to the level of neural networks, the proxy models become 

more abstract. At this transition point, our interest moves from the behavior of individual and 

small groups of cells to the functional properties of the synchronized population of cells.  

§ 3.2 The Integrate-and-fire Proxy Model 

The first proxy model for a network-scale population model we shall look at is a very simple, 

and for that reason very popular, proxy model. It is called the integrate-and-fire (I&F) model. 

This model was first introduced in 1965 by Stein [STEIN]. Stein developed this model for the 

purpose of studying variability in neuronal firing rates rather than for the purpose of simulating 

neural networks, but within a decade it had been adopted by neural network simulation modelers.  

Figure 8.10 illustrates the I&F model in diagram form. Variable V represented the synaptic 

stimulation in Stein's original model, although when the I&F model is used to represent neuron 

populations V takes on an abstract meaning, namely as a variable that represents a general level of 

stimulation regarded as being present in the population. It is computed as the weighted sum of 

input impulses pn, n = 1, . . ., N, so that 
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Figure 8.10: The Integrate-and-Fire Proxy Model 
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For each input impulse function, pn(t) = 0 if the input is inactive at time t, and equals a unit 

impulse if the input is active at time t. In a population model, each input line represents a tract of 

neuron inputs coming into the population from some other population. Weights wn represent the 

weighting that is given to the signals represented by input tract n. Output Z(t) represents the 

population output. 

The heart of the model is the "leaky integrator" function (called an "integrate-and-dump" by 

electrical engineers). The "reset" signal is normally equal to zero, but when output Z(t) is active 

(represented by Z = 1) the reset signal is activated (set equal to 1) and remains active for a period 

tr called the refractory time of the I&F model. When reset = 1, the signal y(t) is held equal to zero. 

Otherwise, when reset = 0, y and V are related by the differential equation 

   ( ) ( ) ( )tVty
dt

tdy
⋅+⋅−=

ττ
11  .                (8.4) 

Variable Θ is called the firing threshold. For y < Θ, Z = 0. When y ≥ Θ, Z = 1 (an impulse) and 

the reset signal is set equal to one and held at that value for the next tr seconds.  

As always, equation (8.4) must be converted to a difference equation for computer simulation. 

If the pn(t) inputs are modeled as perfect impulses (technically called the "Dirac delta function"), 

then V(t) is also a perfect impulse, and if no impulses are received between time t and time t + ∆t 

the solution of (8.4) is 

   ( ) ( ) ( ) ( )
τ

τ tVttytty +∆−⋅=∆+ exp  .             (8.5) 

The key presupposition in deriving the difference equation (8.5) is the supposition that no new 
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impulsive inputs arrive in the interval between t and t + ∆t. So long as this condition is met, (8.5) 

is an exact solution for (8.4). Note that the exponential term in (8.5) depends only on the fixed 

ratio ∆t/τ, and is therefore a constant and its value can be pre-computed before the simulation 

begins. This means we can set ∆t to as large a value as we wish, subject to the constraint that no 

additional input pulses occur in the interval between simulation steps, and no discretization error 

will be introduced into (8.5). Because very, very few neurons are capable of firing action 

potentials at a rate exceeding 1000 pulses per second, a simulation step size of ∆t = 1 ms is very 

popular in network models using the I&F proxy.  

The I&F proxy has the lowest computational cost of any "neuron" model save only the 

original McCulloch-Pitts model (which has no differential equations at all in its description). 

Also, the fact that we can use large values for ∆t reduces the computation costs even more. It is 

little wonder why the I&F proxy has been the most popular proxy model for many years. The 

weights wn can mimic excitatory input tracts (wn > 0) or inhibitory input tracts (wn < 0). Further, 

the input impulses are typically obtained as the output of other proxy cells, and therefore they are 

binary-valued, i.e. pn(t) is either zero or one at each simulation time step.  

Because (8.4) is a linear differential equation with constant coefficients, analytic solutions are 

obtainable for describing a variety of behaviors for various input conditions. One basic 

characteristic is the firing rate of the proxy in response to a constant level of stimulation V. Let V 

be a constant in (8.4). In this case, the exact solution for y(t) for initial condition y(0) = 0 is  

   ( ) ( )( )τtVty −−⋅= exp1  . 

From this expression, we see that if V < Θ then y never reaches the firing threshold. On the other 

hand, if V > Θ then y increases until it reaches y = Θ, whereupon the proxy fires an output pulse 

and resets y back to zero, holding it there for tr seconds. After this, the process repeats and the 

result is a constant, steady output tetanus from the proxy. It is easily shown that the output firing 

rate of the proxy in pulses per second is given by 

   ( ) ( )[ ]Vt
R

r Θ−−
=

1ln
1

τ
τ  , Θ>V .            (8.6) 

Another characteristic of interest is the response of the proxy to a synchronous input tetanus of 

rate Rin, where we will assume Rin = 1/T, T = k⋅∆t for some integer constant k. At each time t = mT 

with m = 0, 1, 2, . . . the stimulation (8.3) will have some non-zero value V = VT and will be zero 

for all other times t. We define the geometric ratio ρ = exp[ –T/τ ] and assume y = 0 for t < 0. 

Then from (8.5) we have 
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   ( )
τ
TVy =0  . 

