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Chapter 9 

 
Pulse-Mode Network Modeling 
 

§ 1. Pulse-coupled Neural Networks 

Neural network models based on spiking proxy neuron population models occupy an 

intermediate position in the modeling hierarchy between the neural netlet and functional 

microcircuit models of chapter 7 and the map and network system models we discuss in chapter 

11. Figure 9.1 illustrates the positions of these models in our hierarchy. Modeling at this level can 

be conveniently sub-classified into two levels: (1) proxy neuron population models (PNP sub-

networks) built using pulse-coded models (e.g., Integrate & Fire, Eckhorn models); and (2) neural 

networks constructed from these population models. The latter are often called either pulse-

coupled neural networks or pulse-coded neural networks (PCNNs in either case; the terminology 

has not yet been standardized). It is not uncommon for the distinction between PNP subnetwork 

level models and PCNN models to be blurred, in which case the neural network might be called a 

PNP (proxy neuron population) network because it is often given a crystalline neural network 

structure that does not distinguish functional subnetworks within it.  

 

 
Figure 9.1: Hierarchy of modeling levels in the system doctrine roadmap. 
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PCNNs have an intuitive appeal that can quite easily be deceptive if one forgets that proxy 

population models such as the I&F or Eckhorn "neurons" do not in fact model individual neuron 

cells. Rather, they are models of the collective and functional behavior of large collections of 

tightly-coupled biological neurons having output tract projections that tend to fire or not fire 

synchronously with one another. Such a collection of tightly-coupled biological neurons is often 

called a cell group. This is an important fact to note because it means the input connections to, 

e.g., an Eckhorn node can legitimately be called weights but should not be assumed to model 

synapses. The input weights of an I&F or an Eckhorn model do reflect a measure of efficacy in 

terms of efferent (output) tract dependence on afferent signals converging on the cell group. But it 

is an error to assume these weights are direct models of synaptic efficacy because the actual 

signaling efficacy of afferents coming into the cell group will be a complicated function of the 

types of actual neurons in the cell group population, their interconnections, the types of neuro-

transmitters employed, the ratio of excitatory to inhibitory cells within the cell group, and 

probably many other factors as well. The population proxy is a "black box" or "input-output" 

model of signaling behavior and it is a functional rather than a mechanistic model. If one wishes 

to "get inside" a cell group population and explore mechanisms, it is necessary to pull back one 

step in Figure 9.1 and model the system in terms of neural netlets and abstract neuron models 

such as the Rulkov or Izhikevich models.  

Experimental evidence for the existence of cell groups, while still largely circumstantial owing 

to current instrumentation limitations, does nonetheless appear at present to strongly support the 

hypothesis that the central nervous system does contain them. However, there is also 

experimental evidence indicating that cell groups might not constitute permanent neural 

structures and that some dynamical "re-wiring" of biological signaling pathways does occur in the 

CNS. For example, evidence strongly indicates that the number of "functional columns" in the 

visual cortex of mammals is larger than the volume available to hold them if each functional 

column corresponded to a single biological column. If this is true, as it presently appears to be, 

the physiological situation limits the level of trust one can invest in the individual proxy nodes 

(I&F, Eckhorn "neurons") when modeling at this level.  

The way this is dealt with is to assume that cell groups (at some biological population level) 

exist within more dynamically-variable populations called cell assemblies. Cell assemblies are 

postulated to be larger populations of interconnected cells in which cell-to-cell coupling is 

characterized by a higher degree of variability such that not every subpopulation within a cell 

assembly necessarily responds synchronously with all other subpopulations. There is almost no 

doubt that cell assemblies do exist within the CNS, and the greater functional flexibility they 
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provide allows the modeler to compensate for the apparently transitory nature of cell population 

phenomena. Cell assembly modeling is modeling at the level of the PNP network. PNP networks 

are modeled as interconnected functional assemblies of cell groups (each of which is modeled by 

a single population proxy such as the I&F or Eckhorn model). Under this hypothesis, a functional 

column would be a PCNN rather than a cell group or PNP network.  

The picture that emerges from this cell group / cell assembly hypothesis is one where a cell 

group would consist of a tightly coupled population of neural netlets comprised of functional 

microcircuits. A cell assembly is then an aggregate of cell groups containing, in all likelihood, 

additional afferent inputs that serve a "control and configuration" rather than a "data path" 

functional role. It is at present an open question as to how large a biological population 

corresponds to a cell group within a cell assembly. In a great many ways, modeling at the neural 

network level in Figure 9.1 is currently the most difficult challenge for computational neuro-

science, the difficulties arising not only from the complexity issue but also from the current lack 

of experimental tools and methods that would permit the finer structural details of the system to 

be identified and examined in the laboratory. The neural network level is in many ways the level 

within the systematic doctrine where biological mechanism and psychophysical phenomena must 

meet and merge. It is not unfair to say that at our present level of knowledge modeling at the 

neural network level is much more of an art than a science and that many published models are 

more Platonic than empirical.  

Among the numerous shortcomings in current neural network theory, one of the most obvious 

and important is the lack of a generally agreed-to method for modeling adaptation at the pulse-

coded neural network level. Adaptation in this context refers to models and algorithms for 

adjusting the weights within a PCNN model. We are in possession of functional models for 

adaptation at the map and network system levels of the hierarchy. We are likewise in possession 

of mechanistic models for short-term and long-term synaptic plasticity at the biological level. We 

do not yet possess a well developed theory for adaptation modeling at the PCNN level, although a 

few (mostly engineering-related) papers on this topic have appeared in the neural network 

literature. Currently these models do not yet command widespread acceptance in the 

computational neuroscience community and should presently be viewed as essays in the craft of 

modeling development. For that reason, this textbook does not discuss adaptation at the PCNN 

level although we will discuss adaptation in considerable depth at the map and network system 

levels in the later chapters. Almost all current PCNN models are fixed-weight models. Numerical 

values for these weights are most often obtained from ad hoc considerations (peculiar to the 

individual modeler-as-artist) or from organized functional search methods employing such 
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techniques as evolutionary computing algorithms and genetic algorithms [GOTS1].  

§ 2. Activity and Moving Average Firing Rate in PNP Nodes 

In chapter 7 we introduced Weinberg's three-regions characterization of systems and saw that 

neural systems fell into Region III, the region of organized complexity. Figure 9.2 illustrates the 

general layout of Weinberg's doctrine. Proxy neuron population models represent one approach to 

dealing with organized complexity on the (relatively) smaller scale. In essence, this technique can 

be regarded as an attempt to exploit relatively low randomness in cell group behavior by reducing 

the entire cell group to a single element, namely the PNP node. As we advance to the level of 

neural network modeling, these nodes are incorporated as elements in a network that frequently is 

given the form of a crystalline network (that is, a highly regular interconnected network of 

nodes). In such a network the node model is treated as a system with organized simplicity and 

complexity is to be captured by the network's overall behavior. It is at this level of modeling 

where we encounter the need to introduce and quantify the concept of the activity of a node and 

of a network comprised of multiple nodes.  

Action is a vaguely defined generic term used by biologists, psychologists, and neuroscientists 

to denote the occurrence of some process. For example, it is used in "action potential" to denote 

the generation and propagation of an electrical impulse down the axon of a neuron. Activity is an 

equally ill-defined term used to denote the presence and, usually, the level of intensity of an 

action.  To make these terms less vague, and therefore more meaningful, a science must be able to 

 
Figure 9.2: Weinberg's System Regions Model 
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define its technical terms in relationship to some experimentally determinable phenomenon. In 

the case of a population of neurons the most experimentally accessible type of measurable 

process is metabolic rate, the rate of oxygen consumption accompanying the enzymatic release 

of energy during cell metabolism. A measure of this can be obtained experimentally by brain 

imaging methods such as functional magnetic resonance imaging (fMRI) or positron emission 

tomography (PET) imaging. In an fMRI, blood oxygen levels are detected by measuring changes 

in the ratio of oxyhemoglobin to deoxyhemoglobin, the levels of which vary with blood volume, 

flow, perfusion1, and metabolism. In PET imaging changes in blood flow and glucose metabolism 

are detected. Both methods thereby provide quantitative indicators of metabolic rate over a cell 

population resolvable down to about 1 mm (for fMRI) to a few millimeters (PET). Because cell 

metabolic rate increases when a neuron produces action potentials, metabolic rate is an indicator 

of how much cell signaling is taking place in neural assemblies by neurons that produce action 

potentials. Thus, in this book we define activity as any quantitative measure of metabolic rate 

in an assembly of neurons and glia.  