We have two cases to consider here. If VT > τ ⋅ Θ, then the proxy fires immediately. Provided that 

the refractory interval tr < T, the proxy will likewise fire at each subsequent incoming volley. We 

will call this condition the all-pass response mode of the I&F model. Otherwise, for VT < τ ⋅ Θ 

we will have successive solutions 
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for as long as y < Θ. The summation term in the expression above is called a power series and its 

solution resolves to a well known expression,  
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TVTMy  .                (8.7) 

We again have two cases to consider. Either y will build up and eventually surpass the firing 

threshold Θ, or else y(t) will settle into a periodic signal where its peak value never reaches the 

firing threshold as M → ∞. Since by definition ρ < 1, in the latter case we have 

   ( ) ( ) Θ<
−⋅

=⋅
∞→ ρτ 1

lim T
M

VTMy  

from which we obtain the threshold condition  

   ( ) Θ⋅⋅−> τρ1TV                    (8.8) 

for firing in response to the input tetanus. Note that because ρ is a function of T, this firing 

threshold is a function of the tetanus firing rate. As T decreases, ρ increases in value, and so a 

particular value of VT sufficient to trigger firing at one value of T might be insufficient for 

triggering the proxy at a larger value of T (a lower firing rate for the input tetanus). Thus, if the 

proxy is not operating in the all-pass response mode, it acts in what will be termed a high-pass 

filter mode, suppressing the response to a tetanus at lower firing rates but responding to it at 

240 



Chapter 8: Netlet and Population Modeling 

higher firing rates. Likewise, for some fixed VT < τ ⋅ Θ, we can solve (8.8) to find the maximum 

period Tc for which a tetanus of sufficient duration will eventually evoke a firing response from 

the proxy. Calling Rc = 1/Tc the cut-in rate for the input tetanus, it is easily found that 

   

( )






Θ⋅−

=

τ

τ

T

c

V

R

1
1ln

1  .                (8.9) 

The proxy will fire for any input rate Rin ≥ Rc. 

If VT is large enough to eventually trigger a firing response, but small enough that the proxy is 

not operating in all-pass response mode, the proxy will fire at the first integer value M for which 

y(MT) equals or exceeds Θ. Applying this condition to (8.7) we obtain 
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Rearranging and taking the natural logarithm of each side, we have 
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M will therefore be the smallest integer satisfying the constraint 
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Note that the logarithm term in (8.10) is always a negative number and VT is constrained to the 

range 

   ( ) Θ⋅≤<Θ⋅⋅− ττρ TV1 .                 (8.11) 

This implies the solution range is M ≥ 0 for all VT falling within this range, with equality if and 

only if VT = τ ⋅ Θ (onset of the all-pass response mode). Recall that one of the conditions of this 

analysis is tr < T, i.e. the input tetanus is not coming in faster than the refractory period of the I&F 

proxy. Therefore, the firing rate of the proxy's response is 

   
1+

=
M

RR in .                     (8.12) 

The output firing rate of the proxy in high-pass filter mode is always less than the firing rate of 

the input tetanus. Because a smaller R is equivalent to a larger T, when this proxy projects its 
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output to another I&F proxy with the same time constant τ, that destination proxy will see a 

smaller value for its ρ parameter, thus implicating a larger minimum VT required to evoke a firing 

response to a tetanus coming in at rate R. If the sum-total of its afferent inputs produces the same 

value for its VT as the first proxy, its firing rate R2 will be less than R, and etc. for each succeeding 

link in a chain of I&F proxies. Eventually at some point we will arrive at an I&F proxy for which 

VT does not reach the minimum stimulation required to evoke a firing response and the chain will 

cease to propagate a response. We will call this situation an evanescent propagation mode.  

Finally, let us consider the case where the input tetanus is coming in with T < tr. Assuming the 

I&F cell can respond with some M ≥ 0, it will occasionally see pulses coming in from the tetanus 

that arrive while the cell is still in its refractory period. Since y is held equal to zero during the 

refractory period, the cell will, in effect, "miss" this stimulus event. Consequently, its response 

rate R will be less than Rin = 1/T. The difference in this case is that the output firing pattern will 

no longer consist of a series of equally-spaced output pulses. The output response can become 

very complicated-looking, consisting of packets of pulses spaced at intervals of 1/R, with variable 

numbers of pulses in the different packets and various time spacing between packets. We will say 

such a response loses coherence with the input tetanus.  

These various characteristics of the I&F cell have consequences for neural network models 

constructed with them. We will discuss some of these consequences later. For now we will 

merely note one thing: The consequence of successive firing rate reduction in chains of I&F cells 

operating in high-pass filter mode is one factor motivating the use of a widely used model neural 

network architecture first reported on by Abeles and known as the synfire chain [ABEL1, 3], 

[HAYO].  

§ 3.3 Some Shortcomings of the I&F Proxy 

The attractive simplicity of the I&F cell has made it a popular proxy model for many years. At 

the same time, this simplicity comes with a price tag. The I&F proxy has an absolute refractory 

period but no relative refractory period. It cannot generate a bursting response to an input 

stimulus, no matter how strong that stimulus may be. It is usually difficult to construct I&F 

networks in which a group of I&F cells can be made to fire synchronously unless these cell are 

operated in the all-pass response mode. It has only one way to respond to any stimulus: either it 

fires or it does not. Are these serious shortcomings?  