It is common for neuroscientists to describe the activity of a single spiking neuron cell in 

terms of the rate at which it produces a series of action potentials (APs). This is called the firing 

rate of the cell and is an easy quantity to measure if the cell produces action potentials at evenly 

spaced intervals of time. Unfortunately, many cells do not produce evenly-spaced action 

potentials and so the notion of an average firing rate is often introduced by theoreticians. (This is 

a practice going back to von Neumann). The introduction of the notion of an average firing rate 

introduces a number of other technical difficulties because it is defined by counting the number of 

APs produced over some time interval T and then dividing this number by T. This, however, is a 

rather faulty definition because for it to be physiologically meaningful one must assume that there 

is some psychophysical significance to the time interval T and that the statistics of cell signaling 

are stationary (that is, do not change) over the interval T. The former type of assumption is quite 

speculative and the latter is impossible to verify in any physically meaningful way. A third 

disadvantage of the firing rate model is that it cannot be applied to non-spiking neurons that 

signal by means of gap junction synapses, nor can it be applied to glial cells (the metabolic rates 

of which are also part of what is measured experimentally in an fMRI or a PET scan).  

Nonetheless, when dealing with proxy neuron population models such as the I&F and the 

Eckhorn models, we must have some means of relating the firing actions of these nodes to the 

activity of the neural population. A less speculative way of doing so is to define the 

instantaneous firing rate of a PNP node as the reciprocal of the time between successive output 
                                                 
1 An undefined term used to vaguely denote how much the blood "covers" the cells it is supplying. 
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pulses. This definition does not provide a one-to-one relationship to the population activity in the 

sense in which we defined this term above, but does provide some indication of the level of 

activity within the population. If T(t) is the time interval between an output pulse at time t and the 

immediately previous action potential, then r(t) = 1/T(t) is the instantaneous firing rate. We then 

make the hypothesis that the interval-average of r(t),  
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over time interval χ ≫ T, is proportional to the population's time average activity over that same 

interval. Here p(x) is defined to be equal to zero if no pulse occurs at time x and equal to a unit-

strength Dirac delta function δ(x) if a pulse does occur at time x. Quantity ∫p(x)dx is merely the 

total number of pulses in interval χ. The quantity r  is similar to von Neumann's pulse density 

representation [NEUM3] but is defined for cases where the instantaneous firing rate is variable.  

To be experimentally meaningful, the interval χ must be of the same order as the temporal 

resolvability of the imaging method used to measure brain activity but with a mathematical lower 

bound for χ on the order of no less than several tens of milliseconds. The lower bound is needed 

to limit and control statistical variance in r  since this variance constitutes an inherent "noise" in 

the statistic. One should note that r  is defined over an interval. To incorporate it into 

computational analysis of a network we require a time-sampled quantity defined in terms of the 

computing interval. Such a quantity is said to be a discrete-time quantity. We therefore define the 

moving average firing rate of a PNP node as 

   ( ) ( tktkrtk )∆⋅−∆⋅≡∆⋅ ,χρ                (9.2) 

where ∆t is the sampling interval of the computer simulation model and k is the sampling index. It 

has units of pulses per second. Computational accuracy dictates that ∆t be very small compared to 

the interval χ.  

Moving average firing rate ρ does not get entirely away from the shortcomings noted above; 

its usefulness ultimately comes down to linking it to experimentally determinable quantities. This 

linkage is conjectural at present because we presently lack the instrumentation tools necessary for 

identifying cell groups, making direct testing of the hypothesis presently impossible. Therefore ρ 

is a mathematical quantity rather than a physiological quantity. It is quantized since changes in its 

value are produced by integer changes in the number of pulses occurring within interval χ.  
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§ 3. Activity Propagation in Simple PNP Chains 

Traditionally theoretical neuroscience has focused its almost-exclusive attention on action 

potentials and sequences of action potentials under the presupposition that this signaling must be 

the seat of what is called the neural code, wherein the long-sought secret of the phenomenon of 

mind is presumed to reside2. The presumption dates back to von Neumann's work [NEUM3] and 

has gone largely unquestioned by neuroscientists since that time. Although this is a metaphysical 

and materialist presupposition with many fundamental problems and issues confronting it3, it is 

nonetheless correct to conclude there is a real relationship between cell activity and mental 

phenomena [WELL2, WELL3]. It goes farther than we are scientifically justified in saying that 

this relationship is restricted only to action potentials and action potential sequences because this 

neglects the existence of non-spiking signals (gap junctions) as well as the possibility that glial 

cells might also participate in the dynamics of information processing in brain function. However, 

non-spiking neuronal signals and, to a lesser extent, glial signaling processes (e.g. the propagation 

of calcium waves by glial cell networks) are relatively local functions and it is true that long-

distance cell-to-cell communication takes place primarily by means of the propagation of action 

potentials4.  

Whatever the real relationship between brain function and the phenomenon of mind is, there is 

a mountain of empirical evidence today pointing to the strong hypothesis that this brain function 

is highly distributed within the structure of the brain. It is true that a great many functions that 

appear to be intimately related to specific mental phenomena are more or less highly localized in 

an individual's brain; it is no less true that such local pockets of activity by themselves are not 

sufficient to explain the overall link between brain function and mental phenomena (e.g. 

perception and cognition)5. To find the link between the psychological world and the biological 

world, we are led to consider and study the propagation and dependencies of neural activities to, 

from, and among different regions of the brain. This, in turn, gives rise to the idea of processing 

                                                 
2 What most theoreticians today mean by the term "neural code" was called "the language of the brain" by 
von Neumann. Von Neumann drew a crucial distinction between the idea of a language (which is related to 
meanings and purposes) and the idea of a code (which is a symbolic representation of a language). This 
distinction is similar to the distinction information theorists draw between information and data (which is 
merely the representation of information). Von Neumann's distinction is one that tends to be forgotten by 
present day theoreticians.  
3 The problems and issues fall under the generic title of "the mind-brain problem."  
4 "Primarily" rather than "exclusively" because we cannot rule out the likelihood that signaling via the 
body's endocrine system also plays a role in the relationship between biological function and mental 
phenomena.  
5 Some neuroscientists are willing to at least entertain the notion that mind-brain relationship can be 
directly linked all the way down to the individual cell level. Malsburg critiqued this idea as the notion that a 
cell is an "atom of meaning" [MALS2]. It is a romantic but utterly ungrounded presupposition.  
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chains in brain structure modeled at the level of spiking-mode neural network organization.  

The simplest form of a neuronal chain structure is illustrated by Figure 9.3 at the PNP level. It 

is a one-dimensional feedforward chain, i.e., activity propagation takes place unidirectionally and 

along a single signaling pathway (tract) from cell group to successive cell group. Spiking proxy 

neuron population models (e.g., Integrate & Fire or Eckhorn nodes) constitute PNP nodes making 

up the chain. Because each PNP node represents a cell group (and, therefore, each connection line 

in the diagram represents a tract of axons), transmission of activity from one node to the next is 

called an activity wave.  

Until the late 1980s and early 1990s, theoretical neuroscience largely ignored wave-like 

signaling behavior in the brain and, instead, operated under a strict paradigm based on the 

average firing rate model. It furthermore regarded average firing rate exclusively in terms of 

action potential signaling rather than the view that these signals are merely indicative of activity; 

i.e., it was presupposed that the action potential spikes themselves (rather than the cell activity 

these signals stimulate) were the sole and proper carrier of information pertinent to mind-brain 

relationship. Again this presupposition can be traced back to von Neumann's work. It is a view 

that a computer theorist would call a "data path model" because the paradigm utterly ignores the 

existence of metabotropic signaling processes in the brain. (These processes were unknown in 

von Neumann's day). This view reflects what we might call a neuron-centric view of brain 

function; such a view is promoted by failure to appreciate the level of complexity existing in 

region III systems. Under this paradigm, the simple chain was viewed as performing the task of 

relaying information from place to place within the CNS. What remained unclear under this 

paradigm was how a simple relay operation could be related to the mental phenomenon of 

knowledge representation (since knowledge and information are not the same thing). Inherent in 

this paradigm was the vague idea that significance of signaling in terms of knowledge could be 

vested in the location of the PNP node. Roughly put, the meaning of the signal is presumed to 

depend upon the localized functions performed by the specific nodes where the signaling is taking 

place. That this is a metaphysical presupposition is downplayed by employing the terms "symbol" 

and "symbolic processing" in place of the more highly-charged word "meaning."  

Beginning in the late 1980s, this "traditional" view began to be challenged under the weight of 

new experimental observations made possible by advances in instrumentation techniques.  One of 

 
Figure 9.3: Simple one-dimensional chain of cell groups. 
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early critics of this dogma was Moshe Abeles:  

The prevailing view is that the firing times of a neuron are the realizations of a stochastic 
point process with variable underlying rate functions. The immediate outcome of this 
view are a host of procedures that estimate this putative underlying rate and its 
dependence on other observable events. . . There are several pieces of experimental 
evidence that do not conform to the view that all that there is to neuronal firing is the 
underlying firing rate. [ABEL5] 

The evidence, Abeles argued, was pointing to a conclusion that, whatever it is that the brain is 

doing, brain function is not adequately described by this simple paradigm. This led Abeles to 

propose what is known as the synfire chain model of neural processing, which we discuss in the 

next section. As it happened, criticisms such as those of Abeles and others came to meld with an 

earlier criticism put forth in 1981 by Malsburg, leading to an increased appreciation that brain 

function (as opposed to mere signaling activity) presented a more complicated scientific problem 

than elementary computer-scientist-like habits of thinking had supposed:  

The purpose of this paper is to point out a specific deficiency in existing brain theory and 
to propose a way in which this gap could be filled. Although it leaves open a number of 
technical questions and presents more of a program than an accomplished theory, at least 
a language is developed to describe processes from the cellular to the cognitive level. . . 
There is every reason to believe in the existence of general principles governing the 
function of the brain. Cerebral anatomy is surprisingly homogeneous in spite of the 
diversity of functional modalities represented in its different parts. The rapid cultural 
development of man has created fields of mental activity for which the brain cannot have 
been prepared by phylogeny in any detailed way. Both arguments seem to force the 
conclusion that the brain is governed by general principles of organization. [MALS2] 

Malsburg's "accomplished theory" has not yet been accomplished and a host of open questions 

still remain to be addressed by theoretical neuroscience. However, many of the current programs 

of research attempting to do so do employ the use of chain models and so an understanding of the 

basic properties of the simple chain is propaedeutic to any discussion of these more recent 

developments.  

§ 3.1 Propagation in Integrate & Fire Chains 

We first consider activity wave propagation in a simple chain comprised of identical I&F 

nodes. The basis for this analysis is the dynamics of the I&F node discussed in chapter 8 (§3.2). 

Each node will be presumed to receive or produce a unit impulse at each firing event. The 

connection weight of the input is w and the time constant for the leaky integrator is τ. Let the 

input to the chain consist of evenly-spaced unit impulses arriving at times tk = k⋅T⋅∆t where ∆t is 

the sampling interval of the simulation, k is a non-negative integer, and T is an integer denoting 

the number of sampling intervals between successive inputs to the chain. We assume the I&F 

nodes have initial conditions of zero prior to the first input pulse, which arrives at time t0 = 0.  
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Figure 9.4: Block diagram of the Integrate & Fire node. 

For convenience, the block diagram representation of the I&F node from Figure 8.10 is 

reproduced here as Figure 9.4. The first input pulse produces an input V(1)(0) = w to the leaky 

integrator (LI) of the first node. The response of the LI to this impulse is given by equation (8.5) 

as y(1)(∆t) = w/τ. We have two cases to consider according to whether (a) y(1) > Θ; or (b) y(1) < Θ.  

For case (a) the LI output exceeds the firing threshold Θ and the first I&F node responds by 

producing a unit impulse at z(1)(∆t) and resetting the LI. We call this case the all-pass firing 

mode of the I&F node. Because we are assuming all the nodes in the chain are identical, firing by 

the first node produces an all-pass response in the subsequent nodes at z(2)(2∆t), z(3)(3∆t), etc. The 

same thing will happen for each successive input pulse, provided that T > 1, and so the chain will 

propagate this input as an activity wave for however long a chain we might have.  

Wave propagation in this case occurs because the weight setting was sufficiently large to 

induce the all-pass firing mode. The function performed by the chain is nothing more than simple 

relay action, however, and the chain basically behaves in the same manner as an axon conveying 

an action potential. This is of rather limited usefulness in terms of implementing signal 

processing functions, however. If one allows multiple inputs from different sources to converge 

on each node in the chain some limited set of logic operations could be implemented by the chain, 

but, again, the types of the logic operations possible are rather limited.  

We call case (b) the highpass filter mode because in this case multiple input pulses must be 

applied to the chain to evoke the first AP response at node 1. Its elementary dynamics were also 

discussed in §3.2 of chapter 8 and depend on the inter-pulse interval T of the input tetanus. The 

firing rate of the input tetanus is Rin = 1/(T∆t) in this case.  

In chapter 8 we saw that this rate must exceed a minimum value before any firing response 

will be evoked from the first node in the chain. This minimum input rate is found by solving 

equation (8.8) with the result 
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Provided the condition set by (9.3) is met, the first node in the chain will respond with an AP 

output on the (M(1) + 1)st input pulse, resulting in an output firing rate R(1) = Rin/(M(1) + 1). Here 

M(1) is the smallest integer satisfying equation (8.10) and is given by the condition  
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R(1) now becomes the input firing rate to the second node in the chain. Because this rate is 

lower than Rin, the interval between successive impulses into the second node becomes T(2) = 

(M(1) + 1)⋅T. In order to evoke a firing response from the second node in the chain, the chain's 

input tetanus must now satisfy the constraint  

   

( )






Θ⋅−

⋅

+
>

τ
τ

w1
1ln

1MR
)1(

in   

or the output of the second node's LI will not exceed its firing threshold and the activity wave will 

cease to propagate. If Rin satisfies this constraint, the second node will fire on its (M(2) + 1)st input 

pulse and produce an output firing rate R(2) = Rin/(M(1) + 1)(M(2) + 1) where  
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Because we are assuming highpass filtering mode operation, the quantity τΘ/w > 1 and so we 

have M(2) ≥ M(1).  

We can continue this analysis by induction. In order for the third node in the chain to fire, the 

input tetanus must exceed the rate 
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and so on for each successive link in the chain until either the condition 
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L > 1, cannot be met by any integer value of M(L) or the input rate Rin fails to satisfy the constraint  

   

( )( )

( )

( ) 0M,

1
1ln

1M
R 0

1-L

0
in =









Θ⋅−

⋅

+
>

∏
=

τ
τ

w

l

l  .             (9.6) 

Unless both conditions are satisfied, activity wave propagation will cease after the (L – 1)st node 

in the chain. We call the propagated activity wave an evanescent wave because it will eventually 

die out for any sufficiently long chain of nodes. Thus, an I&F chain cannot propagate a 

replication of the input tetanus in highpass filter mode operation.  