Figures 8.4 through 8.7 all contained illustrations of cases where the relative refractory 

behavior of the neurons exercised an effect on the output firing pattern it produced. When one 

uses a proxy model to proxy for the behavior of a large group of synchronously-responding 
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neurons, it is reasonable to guess that relative refractory characteristic probably are not too 

terribly dissimilar across the population (although some dissimilarity should be expected just 

from the fact that neuron variability is so great in a biological network). If one finds at the netlet 

level of modeling that relative refractory effects are significant for the cell group's overall 

function, then the I&F cell's inability to produce such effects would then be a cause for concern; 

otherwise it would not be. 

Figure 8.8 illustrated a hypothetical case for which the conjecture was made that bursting 

neurons might play a role in the functional encoding of information within a neural network. The 

I&F cell cannot respond with a bursting output, and this means it does not allow the modeler a 

way to test this encoding conjecture without adding additional I&F proxies specifically for this 

purpose. This is part and parcel with the fourth shortcoming listed above: it either responds or it 

does not, and when it does respond this response is very stereotyped. Of course, one could mimic 

the bursting effect by using a small netlet of I&F cells; one of the exercises at the end of this 

chapter will illustrate this. However, if one finds oneself adding more and more I&F proxies for 

the sole purpose of producing a richer suite of possible responses to stimuli, one also starts to lose 

the principal advantage of the I&F model, namely its low cost of computation.  

Finally, in regard to the difficulty in obtaining I&F neural networks in which different I&F 

cells are made to respond synchronously, there are two points from our earlier discussions to bear 

in mind. First, let us recall that our primary motivation for using a proxy model is to allow us to 

replace netlets of many neuron mimic models with, preferably, one population proxy. Second, 

one of the experimentally observed properties of functional columns is what White called the 

"ephemeral" and "transitory" character of many functional columns:  

 Clear structural correlates for functional columns are difficult to find. One possibility for the 
general lack of correspondence between anatomical structure and functional columns probably 
has to do with the likelihood that certain functional columns are rather ephemeral, owing their 
existence to the continued presence of a specific set of stimulus conditions [WHIT: 13].  

 Mapping the different systems of functional columns, identified by anatomical and 
physiological techniques, has resulted in a situation where the visual cortex has more columns 
than it has space; that is, different columnar structures overlap . . . One way out of this dilemma 
is to presume that the formation of functional columns is a transitory phenomenon and so the 
cortex does not contain the same set of functional columns from one minute to the next. Because 
the different columns appear in sequence, the cortex would not at any time contain more 
columns than it has space [WHIT:200].  

This situation is one we might have anticipated from looking at figure 8.9. Not only does the 

Szentágothai column share its layer IV with columns on either side; its cortico-cortical afferent 

tract rises through the column and then spreads out via layer I to neighboring columns. The 

hypothesis that functional columns dynamically "re-wire themselves" in response to different 
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stimuli is an hypothesis coming straight out of anatomical and physiological studies. It is 

interesting that this finding dovetails quite nicely with a similar hypothesis put forth by Malsburg 

from mathematical and psychological considerations: 

Time is divided into two scales, a psychological time-scale (some tenths of a second) which is 
characteristic of mental processes, and a fast time-scale (some thousandths of a second). Mean 
unit activity evolves on the psychological time-scale, but the activity fluctuates around this mean 
on the fast temporal scale. Units bind to each other by correlating their activity fluctuations. A 
set of units can be bound into a block by synchronizing their fast activity fluctuations. Several 
such blocks can coexist if their activity is desynchronized relative to each other: this is the 
solution to the superposition catastrophe. . . 

Correlations are shaped by connections. If correlations are to represent variable bindings, 
connection strengths must vary. This function is called synaptic modulation. The excitatory 
connection between synchronized units is increased in strength, up to a maximum strength which 
is characteristic of the connection. . . The excitatory connection between two desynchronized 
units is decreased in strength, down to the value zero. These changes take place on the 
psychological time scale. If there are no signals in the two units, the connection slowly sinks 
back, within times characteristic of short-term memory, to a resting state, in which it conducts 
with a fraction of its maximum strength [MALS4].  

This idea, described in qualitative terms here, arose from Malsburg's correlation theory of brain 

function in the early 1980s. He calls a neural network architecture that implements this sort of 

dynamic "re-wiring" a dynamic link architecture or DLA.  

 The units of DLA play the role of symbolic elements. . . Units are endowed with structured 
signals changing in time. These signals can be evaluated under two aspects, intensity and 
correlation. Intensity measures the degree to which the meaning of the unit is alive in the mind 
of the animal. Correlations . . . quantify the degree to which the signal of one unit is related to 
that of others.  

 Dynamic links constitute the glue by which higher data structures are built up from more 
elementary ones. Conversely, the absence of links (temporary or permanent) keeps mental 
objects separate from each other and prevents their direct interaction. . . More generally, mental 
objects are formed by binding together units representing constituent parts. The infinite richness 
and flexibility of the mind is thus made possible as a combinatorial game. . . Dynamic links are 
the means by which the brain specializes its circuit diagram to the needs of the particular 
situation at hand [MALS3].  

How precisely all this might take place is far from settled. Malsburg's dynamic links are 

envisioned as fundamentally a synaptic-level mechanism, and this view is not without dispute by 

other prominent theorists. Regardless of the details of mechanism, one point does enjoy fairly 

widespread agreement: the basic functional idea is that cell groups or assemblies "change 

allegiance" and join (or leave) particular functional "units" (as Malsburg calls them) for others. At 

the level of the proxy population model, a key requirement for the possibility of this is an ability 

for different proxy cells to synchronize their activities with one another. This is not impossible to 

do with I&F proxies, but it is not particularly straight-forward either and tends to foster 

multiplication of the number of proxy cells used in the network for the explicit purpose of 

effecting this "dynamic link" capability. Again, as we increase the number of I&F cells in order to 
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get a structure to do what one I&F cell by itself cannot, the model starts to lose its attractive 

computational advantage.  