In principle at least, the simple I&F chain operating in evanescent wave mode can be regarded 

as performing a mathematical function, namely encoding a spatial representation of the input 

firing rate, since the length of the portion of the chain responding to the input tetanus depends on 

the input firing rate. The mapping operation involved in representing the input rate by means of 

the output signals of the chain is not particularly straightforward but presents no mathematical 

difficulty in its calculation. Because the number of links in the chain is always an integer, the 

mapping will be unable to uniquely resolve all possible Rin values; information theorists call such 

a situation an information lossy code. This is not necessarily a drawback, as the terminology 

might seem to imply, because all logico-arithmetic mathematical functions are information lossy. 

An operation that is information lossless merely relays information or transforms its data 

representation to another form but otherwise performs no mathematical function on it6. However, 

your author is not aware of any published examples where this property of the simple evanescent 

mode I&F chain has been exploited to date.  

§ 3.2 Propagation in Eckhorn Chains 

The absence of a reset after firing and the presence of a relative refractory period in the 

Eckhorn model produces differences in the response of a simple chain to an input tetanus in 

comparison with the I&F chain. Figure 9.5 reproduces the block diagram of an ENU (Eckhorn 

neural unit) earlier provided in chapter 8. The Eckhorn model is not commonly used in simple 

chain configurations. However, when it is the linking field input and associated leaky integrator 

are omitted because there is nothing in the chain structure that makes use of the linking field. 

                                                 
6 Consider the elementary operation of integer addition. If the outcome of the addition is 7, we cannot tell 
from this result if the input was 0 + 7, 1 + 6, 2 + 5, or etc. To the information theorist this means there was 
information at the input to the adder that cannot be recovered from knowledge of the output alone and, 
therefore, the operation is information lossy. The mathematical function is information lossy but the nature 
of the information loss is carefully constrained such that a useful function, addition, results.  
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Figure 9.5: Block diagram (left) and schematic symbol (right) of an Eckhorn node. In a simple chain the 
linking field is omitted. Additional dendrites are used for inputs with differing time constants τff. 

We will again assume a single tract input with weight w driven by a succession of impulses 

occurring at times tk as before. The neuromime pulse generator (NMPG) is described by 

equations (8.13) from chapter 8 (§3.4) and the feeding field leaky integrator action after 

discretization is described by  

   ( ) ( ) [ ] ( )tVttFttF ff
ff

ff ⋅+∆−⋅=∆+
τ

τ 1exp            (9.7) 

where Vff = w if there is an impulse at the feeding field input at time t and 0 otherwise. We will 

again assume a relaxed state, i.e. F(t) = 0 for t < 0, and the arrival of the first input at time t = 0. 

Owing to the absence of a linking field or other dendrites, we have Vm = Um = F in Figure 9.5.  

§3.2.1 The Rate Multiplier and All-Pass Modes of Operation 

We again divide our analysis on the basis of whether Θ0 < w/τff or Θ0 > w/τff. In the first case, 

the NMPG responds to the input by firing a unit impulse and setting Θ(∆t) = Θ0 + A. The next 

input pulse coming into the chain does not arrive until t = T⋅∆t and what happens during the 

interval from t = 0 to t = T⋅∆t depends on w, A, and the two time constants in the ENU. If during 

this interval the condition  

   ( ) [ ] [ ] ( )ttAtwtF pgff
ff

Θ=−⋅+Θ≥−⋅= ττ
τ

expexp 0         (9.8) 

the NMPG threshold Θ declines below the residual value of Vm and the NMPG fires again. We 

call this the rate multiplier mode of ENU operation because a single input pulse produces more 
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than one output pulse. Equation (9.8) is a nonlinear equation with no known closed-form solution 

and must be numerically or graphically analyzed to determine if rate multiplier mode (RMM) 

operation is effected by the ENU. RMM operation is not overly-common in applications of 

Eckhorn-based neural networks and has received very little study to date. As this is still for all 

practical purposes a latent field of research, we will not consider it any further in this book.  

If A > w/τff and τff < τpg RMM is usually not exhibited by the ENU and we have the Eckhorn 

version of all-pass mode operation. These conditions come from the following consideration. A 

sufficient condition for violating (9.8), and therefore preventing RMM operation, is  

   [ ] [ ]pgff
ff

tAtw ττ
τ

−⋅≤−⋅ expexp  . 

The maximum value for t in the interval between input pulses is t = t = T⋅∆t. After substituting 

this into the inequality above and some minor manipulation we obtain 
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With A > w/τff the right-hand side of this inequality is positive and with τff < τpg the left-hand side 

is negative. Therefore RMM operation is prevented for any value of T as a response to the first 

input pulse into the ENU. This is not sufficient to ensure RMM will not be evoked by some later 

input pulse in the input tetanus because the feeding field LI is not reset by NMPG firing. 

However, in a great many cases the parameters of the system are such that RMM is not evoked 

and we next consider the all-pass mode of operation.  

When the feeding field LI is driven by an input tetanus with input pulses occurring at fixed 

times tk = k⋅T⋅∆t, solution of difference equation (9.7) by induction results in  
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ff
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with  

   ( ) [ ]
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 .        (9.10) 

If the ENU fired once after the previous input pulse then its threshold will be approaching 

   ( ) ( )[ ]pgk tTAtt τ∆−−⋅+Θ→∆+ 1exp0Θ             (9.11) 

with Θ(tm + ∆t) = Q(tk + ∆t) for all indices 0 < m < k. Now, for an input tetanus of impulses at 
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time indices tm, the feeding field LI output will produce values Vm(tm + ∆t) < Vm(tk + ∆t) 

throughout the series of inputs. Therefore, a sufficient condition to ensure firing of the ENU at 

each input pulse is 

   ( )[ ] [ ]
[ ]ff

ff

ff
pg t

twtA
τ
τ

τ
τ

∆−−

∆−−
⋅≤∆−−⋅+

Texp1
T2exp1

1Texp0Θ          (9.12) 

where we have merely set k = 1 in (9.9). Note, however, that Vm will asymptotically approach  

   ( ) [ ]ffff
kmk t

wttV
ττ ∆−−

⋅→∆+
∞→ Texp1

1lim             (9.13) 

for a long tetanus and so (9.12) is not a sufficient condition to ensure RMM operation is not 

eventually evoked as the stream of input pulses continues indefinitely. Nonetheless, there is a 

broad range of parametric values for the ENU within which its operation remains all-pass and 

RMM is not evoked by long input sequences.  

As the foregoing analysis shows, the equations governing operation of an ENU in all-pass 

mode are significantly more complicated than is the case for the I&F model operating in APM. 

There is little to be gained by employing the ENU rather than an I&F node in a simple APM 

chain unless one desires to allow RMM operation within this chain. For this reason it is much 

more common for the I&F node to be employed for APM chains. The same is not true, however, 

when a chain is desired that operates in highpass filter mode, which we discuss next.  

§3.2.2 The Highpass Filter Mode of Operation 

When Θ0 > w/τff we have the highpass filter mode of operation for the ENU. Behavior of the 

ENU for the first evoked AP firing is identical to that of the I&F node in highpass filter mode. 

The first M inputs to the ENU evoke no output response and the ENU's first output pulse occurs 

on the (M + 1)st input pulse with M given by (9.4) with τ = τff. Here is where the similarity 

between the two models ends because the feeding field LI (FFLI) is not reset by the firing action. 

For the mth input pulse following the one that evoked the firing response the FFLI produces an 

input to the NMPG given by (9.9) with k = (M + m)⋅T⋅∆t. If the NMPG has not re-fired already, 

its threshold is given by (9.11) and if Vm exceeds Θ the ENU will fire again. The most important 

special case occurs when τpg is several times smaller than T⋅∆t but still large enough to prevent 

RMM operation. In this case Θ will have decayed to approximately Θ0 at m = 1 and, because Vm 

is larger than this value, the ENU will fire again at the (M + 2)nd input pulse and at every input 

pulse thereafter. Thus, after suppressing the first M input pulses, the ENU begins firing with no 
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decrease in the resulting output firing rate of the ENU relative to the input firing rate.  