§ 3.4 The Eckhorn Model 

One can, of course, make changes to the basic I&F model to overcome the shortcomings just 

discussed. When this is done, the result is no longer an I&F model. We close this chapter by 

taking a look at one such modification that has enjoyed some degree of popularity since its 

introduction in 1990: the Eckhorn model [ECKH1].  

Figure 8.11 illustrates the basic Eckhorn model. It is a multi-compartment model consisting of 

two main types of compartments, called the "soma" compartment and the "dendrite" 

compartment. An Eckhorn neural unit (ENU) consists of one "soma" and at least one "dendrite" 

compartment. It allows for multiple "dendrite" compartments by means of a summing node 

placed just before the "soma" compartment. The "dendrite" compartment is composed of two 

distinct input sections called the feeding field and the linking field. Each field has its own leaky 

integrator function, called the feeding field leaky integrator (FFLI) and the linking field leaky 

integrator (LFLI), respectively. Each leaky integrator is mathematically defined by equation (8.4) 

with appropriate changes to the variable names as indicated in figure 8.11. Both LI functions 

convert to difference equation form as described by equation (8.5). Generally, the FFLI and the 

LFLI have different time constants, denoted τff and τlf, respectively. If an ENU has more than one 

"dendrite" the second and subsequent "dendrites" might or might not have linking fields. 

 

Figure 8.11: The basic Eckhorn model 
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The "soma" compartment consists of a variable firing threshold function, Θ, and a pulse 

generator, commonly called a "neuromime pulse generator" or NMPG. The output Z of the ENU 

is zero when the neuromime input Vm < Θ. In difference equation form, letting ∆t denote the 

simulation step size, the variable threshold function is defined by 
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where Θ0 is a constant establishing the minimum firing threshold, A is a constant establishing the 

maximum threshold value Θ0 + A, and τpg is a time constant determining the relative refractory 

interval of the ENU. Θv(t) is the time-varying component of the threshold. 

The output signal for the "dendrite" compartment, Um, is the product of the FFLI output F(t) 

(as described by (8.5) with the appropriate changes of variables denoted in figure 8.11), and the 

offset output, 1 + β, of the LFLI. β(t), of course, is also given by (8.5) with appropriate change of 

variables. Since Um(t) = (β(t) + 1) ⋅ F(t), it is easily seen that the "dendrite" output is zero if F is 

zero, which means linking field activity by itself can never cause the ENU to fire. There must be 

stimulation of the feeding field inputs to evoke a firing response. The NMPG input, Vm, is merely 

the sum of all the "dendrite" outputs in the ENU.  

The effect of linking field activity is more or less equivalent to a short-term modulation of all 

the weights wi, i = 1 to n, in the feeding field summing tree. As is the case for the I&F proxy, all 

the feeding field and linking field input signals are impulses. Linking field modulation of the 

feeding field pathway is therefore a means for implementing Malsburg's "synaptic modulation" 

on what he called the "fast time scale." Technically, this is not what Malsburg has in mind for his 

"synaptic modulation on the psychological time scale," and thus is not the same as his "dynamic 

link." Rather, the linking field signals provide a method for approximating a "measure of 

correlation" among ENUs interconnected through linking field connections. More precisely, the 

linking field tends to produce synchronized firing in groups of ENUs connected by linking fields 

based on the feeding field activities converging on each ENU in the group.  

 To understand the general idea of temporal binding, the exact nature of the signal fluctuations is 
not relevant. . . Although much of the discussion of signal correlation focuses on the binary case, 
the correlation of just two neurons, it should be emphasized that the much more relevant and 
important type of event concerns correlations of higher order: the simultaneous firing of larger 
groups of neurons. The reason is this: for correlations to play an important role in the brain it 
must be possible for them to be evaluated quickly and reliably [MALS5].  

Those who oppose and criticize the correlation theory of brain function often make the point 

that the mathematical evaluation of correlation functions, as these are defined in stochastic signal 
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processing theory, necessarily requires a significantly long record of firing patterns be evaluated. 

This mathematical requirement is seen as being at odds with psychological findings on human 

and animal reaction times. It is a tough argument to refute. However, merely because science 

found out about correlation functions long before anyone had the idea that synchronized firing 

patterns were important in brain function, this does not mean brain function necessarily has to use 

correlation functions. The Eckhorn linking field is an alternate way of looking at the problem, i.e. 

it provides a mechanism for focusing the signal processing on firing events occurring together 

within a brief time period. While this is not "correlation" in the mathematical sense, it may very 

well be an appropriate way of expressing the functional end result that gives the correlation 

theory of brain function its basic theoretical importance. Put another way, linking fields promote 

binding among ENUs.  

Another key difference between the Eckhorn model and the I&F model is this: the Eckhorn 

model has no reset function. The FFLI and LFLI are not summarily "discharged" by the firing of 

an output pulse by the NMPG. Refractory effects are produced instead by the NMPG function. 