This means a simple chain of Eckhorn neural units in highpass filter mode can propagate an 

input tetanus for any chain of arbitrary length provided the input tetanus is maintained. There is, 

however, a cautionary note that must be made. If the input tetanus is of finite length, each ENU 

node in the chain will suppress the first M inputs it receives, resulting in an output pulse pattern 

equal in rate to the input tetanus but shorter in length by an additional amount M. As this pulse 

packet travels down the chain, the number of pulses it contains decreases at each succeeding link 

in the chain until eventually the number of output pulses in the packet falls below M. At this point 

the activity wave will propagate no further. The Eckhorn chain in highpass mode propagates 

evanescent wave packets. Figure 9.6 illustrates this behavior. Because M depends on T, the 

outputs of the chain can be regarded as an encoding of the input tetanus firing rate and duration.  

This behavior for the simple Eckhorn highpass filter chain appears to be more consistent with 

current models of how signal processing is taking place in the brain (specifically, in the 

neocortex) than is the behavior of the simple I&F chain in highpass filter mode. It is currently 

conjectured that the mental phenomena of perception, memory, and consciousness is related to 

synchronous activity (possibly with phase delays) of multiple neuronal assemblies [BUZS], 

[STER]. In this conjecture, relatively low frequency activity in a neuronal region is thought to 

produce relatively short-range higher-rate signals that propagate over a small distance to other 

assemblies and serves to synchronize their low-frequency local activities ("oscillations") with 

each other. This action, if in fact this is what is happening, is called binding [BUZS], [ECKH2-

3], [STER]. Propagation of evanescent wave packets at higher activity rates is more consistent 

with this conjectured binding mechanism than is the progressively slower-rate propagation by 

simple I&F chains. However, it is also clear that simple chains (or, for that matter, the chains we 

consider in the next section) cannot be the entire story if the binding conjecture is correct.  

 
Figure 9.6: Illustration of simple Eckhorn highpass chain firing with M = 2. 
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The lowest activity rate, Rc, for which the incoming tetanus will evoke a firing response in 

highpass filter mode is called the cut-in rate. This is the rate for which the FFLI output is able to 

reach the baseline threshold Θ0 for an infinitely long input tetanus. The cut-in rate is given by 

   ( )( )0c
c 1ln

11R
Θ−

−
=

∆
=

ffff wtT ττ
 .              (9.14) 

The rate Rp = 1/(Tp∆t) > Rc for which the ENU will respond with a designed value for M is called 

the passband rate for M. Rp is defined to be the input tetanus rate at which the output of the 

feeding field LI first achieves baseline threshold on the (M+1)st input pulse,  
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τ
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(9.15) can be numerically solved for a specified value of M to obtain parameter Tp given the other 

parametric values or, contrariwise, both M and Tp can be specified to obtain design relationships 

for determining Θ0, w, and τff.  

§ 4. Synfire Chains 

Many neuroscientists find it hard to avoid the fallacy of thinking about population model 

structures, such as the simple chain just discussed, as if the nodes in the chain were neurons rather 

than complex structures composed of hundreds or thousands of neurons. Nonetheless, from time 

to time fruitful new ideas are produced even from such a faulty picture. One such fruitful idea is 

illustrated in Figure 9.7, the synfire chain.  

 

Figure 9.7: The synfire chain. 
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The term "synfire" was coined to mean a chained, layered structure of neurons in which firing 

activity was synchronized. Abeles first proposed the synfire chain hypothesis in 1982 as a means 

of explaining how precise spatiotemporal firing patterns could be generated in a noisy cortical 

environment. The main theoretical argument for the actuality of the existence of synfire chains in 

the CNS is as follows:  

 The cortico-cortical excitatory synapses are weak and the firing rate is low. In this 
situation the neurons are insensitive to dispersed excitatory inputs. They act like 
coincidence detectors, not like integrators [ABEL2]. . . Thus, if a pool of neurons is 
activated by an asynchronous volley of spikes its output is more likely to be synchronized 
than its input. The weakness of cortico-cortical synapses also suggests that intracortical 
processing is carried by pools of neurons activating each other through multiple diverging 
and converging connections.  

 Suppose we are confronted with a chain of pools of neurons connected by diverging/ 
converging connections as shown in [Figure 9.7]. Suppose also that the first pool is 
excited by a continuous depolarizing current which produces an unsynchronized 
elevation of firing rate in the pool. If this activity is to propagate at all through the 
network, it would do so in a synchronized mode due to the following process. The second 
pool would preferentially pick up instances at which several of the neurons in the first 
pool fired synchronously by chance. Thus the activity of the neurons in the second pool 
would show a larger degree of internal synchrony. This would amplify itself in the third 
pool, etc. Put in other words a chain of neuronal pools linked by diverging-converging 
connections acts like a spatio-temporal filter for synchronism. Such a chain is called a 
synfire chain. [ABEL5]  

When proposed and for many years thereafter the synfire chain hypothesis, as well as the very 

existence of synfire chains, was quite controversial. It is not without controversy and criticism 

today. Nonetheless, more or less direct experimental evidence consistent with the existence of 

synfire-chain-like cortical organization has been reported:  

We find precise repetitions of spontaneous patterns of synaptic inputs in neocortical 
neurons in vivo and in vitro. These patterns repeat after minutes, maintaining millisecond 
accuracy. Calcium imaging of slices reveals reactivation of sequences of cells during the 
occurrence of repeated intracellular synaptic patterns. The spontaneous activity drifts 
with time, engaging different cells. Sequences of active neurons have distinct spatial 
structures and are repeated in the same order over tens of seconds, revealing modular 
temporal dynamics. Higher order sequences are replayed with compressed firing. . .  

Intracellular recordings and imaging experiments reveal the widespread existence of 
repeated dynamics in the spontaneous activity of neocortical circuits in vitro and in vivo. 
. . Our results demonstrate that the apparently stochastic cortical synapses can work with 
high reliability to produce stereotypical dynamics that are reduced in dimensional space. 
Our data agree with the prediction that cortical activity flows through chains of 
synchronized neurons (synfire chains), which are reactivated with high temporal 
precisions. Moreover, we describe a higher order grammar by which these chains 
themselves can be modules of larger temporal structures (cortical songs) defined by their 
sequence of activation and which can last for minutes. . . The mechanisms that generate 
and propagate synfire chains and cortical songs must be intrinsic to the cortical circuit 
because they are preserved in slices, and might reflect the faithful reactivation of specific 
circuits, mediated by stereotypical synaptic dynamics, and driven by pacemaker cells. . . 
We conclude that the neocortex can spontaneously generate precisely reverberating 
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temporal patterns of activation, dynamical assemblies that could represent endogenous 
building blocks of cortical function. [IKEG]  

Let us take note of the fact that what the experimental evidence brings to light is temporal 

activity and not anatomical layouts. Direct anatomical evidence for physical structures such as 

those depicted in Figure 9.7 has not yet been obtained. Let us further note that the existence of 

repetitive temporal patterns of activity implicates feedback connections from downstream links in 

a synfire chain back into its upstream links. This feedback is not depicted in the figure but has 

been part of the synfire chain hypothesis from its beginning. Abeles writes:  

 Can such precise spatiotemporal firing sequences (motifs) serve as a code that can be 
recognized by other neurons? Probably not. According to the synfire chain hypothesis, 
what can be recognized is a wave of synchronous firing that travels through the synfire 
chain. These sparse firing sequences are only a signature of synfire activity . . . Although 
the synfire chain hypothesis is very appealing, it still remains to be shown that synfire 
chains exist in the intact brain and that they are relevant to the behavior of animals and 
humans. [ABEL6]  

It must also be noted that synfire chains are neither the only nor the first model of chain-like 

activity propagation to be proposed. In 1969 Grossberg proposed a map/network-system-level 

model of chain-like neural processing, which he called an avalanche network [GROS11-12, 21]. 

Experiments such as those reported by Ikegaya et al. [IKEG] are equally consistent with the 

hypothesis that avalanche chains exist in brain structure. It is not improbable that something like a 

synfire chain structure at the PCNN modeling level might be a lower-level building block 

structure for the composition of Grossberg's avalanche chains. Avalanche chain networks are 

presently a very under-studied research topic but recent findings suggest they may provide one 

very important network-system-level building block for explaining neural system functions at the 

system architecture level that can be directly related to observable behavior [WELL5-6]. Your 

author regards synfire chains, avalanche chains, and the Eckhorn PCNN structures in the next 

section to be closely-coupled research topics.  

Let us now look at the synfire chain structure. We will assume each node in the network 

receives Ltot afferent tract inputs. Let us call this the fan-in of the node. For the sake of 

convenience we will assume each input has an input weight of w. We will further assume each 

node is modeled by an I&F proxy. The central idea in the synfire chain hypothesis is that each 

layer in the chain responds with output pulses from some subpopulation in that layer only if the 

nodes within that subpopulation each receive some Ln ≤ Ltot more or less synchronous input 

pulses in a single volley. In this context synchrony means the input pulses all arrive within a very 

short time-span of each other such that each node in the subpopulation gets a total input excitation  

   Θ⋅≥≡⋅= τµwnLV .                  (9.16) 
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We will call Ln the critical stimulus level. If for convenience we assume the pulses making up 

the input volley all occur at time t = 0, the LI output in response to the volley is 

   ( ) ( ) ( ) Θ≥−⋅= 0,exp ytty τ
τ
µ .               (9.17) 

Because this LI output exceeds the firing threshold of the I&F node, the node responds to it by 

producing an output pulse of its own and resetting the LI. This means the combination of 

synchronous inputs for the responding subpopulation puts each node in that subpopulation into 

the all-pass mode of operation. Note that it is not necessary for each node within the 

subpopulation to receive the same number L ≥ Ln of synchronous inputs. All that is required is 

each node in that subpopulation is excited into the all-pass mode by whatever particular volley it 

happens to receive. Once this is achieved, the particular value of µ for each subpopulation node is 

completely irrelevant because the I&F node then resets the LI to zero once more.  

If a large enough subpopulation in the layer responds with an output volley of its own, it will 

evoke the all-pass response in another subpopulation (not necessarily of the same size) in the next 

layer in the synfire chain. If this second-layer subpopulation is large enough, it will evoke the all-

pass response from a third-layer subpopulation, etc. and a traveling activity wave can ensue that 

propagates down the chain.  

As can be seen in Figure 9.7, each node in a given layer projects its output to some N nodes in 

the next layer. We can call this the fan-out of a node. If N is less than the number of nodes in the 

next layer the synfire chain is said to be an incomplete chain [ABEL1, pg. 216]. Otherwise it is 

called a complete chain. Based upon various statistical approximations of cortical organization, 

Abeles argues that incomplete chains are more likely to be representative of cortical organization 

than are complete chains [ABEL1, pp. 216-221]. The argument is based on neuron-level 

modeling in randomly connected cortical networks and for these reasons is not particularly 

compelling at the level of the modeling hierarchy with which we are here concerned (because our 

nodes are cell groups, not neurons). However, we should also note that if not all the nodes in one 

layer fire synchronously, the effect at the next layer is more or less the same as we would have for 

an incomplete chain even if the network itself is modeled as a complete chain. For that reason we 

will consider only incomplete chain network structures (Figure 9.7-like connectivity) in this book.  

The diagram of Figure 9.7 is drawn such that fan-in (Ltot) and fan-out (N) are equal for each 

node, but this is not a general restriction on a synfire net and Abeles' argument tends to imply that 

biologically realistic modeling would demand Ltot < N, although in practice synfire modelers have 

tended to set Ltot = N < W where W is the width of (number of nodes in) the layer [ABEL3], as 
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has been done in Figure 9.7. Abeles also argues that the source-destination connections from one 

layer to the next should be randomized, an argument that helps one try to apply region-II 

reasoning to this region-III system but is rather inconvenient insofar as a quantitative theory of 

the signal processing function performed by a synfire chain is concerned.  

Let us assume Ltot = N < W but allow the layer-to-layer connections to be non-random and 

regular (that is, the same between each pair of layers). Examination of Figure 9.7 then illustrates 

an important first fact, namely that with equal w values for each connection the critical number of 

synchronous inputs Ln required to evoke firing response must be Ln < Ltot because each node in 

the next layer receives inputs from a different collection of nodes in the previous layer. If Ln = Ltot 

then at least some of the nodes in the next layer would not fire in response to the first layer volley 

(e.g. the nodes at the outer edges of the layer) even if all nodes in that first layer fired. In turn, no 

nodes in the third layer could receive a sufficient number of inputs to fire and the synfire wave 

would die out almost at once. This can be compensated for by allowing the weights at the "edge" 

nodes to be higher-valued (which in effect lowers Ln at these nodes), but this seems prima facie to 

be a rather artificial trick for the sole purpose of getting a synfire wave to propagate. If we wish to 

maintain equal w values for all input tracts (which is more or less the network-level counterpart to 

the average neuron of chapter 8) then we must require as a condition that Ln < Ltot. What may we 

then expect?  

Wave propagation characteristics of the synfire chain depend not only on Ln but also on the 

connectivity patterns between layers and the distribution of firing nodes in the layers. At the time 

of this writing no mathematical theory for synfire node behavior has been reported other than the 

aforementioned various statistical (region-II-like) modeling approaches, although Hayon et al. 

have reported a mathematical "wave mechanics" model of synfire waves [HAYO]. What we will 

present here are some graphical examples that illustrate the principal qualitative features we wish 

to emphasize. We adopt the naming convention of referring to these examples as W-J-Ln ("d") 

where W is the width of the chain, J is the number of nodes initially firing in the first layer, and 

("d") is an optional descriptor of the distribution pattern of firing nodes in the first layer.  

We will consider examples with W = 6, N = Ltot = 4 and Ln < Ltot. Figures 9.8 illustrate our 

first example, a pair of 6-4-3 cases. In Figure 9.8A we have J = Ln + 1 and the feedforward 

connections from the firing subpopulation into the second layer are made to neighboring nodes, 

i.e. the output activities of the first layer project into a common second layer sub-pool. As the 

figure illustrates, the initial firing pattern evokes responses in J2 = 4 nodes of the second layer, 

and these responses succeed in evoking a third-layer response, etc. A synfire wave is therefore 

successfully launched by the initial stimulation of layer 1.  
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A              B 

Figure 9.8: 6-4-3 examples. A: 6-4-3 case where nodes in the first-layer firing pool comprise a 
subpopulation making immediately neighboring forward projections to the second layer. B: 6-4-3 (split) 

case where the initial subpopulation of firing nodes in the first layer do not form a subpopulation of 
immediately neighboring forward projections. 

  
A              B 

Figure 9.9: Examples of successful synfire wave stimulation. A: 6-3-2 (split) example where sufficient 
connectivity overlap into the second layer exists to evoke firing. In this case 4 nodes are stimulated and the 

wave thereafter propagates. B: 6-2-2 example where a synfire wave builds up over the course of the next 
two layers and thereafter successfully propagates.  

Figure 9.8B is a 6-4-3 (split) case and here the outcome is very different. Outputs from the 

first layer are scattered among the population of the second layer such that only two nodes in the 

second layer have evoked responses. This falls below Ln and so a synfire wave fails to become 

established because of the connectivity pattern and distribution of activated first layer nodes.  

277 



Chapter 9: Pulse-Mode Network Modeling 

That it is the combination of J, Ln, and the connection pattern between layers that determines 

whether or not a synfire wave is established, and not any one of these factors all by itself, is 

illustrated by the examples given in Figures 9.9. Figure 9.9A is a 6-3-2 (split) case where, again, 

we have J = Ln + 1 and a separation between activated nodes in the first layer population. There 

is, however, sufficient overlap of connection in the second layer to not only produce J2 > J > Ln 

firing responses in the second layer but also to immediately establish a propagating synfire wave. 