The lack of a reset function in the ENU is not biological; when a neuron fires an AP this action 

does lead to the opening of VGCs in the neuron which do result in the flushing of excess charge 

in the soma (the equivalent of discharging the capacitor in the H-H and Wilson models). The 

Eckhorn model is not a neuron model (under the definition used in this text for neuron models; 

this has not kept authors from calling the ENU a "neuron" in the literature, but it is bad 

terminology nonetheless). The Eckhorn model is a population model acting as proxy for large 

groups of neurons.  

The absence of a reset function in the Eckhorn model changes its firing pattern characteristics 

in some important ways from those of the I&F model. One of the important changes is this: the 

absence of a reset function makes it possible for the ENU to fire in bursts. We saw earlier that 

bursting simply cannot occur in the I&F model because of its reset function. The absence of the 

reset function can lead to bursting by the ENU in the following way.  

Let us suppose that at t = t0 the NMPG input Vm(t0) = V0 exceeds threshold and the NMPG 

fires an output pulse. In the differential equation (continuous time) form of the Eckhorn dynamics 

this action sets Θ(t) = Θ0 + A. Assuming no further pulses are applied to the input of the ENU for 

t > t0, we have 
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where the linking field dynamics have been neglected for the sake of simplicity. Right at t = t0 we 
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may assume Θ(t) > Vm(t). If this condition maintains for all t > t0 the NMPG will not fire again 

and a single output pulse will be produced. However, if for some t = t0 + T we have 

   ( ) ( )pgff TATV ττ −⋅+Θ=−⋅ expexp 00             (8.15) 

the NMPG will re-trigger and fire a second output pulse even in the absence of new input signals. 

(8.15) is a nonlinear equation with no known closed-form expression for finding T given the 

values of the other parameters and initial input V0. However, numerical solutions are easily 

obtained for it using either numerical or graphical methods. If a second output pulse is produced 

at some time spacing T, the analysis can be repeated to find out if there is some new time spacing 

T2 at which the NMPG will produce a third output pulse (again, in the absence of new input 

signals to the ENU), and so on. By appropriate choices of the NMPG parameters and the time 

constant of the FFLI, it is possible to design a NMPG model capable of producing V0-dependent 

burst firing patterns. This is, in principle, an important capability the ENU possesses that the I&F 

model does not.  

The absence of the reset function also has a significant effect on the output firing rate of the 

ENU. With the I&F model, the output firing rate in response to a steady tetanus is always less 

than the firing rate of the tetanus unless the I&F neuron is operating in the all-pass response 

mode. The same is not necessarily true for the ENU. Like the I&F, the ENU has an all-pass 

response mode defined by the condition Vff > τff ⋅ Θ0, where Vff has the same role as VT in our 

earlier discussion and where the effect of the linking field is being ignored. For Vff below this 

value and in the absence of linking field modulation, the ENU responds in a high-pass filter mode 

for the first M pulses in a tetanus with period T, responding with an output pulse on the (M + 1)st 

pulse of the tetanus. The value of M for this first output pulse is given by (8.10) with appropriate 

changes in the variable names.  

However, the ENU response to the (M + 2)nd and later pulses in the tetanus is different from 

that of the I&F because the FFLI is not reset. Letting ρ = exp[ –T/τff ], the FFLI output for the mth 

succeeding pulse in the tetanus is 
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In the absence of other "dendrites," this will also be the value of Vm. Assuming the ENU is not 

responding in a bursting mode, the simulation threshold at this time is 

   ( )( ) ( )( )pgtmTATmM τ∆−−⋅+Θ=+ exp0Θ ,  m > 0.  
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If Vm exceeds this value of Θ, the ENU will fire again. An important special case occurs when τpg 

is several times smaller than T but still large enough to prevent bursting mode operation. In this 

case, Θ will have returned to approximately Θ0 for m = 1, and since Vm[(M + 1)T] will be larger 

than, or at worst equal to, Vm(MT), the ENU will fire again upon arrival of this input volley and 

will continue to fire for every successive input volley (unless inhibited by the arrival of inhibitory 

input pulses). Therefore, after suppressing the first M pulses in the tetanus, the ENU thereafter 

responds with an output pulse for each succeeding input pulse volley and with the same firing 

rate as the input tetanus. It can relay the tetanus (except for its first M volleys), which is 

something the I&F model is incapable of doing except in all-pass response mode.  

Up to this point in the discussion, the contribution of the linking field has been neglected. 

Now let an input volley arrive at the linking field inputs at time t = t0. In the absence of further 

linking field volleys, the LFLI response is 
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and Um(t) = F(t) ⋅ (1 + β(t)). Thus, the feeding field signal is modulated by an exponentially 

decaying linking field signal, which produces what is called the linking window. It is obvious that 

the linking field contribution is capable of boosting an otherwise sub-threshold value of F above 

the threshold value of the NMPG. This is the means by which ENU synchronization in a neural 

network is produced by the Eckhorn model. In typical ENU networks reported in the literature, 

the linking field time constant is usually about one order of magnitude smaller than the feeding 

field time constant, and so the linking field window is highly selective to feeding field volleys 

occurring within just a few milliseconds on either side of the linking field volley.  

Because the ENU supports multiple "dendrites," it is possible to assign different time 

constants for different feeding field and linking field pathways (at the cost of additional 

computation for the model). In particular, it is often the case that one desires inhibitory feeding 

field inputs to have a different feeding field time constant from that of the excitatory feeding field 

signals. A second "dendrite" is therefore often used (with negative values assigned to the wi) to 

implement the inhibitory pathways. It is also common for the "inhibitory dendrite" to omit the 

linking field, which saves half the incremental computational cost of adding this "dendrite."  