Figure 9.9B is a 6-2-2 case (i.e., J = Ln) illustrating J2 = 3 > J in the second layer followed by 

completing the establishment of a stable propagating synfire wave (J3 = 4) in the third layer. Thus 

in this case we have a build-up transition from the stimulating layer to the eventual synfire wave 

pattern itself.  

These graphical illustrations of our four examples offering a tantalizing hint for an approach to 

developing an algebraic-graph theoretic approach for quantitative mathematical modeling of 

crystalline neural network synfire chains. Figures such as 9.8 and 9.9 are called trellis diagrams 

by information theorists. A mathematical theory for analyzing trellis diagrams for constrained 

communication channels and for convolutional error correcting codes exists [WELL7, chapters 2 

and 6]. A synfire chain is prima facie not the same as either of these types of systems, but the 

structure of a synfire chain nonetheless appears to be quite closely related to the structures of 

these two other types of systems. It may therefore be possible, with appropriate additions and 

modifications of a relatively minor nature, to extend the body of theory developed by information 

theorists to cover the case of the synfire chain. If it does turn out to be possible to obtain a 

mathematical description of synfire chains using trellis analysis techniques, then it will also be 

possible to extend the theory of synfire chains to take in the case where feedback loops exist 

within the chain, a case that at present has no general mathematical theory aiding in our 

quantitative understanding of synfire dynamics. At the time of this writing, this idea is no more 

than a conjecture and quantitative analysis of synfire chains remains an active research topic.  

Why go to the trouble of constructing synfire chain models? After all, if all we wished to do 

was a relay-like propagation of activity down a chain, a simple chain of I&F nodes in all-pass 

mode would suffice. The neuron-level speculations that synfire chains exist in the brain is, at the 

present time, still no more than a conjecture and, in any event, the current synfire paradigm is 

placed at a point in the modeling hierarchy of Figure 9.1 far closer to biology than to psychology, 

whereas modeling at the level of this chapter is neural network modeling and lies closer to 

psychology than to biology. These criticisms are true so far as they go, but they overlook an 

important fact about synfire chains.  

In the synfire chain diagrams presented above some of the nodes make projections outside the 
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synfire chain. Where do these go? One answer is to other synfire chains. Abeles et al. have shown 

interlocking synfire chains provides a possible model for feature binding [ABEL4]. He writes,  

[Bienenstock] posits that only a few cross-links between two synfire chains that obey 
appropriate timing constraints are necessary to assure that both synfire chains will act as a 
wider and more stable synfire chain. This is turn could lock into activities in other synfire 
chains, and so on. Thus a large structure of synfire chains can be dynamically generated 
to represent binding of many simple components into a meaningful composite mental 
representation. This type of binding is dynamic, so that a single synfire chain may, under 
different conditions, lock into a number of other synfire chains and therefore be part of 
numerous distinct composite representations. In Bienenstock's view, the most important 
aspect of such a dynamic binding is vertical binding, in which a higher-level concept 
binds to lower-level elements that compose it.  

 Abeles et al. [ABEL7] have shown, by way of simulations, that two synfire chains with 
random connections may learn to lock in to each other if activated synchronously several 
times and if the synaptic modifications follow a time-asymmetric rule (i.e., synapses are 
strengthened if the presynaptic spike precedes the postsynaptic spike and weakened if the 
time order is reversed). . . Hayon has shown by way of simulation that hierarchical 
systems of synfire chains could be used to separate figure from ground, to implement a 
minimal description length (MDL) principle, and to exhibit the property of 
compositionality. However, these demonstrations were toy problems. It remains to be 
shown that synfire chains can efficiently solve such problems in real world situations. 
[ABEL3] 

The possibility that systems of interlocking synfire chains might be capable of supporting binding 

(e.g., of "feature fragments") as well as representation functions that could be tied to higher-level 

mental phenomena is too important to ignore. Systems of cross-linked synfire chains represent an 

approach to dealing with cell assembly phenomena that, prima facie, are consistent with other 

conjectures, such as those of Damasio and of Malsburg, that have been deduced from entirely 

different (and fundamentally psychological) considerations. Further, if synfire-like-chains are 

building blocks for map and network system level models such as those of Grossberg's avalanche 

chains, a quantitative mathematical theory of synfire chains would likely prove to be a key link in 

the modeling hierarchy roadmap connecting biology and psychology.  

We close this section with one final note. A system structure in which we have cross-linked 

synfire chains makes the definition of "a" synfire chain somewhat ambiguous. Put another way, in 

the language of set membership theory, the boundary between one synfire chain and another is 

"fuzzy" rather than "crisp." This is reflected in Abeles' remark about "wider" synfire chains 

above. That the boundary is fuzzy is what makes explicitly clear the fact that a quantitative 

general theory of synfire chain systems is a theory of cell assemblies. This arguably provides an 

opening for exploration of Malsburg's conjecture regarding dynamic link architectures [MALS3].  

§ 5. Eckhorn Networks 

With the exception of a network we will call the Johnson PCNN, PCNNs constructed with the 
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Figure 9.10: The basic Eckhorn PCNN cell assembly layer. It consists of N Eckhorn neural units laterally 
coupled to each other by linking field connections. For clarity, lateral connections are shown only for the 

central ENU in the figure. All ENUs in the layer make and receive similar connections with/from all other 
ENUs in the cell assembly. A layer of multiple overlapping assemblies is defined by the absence of linking 

field connections running laterally from some ENUs in one assembly with those of another. 

Eckhorn neural unit are organized as chains of layered assemblies defined by linking field 

connections running laterally between all ENUs in the assembly. Figure 9.10 illustrates the basic 

Eckhorn cell assembly layer. The layer receives feeding field input tracts from a previous layer 

and projects its outputs to the feeding field inputs of a subsequent layer, thus forming an Eckhorn 

chain of assemblies. No general theory of Eckhorn PCNNs has yet been developed and published 

works to date largely focus on one- and two-layer arrangements of Eckhorn ENUs. Even here no 

general modeling (design) theory has yet been reported and the development of new Eckhorn 

network topologies (as well as parameter selection for reported topologies) is presently more art 

than science7. Our treatment must therefore be more qualitative than quantitative as we discuss 

the most common of these published topologies.  

§ 5.1 The Basic Eckhorn Layer 

The Eckhorn linking field exists to promote synchronization of the firing activities of the 

ENUs within an Eckhorn assembly. Typically all ENUs within a basic Eckhorn layer have 

identical ENU parameters with patterned linking field weights, λ. Let us assume that one ENU in 

the layer fires an output pulse at time t = 0. Referring to Figure 9.5 for our symbol definition, 

every other ENU within the assembly then receives a linking field input from this ENU, resulting 

in linking field response 

                                                 
7 Most Eckhorn PCNN papers are published in the neuroscience literature, which has to date largely 
eschewed in-depth mathematical treatment and favored simulation studies accompanied by largely 
qualitative arguments.  
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If an ENU receives L simultaneous linking field inputs with average weight λ, this value is 

multiplied by L. The LFLI response produces a short-term modulation of the gain of the feeding 

field pathway, Glf = 1 + β, as shown in Figure 9.5. Thus, Um(t) = [1 + β(t)]⋅F(t). Typically τlf is 

much smaller than either the feeding field or NMPG time constants and so this gain modulation is 

short-lived. Note that linking field pulses cannot reach the NMPG input unless F(t) is non-zero. 