§ 3.5 The Eckhorn Model in Comparison with the Rulkov Model 

The per-iteration-step computational cost of a one-dendrite ENU is approximately the same as 

that of a Rulkov neuron when the cost of computing synapse signals in the latter is included. This 
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naturally raises the question: Why would one use one of these models rather than the other in a 

given modeling situation? Several considerations play a role in making this decision.  

Although the Rulkov model is a mimic model separated from physiology by the abstract 

nature of its parameters and variables, it is nonetheless closer to biological mechanism than is the 

Eckhorn model. Although calibrating a Rulkov model to an approximation model (e.g. Wilson's 

schema) or to the H-H model is by no means a trivial undertaking, when this is done it is quite 

apparent what parametric decisions were made in support of which biological mechanism playing 

through to input-output function.  

In contrast, there are functional features of the Eckhorn model that have no presently known 

and clearly understood linkage to physiological mechanism. The absence of a reset function in the 

ENU is not matched by anything at the neuron level, although it might be something 

characteristic of a netlet as a whole. (This really does remain to be seen at our present state of 

knowledge). There is nothing presently established about a neuron mechanism that corresponds to 

the linking field of the Eckhorn model. Typical values for τlf  employed in Eckhorn-based neural 

network models are far too small to be accounted to known metabotropic mechanisms. It might 

be the case that a linking field function could result from the interplay of AMPA-dominated 

synapses and NMDA-dominated synapses [WELL1], but this is presently no more than a 

conjecture. Despite its use of such suggestive names as "dendrite" and "soma," the ENU remains 

an abstract model at the level of population proxy modeling.  

Although the per-iteration computational cost of the Eckhorn and Rulkov models are quite 

comparable, the Eckhorn model lends itself easily to larger values for iteration step size ∆t 

because an exact conversion (within very mild constraints) between its differential and difference 

equation forms can be made. In contrast, a map-based model such as Rulkov's has a fixed 

equivalent ∆t. This is not to say that other ∆t equivalences cannot be produced by map-based 

techniques, but it is to say this is not easily accomplished. Consequently, the network modeling 

cost of computation using the Eckhorn model has a slight edge, all else being equal, over the 

Rulkov model. On the other hand, the distance the Eckhorn model stands from biological 

mechanism produces a natural niche for applying the Rulkov model, namely in the modeling of 

netlets and more complex functional microcircuits and linking them to underlying models that 

capture the functional properties of the physiological neuron. It does not seem at all unlikely that 

when an explanation for the mechanistic underpinning of the Eckhorn linking field is finally 

obtained, the Rulkov model will play a central role in uncovering this explanation.  

Finally, the Eckhorn model better lends itself to the design of signal processing functions at 

the neural network level than does the Rulkov model. Although it is true that some of the design 
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equations (e.g. for producing burst firing, or for determining a desired T:M response relationship 

for the ENU) require numerical solution methods, the expressions involved in this are cast in 

terms of time constants, thresholds, and other intuitively appealing parameters one can lean upon 

to guide the design development. In contrast, the Rulkov parameters are a level of abstraction 

removed from this functional aspect of neural network design. Put another way, design equations 

are relatively easy to derive for the Eckhorn model, relatively difficult to derive for the Rulkov 

model. Because experimental findings descriptive of network-level function are frequently 

reported in the literature (e.g. through such techniques as microprobe arrays) a significant amount 

of the literature data first implicates network-level function, and this makes scientific reduction 

rather than model order reduction (i.e., going from an Eckhorn network to Rulkov netlets) an 

important research direction for computational neuroscience.  

§ 4. Chapter Summary 

This chapter has covered much ground, so a few closing remarks in summation are in order. 

Model systems have been examined here ranging from approximation modeling very close to the 

level of physiological mechanism, through mimic modeling at the functional microcircuit and 

netlet level, to, finally, population proxy modeling at the neural network level.  

At the lower levels of the modeling hierarchy, the question, "What is meant by 'average' 

neuron?" was raised. Considerable discussion was presented regarding the considerations that go 

into deciding what sort of modeling can be carried out to achieve an "average" dynamical 

response. The principal finding here is that it is possible to use a single signaling type model to 

capture many dynamical effects, and to use phenomenological synaptic weight factors to 

introduce variability into the neuron population. 

The major research issue of neural encoding was introduced, and the possibility was raised 

that different neuron types may be key to understanding the long-sought "neural code." Although 

this research area is very, very active – and has been for a very long time – it is still true that 

neuroscience is not in possession of a paradigm accepted by all researchers for "cracking the 

code" as this putative code is actually carried out in brain function.  

The difference between stereotyped and non-stereotyped function was introduced. A brief 

discussion was given over to the idea that perhaps "higher" brain function is a consequence of 

interactions among many much more stereotyped "neural machines." This is a view that tends to 

be opposed by an older, more traditional school of thought first established in the 1960s and later 

resurrected by what is widely known as the "parallel distributed processing" (PDP) school. PDP 

theorists, who tend to work at the psychophysical and psychological levels of neuroscience, 
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promote the view that neural networks should be seen as "universal function approximators," a 

point of view that can be traced back to the very early work in automaton theory by Alan Turing. 

The notion of regarding neural networks as universal function approximators is strongly opposed 

by Minsky and Papert, and also by dynamic link architecture theorists such as Malsburg:  

There is a widespread opinion that classical neural networks are a universal medium with no 
limits to their abilities and that consequently they are not subject to the binding problem. . . But 
what does universality buy? It can be compared to the universality of a pen and sufficiently 
many sheets of white paper as a universal medium for formulating novels. You still have to write 
them. Over time, the field of Artificial Intelligence discovered that it is not a practical task at all 
to write a program that emulates the capabilities of the brain. It is becoming increasingly clear 
that the only goal we can hope for is to establish a system that constitutes a basis for self-
organization and learning . . .  

 Brain theorists realized this in the late 1950s and modified the McCulloch and Pitts' networks to 
accommodate self-organization and learning. . . However, these changes may have come at a 
price: it is not clear whether neural networks are universal in any sense, although the community 
seems to have inherited the implicit belief that they are and that any brain function can be 
modeled on the basis of those few abstractions from the real nervous system that went into the 
formulation of neural networks. It is not even clear how to formulate a new universality theorem. 
. . . But how can we characterize brain problems in any general and satisfactory way? It would 
be foolish to argue that "this is a particular problem I have solved on the basis of classical neural 
networks, which proves that all of them can be solved this way" [MALS5].  

Finally, two network-level models, serving as proxies for populations of neurons, were 

introduced. Properties of these models, and where they stand in regard to lower level netlet 

models (particularly Rulkov's models) and higher network signal processing functions 

(synchronized signaling, correlations), were discussed. The overriding theme covering all these 

various models has been the theme of hierarchical modeling, which is made necessary by the 

ever-present practical reality of computational costs and Weinberg's "Square Law of 

Computation."  

Something touched upon very briefly in this chapter was the notion that a description of 

mathematical structure for neuronal function (rather than merely a mathematical description of a 

neural network) is needed for theory to really comprehend neural systems. The main idea brought 

up here was the notion of characterizing signals and networks as sets and transformations of sets. 

This topic has received very, very little attention in the present day computational neuroscience 

literature (compared to the other topics covered), but it is a key and fundamental topic in its own 

right. We will make a brief digression in chapter 10 and say a bit more about this.  

Exercises 

1. There are many different kinds of averages. Three of the most common are called the 
mean, the median, and the mode. The mean is also called the "arithmetic average" and is 
the one you probably use the most. The median is the value for which half the cases have 
a smaller value and half the case have a larger value. The mode is the value most 
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frequently encountered. Given the series of numbers {1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 5, 6}, 
find the mean, median, and mode averages of this set.  

2. The values of the mean, median, and mode averages come out pretty close to each other 
when the population follows a normal distribution (i.e., the well known bell-shaped curve 
you are probably very familiar with; the normal distribution is also called the Gaussian 
probability distribution). However, when the distribution is skewed, the mean, median, 
and mode averages can be very different. Suppose a population is given that is 
characterized by the following numbers: {2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3.7, 3.7, 3.7, 
3.7, 5, 5, 5, 5.7, 10, 10, 15, 45}. Find the mean, median, and mode averages. If these 
numbers represent the monthly pay (in thousands of dollars) for the people who work in a 
particular small company, what do the three different averages tell you?  

3. Data was given in chapter 6 describing the population of different kinds of neurons found 
in the neocortex. For purposes of modeling the neocortex, what kind of average (mean, 
median, or mode) do you think would be the most useful in describing an "average" 
cortical neuron? Do you think that any one average is adequate for describing this? 
Explain why or why not. How would you use the idea of "averages" to set up a model of 
the neocortex? 

4. A curve fit model (called a "regression model" by statisticians) fits a mathematical 
function (often, but not always, a polynomial function) to experimental data. The 
variables in the model are "factors" that were varied to produce different experimental 
outcomes. A good regression model manages to produce accurate "predictions" of what 
outcomes one will see for other combinations of factors provided these all fall within the 
range of values that was used to obtain the experimental curve fit. It is also well known 
that regression models usually "break down" (fail to accurately predict) outcomes for 
factors that exceed the range of values used in obtaining the fit. In contrast, a good 
phenomenological model is said to have "predictive power" better than that of a curve fit. 
Discuss what this distinction is meant to imply about the difference between 
phenomenological models and regression models.  

5. Section §1.1 provided an analysis for matching up the three Wilson model test cases 
against the model distribution statistics in Table III. This analysis might be called "semi-
quantitative" because, while it used numbers to compare ranges, the decisions on how to 
"match up" one model to the other were qualitative and "feature-based" (i.e., "this one 
looks the most like that one"). A semi-quantitative analysis is always open to counter-
arguments simply because the decision is not quantitatively "hard and fast." Other 
interpretations are almost always possible. Carry out your own analysis for this model-to-
model comparison and state your own conclusions on how you would "match up" the two 
models. Explain your reasoning. 

6. Explain in your own words what "coincidence advantage" is. What is the evidence in 
§1.1 and §1.2 that points to the existence of coincidence advantage? 

7. Let Y be an n×1 vector of experimental data and let B be an m×1 vector of model 
parameters. Let X be an n×m matrix of experimental factors (such as nsyn ⋅ gmax/Cm and Cm 
in §1.2). A linear regression model is a model of the form Y = X⋅B. Y and X are known 
and B is to be determined. Show that the solution is B = (XTX) –1XTY. This solution is 
called the least-squares fit. Find X for the complete and reduced-order models of §1.2. 

8. Modify your computer simulation program for the RS-type Wilson model so that you can 
repeat the simulation exercise in §1.2. Then obtain additional sub-threshold data points so 
that you can obtain a regression fit to peak sub-threshold EPSP responses up to about 20 
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mV. Your goal is to obtain an adequate reduced model similar to that of (8.2), possibly 
with the addition of a cubic term if you find such a term statistically significant. How 
closely is your model able to predict the nsyn firing threshold? 

9. In your own words, describe what the term "fan-in" denotes and discuss how fan-in might 
be relevant for modeling functional microcircuits using "average" neurons. 

10. Why would the "wide, slow base" of an action potential, as mentioned in regard to figure 
8.6, be indicative of a stimulus that just barely reaches the firing threshold of the neuron? 

11. Discuss in what way or ways the SG50 from Abeles' statistical model and an "SG50" for 
Wilson's deterministic model are similar, and in what way or ways they are different. 
Hint: You are being asked to think about what the difference is between a statistical 
model and a deterministic model, and to reflect on how hard-to-predict nonlinear effects 
in a deterministic model might be regarded as "being like" random variables.  

12. Modify your computer simulation model of the Wilson RS-type neuron to co-localize 
both AMPA and NMDA channels together in the same synapse. Your model should 
allow for variable ratios of AMPA to NMDA receptors, and allow for different gmax 
values to be assigned to each. Simulate three test cases: (1) AMPA channels only; (2) 
NMDA channels only; and (3) equal AMPA and NMDA channel densities with equal 
gmax values of 200 pS per synapse. Find and compare the "SG50" value of nsyn for cases 
(1) and (3) for Cm = 0.51 fF. 

13. The spinal cord contains neural networks that produce what are known as reflex 
responses. Examples include kicking your leg in response to a gentle tap from the 
doctor's mallet and snatching your hand away when you touch something very hot. 
Would these sorts of reflex responses constitute stereotyped responses? Explain your 
reasoning.  

14. Here is a conjecture for you to consider: "The more stereotyped the response of a netlet 
or network is, the more model order reduction can be applied to it." Decide whether or 
not you agree with this conjecture and write a short essay presenting and defending your 
view. 

15. The existence of vertically-organized functional columns in the neocortex implies it is 
meaningful and correct to model neocortical function by means of two-dimensional 
chains of functional columns. Explain why this is so. 

16. Explain what "columnar arrangements based on the distribution of afferent fibers are a 
general feature of cortical organization" means. 

17. What sort of two-dimensional chain model might be suggested by Szentágothai's model 
of figure 8.9? (You do not need to assume the functional column is perfectly cylindrical). 
Draw a two-dimensional sketch of your conjectured chain organization model. 

18. Show that equation (8.5) is an exact solution of (8.4) under the specified conditions. 

19. Derive equation (8.6). Plot R as a function of V/Θ for the interval V/Θ = 1.1 to 10 in steps 
of 0.1 using τ = 1 for tr = 0, 0.5, 1, 2, and 5. Describe the effect of tr on R. 

20. Write a computer simulation program for the I&F proxy model and verify that the model 
responds to tetanus inputs in the way described in the text.  

21. Derive equation (8.9). 
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Figure P8.22 

22. Bursting responses can be mathematically imitated by using a small network of I&F 
proxies such as that shown in Figure P8.22. Each I&F cell receives the same set of N 
afferent inputs. Different weightings are applied by each I&F cell so that successive I&F 
cells in the chain require stimulation from the previous I&F cell before they can fire. 
Design a set of weightings and time constants so that the network can generate one, two, 
or three pulse responses depending on the level of stimulation from the afferent tract. 
Demonstrate that your design works by simulating it. Comment on any shortcomings or 
disadvantages this method has.  

23. One of the simplest methods to evaluate equation (8.15) is to plot its left-hand and right-
hand sides on the same graph and find where they intersect. Let the ENU have the 
following parameters: τff = 15 ms, τlf = 7.5 ms, Θ0 = 0.5, A = 20⋅Θ0. Determine if re-
triggering of the NMPG occurs, and, if so, when, for (a) V0 = 10⋅Θ0 (b) V0 = 5⋅Θ0. Use 
time steps of 0.1 ms and evaluate the functions over the range from T = 0 to T = 50 ms. 

24. Typical values for Eckhorn model parameters used in ENU network models reported in 
the literature are on the order of the following: τff ≈ 10 ms, τlf ≈ 1 ms, τpg ≈ 7.5 ms, A ≈ 
50, Θ0 ≈ 0.5. Typically the linking field weights are on the order of about 10 times greater 
than the feeding field weights. These values are merely examples and different modeling 
situations will often call for different parameter settings. Write a computer program to 
simulate the ENU and verify that the model responds to tetanus inputs in the manner 
described in the text.  

25. Inhibitory inputs to a one-dendrite ENU can be implemented by using negative-valued 
weights for the inhibitory inputs. However, this means that the inhibitory signals have the 
same time constant as the excitatory signals. Add a second inhibitory dendrite to your 
Eckhorn simulation program from exercise 24. The second dendrite does not require a 
linking field pathway. Set τff ≈ 20 ms for the inhibitory dendrite and evaluate the effect of 
inhibitory inputs on the tetanus response of the ENU.  
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