Now suppose F < Θ0. If the linking field modulation boosts Um such that Um ≥ Θ0, the ENU 

receiving linking field stimulation will now fire an output pulse of its own and also provide 

linking field stimulation to all other ENUs in the basic assembly layer (or layers if it belongs to 

more than one basic cell assembly layer). Because τlf is small, this promotes near-synchronous 

firing from all ENUs in the layer that have received feeding field inputs within a short time of the 

firing of the first ENU. Here a "short time" is typically on the order of a few milliseconds before 

or after the input to the ENU that fired first. This synchronizing window width depends on how 

many ENUs fire (which determines the values of β(t) that result in the other ENUs).  

With typical ENU parameters, the effect of the linking field is designed to briefly place the 

ENU in all-pass mode for its feeding field input tract. ENUs within the layer that do not receive 

feeding field inputs during this window do not fire. Thus, the output of the basic layer typically 

consists of some sub-pool of ENUs within it responding to poorly synchronized volley inputs 

with volley outputs that are more closely synchronized. If basic layers are connected in an 

Eckhorn version of a synfire chain, these outputs become better and better synchronized as the 

activity wave propagates down the chain. Note, too, that under certain input conditions and 

parameter values it is possible for the linking field effect to induce a rate-multiplier mode of 

operation for some or all of the ENUs in the layer. This RMM is a consequence of the network 

connectivity rather than of the individual ENU since the latter need not by itself be capable of 

RMM operation in the absence of its linking field connections. We can call this network RMM.  

§ 5.2 The Eckhorn Spike Density Modulator   

Eckhorn has reported some useful variations on the basic theme just presented [ECKH3]. 

Figure 9.11 illustrates one of these, the spike density modulator (SDM) [ECKH3-4]. The SDM 

was originally proposed as a network function for separating different feature representations that 

might be represented within the same set of input tracts arriving at the input of an Eckhorn layer. 

The underlying idea was that two adjacent objects represented by signaling via a common tract 

can be segmented by producing a robust phase shift in output signals representing these objects.  

281 



Chapter 9: Pulse-Mode Network Modeling 

 
Figure 9.11: The spike density modulator (SDM). This assembly adds a single ENU receiving excitatory 
inputs from a basic Eckhorn layer and providing inhibitory feeding field input feedback to every ENU in 
the basic layer assembly. The inhibitory ENU typically has no linking field inputs, a larger feeding field 
time constant than the excitatory ENUs in the layer, and is set to operate in highpass filter mode. If the 

linking field weights among the excitatory ENUs are relatively weak and patterned in some non-uniform 
"footprint" (decreasing λ as the distance between ENUs increases), the layer can produce object 

segmentation among tract signals firing synchronously at the same rate by inducing relative phase shifts in 
the output tracts. If the linking field weights are uniform and not necessarily weak, the layer can produce 
pulse packeting of outputs based on their degree of lack of synchronization and/or differing firing rates 

across the tract inputs. This latter function gives this layer the name spike density modulator. 

The notion of a "feature" is central in our current paradigm of the psychophysical relationship 

between biological activity and mental representation. In psychology a feature of a thing is an 

attribute of something (usually an object or event) that is critical to distinguishing that thing from 

other things. Nonetheless, this is a vague description (rather than a general definition) because the 

next question one asks is, "What identifies something in a signal or set of signals as representing 

a feature?" We will have more to say about this in chapter 15.8 For now let us simply accept the 

idea that signals can possess some quality or qualities that can serve to represent a feature. For the 

SDM one such quality would be displacement in time (phase shift) between one vector of pulse 

volleys compared to others. In some models of brain function, e.g. Damasio's convergence zone 

model [DAMA2], objects and events are represented by binding together what may be called 

feature fragments represented by co-activities located in different parts of the brain. Thus the 

functions of feature segmentation and feature binding are central to neural system modeling.  

                                                 
8 It is particularly important to realize that the idea of a "feature" is fundamentally the idea of a 
psychological object and is not an idea contained in and native to the definition of a signal. Rather, we may 
say a signal can represent a feature. This is not the same as saying a signal is a feature. Even the statement 
that a signal represents a feature is a metaphysical, not an empirical, assertion. The current mainstream 
psychophysical paradigm of neuroscience is materialist in character and does suffer from a number of fatal 
weaknesses. This is a topic discussed in depth in [WELL2-3].  
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Feature segmentation in the context of the SDM involves weakly-linked assemblies receiving 

tracts of input signals, arriving as synchronous volleys at the same activity rate, and outputting 

two (or more) sets of volley tracts separated in time (phase shifted) by some amount 0 < ∆ < T 

where T is the firing period of the incoming volleys. It is not currently known if the brain actually 

carries out feature segmentation in this way. To your author's knowledge, so far the phenomenon 

of object segmentation by phase shift has never been observed (although it is thought that object 

segmentation by means of differing firing rates has been observed in a few example cases). 

Nonetheless, the conjecture of temporal coding by phase shift is not an unreasonable one and 

there is no a priori reason to think the brain could only possess one kind of encoding scheme. To 

carry it out requires patterned weighting of relatively weak linking field connections among the 

ENUs in an assembly. A graph of λ vs. the spatial separation (or, for that matter, merely the 

numerical enumeration) of ENUs in the layer is called a weight footprint. An SDM segmentation 

layer typically is given a characteristic footprint in which λ decreases with increasing distance 

between ENUs according to some predefined function, often a Gaussian function. This has the 

effect of specializing different sub-pools (with a possibly fuzzy boundary between sub-pools) for 

"recognizing" (encoding) different features. This amounts to encoding by spatial structure. Such 

a PCNN structure is analogous to the well-known fact that the somatosensory cortex of the brain 

develops a precise topographical map of the body at the system architecture level of modeling. 

Grossberg and Levine proposed an analogous method of feature encoding/detection at the 

network system level in 1975 [GROS15].  

An SDM with strong (and possibly non-uniform) linking weights is capable of performing a 

second type of signal processing function, and this is the one that gives it its name. This is to 

provide a partial and improved degree of synchronization for unsynchronized afferent volleys 

occurring at differing firing rates in different tracts but within a common range of signaling 

bandwidth. In this case the SDM produces packets of output signal volleys separated by 

relatively long periods of silence in the SDM output tracts. Such synchronized spike densities, 

along with the suppression of more transient activities, tend to be dominated by the most strongly 

activated tracts [ECKH4], [WELL4], and tend to be more effective in stimulating downstream 

networks with improved "signal-to-noise ratio" for the packeted signals. Figure 9.12 illustrates 

the packeting of signals by means of spike density modulation. Wells et al. used this property of 

spike density modulation to demonstrate a PCNN model of neocortical functional columns 

capable of spontaneously generating and propagating gamma-band (28-90+ Hz) waves in a chain 

structure (§5.5). Eckhorn et al. have used this packeting mechanism for the modeling of gamma-

band-linked receptive field emergence [ECKH4].  
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Figure 9.12: Illustration of packeting by an Eckhorn SDM. 

 
Figure 9.13: The two-layer Eckhorn network with top-down linking. The thick blue lines represent vector 
feedback of multiple linking field projections. For clarity only one feedforward projection into a layer-2 

sub-pool is shown. ENUs in layer-2 receive multiple feedforward projections from ENUs in layer-1. Each 
layer also contains lateral linking field connections within the layer (not shown). ENUs in layer-2 provide 

linking field feedback to each ENU in layer-1 from which they receive feeding field inputs. 

§ 5.3 Two-layer Eckhorn Network with Top-down Linking 

Figure 9.13 illustrates a two-layer Eckhorn PCNN in which the second layer projects feedback 

via the linking field pathway into the first layer. The purpose of this top-down linking is to bind 

features represented by two activated subregions of the first layer into a single representation. 

Each node in the second layer receives feeding field inputs from several nodes in the first layer 
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and projects a linking field signal back to each first-layer node supplying it with a feeding field 

signal. In both layers, the nodes also make non-uniform lateral linking field projections to the 

other nodes in that layer with λ decreasing in value as the distance between nodes increases. The 

figure omits showing these connections to avoid cluttering the drawing with too much detail.  

Typically the lateral linking field connections do not span the entire width of the layer, i.e., the 

layers are overlapping macro-assemblies of basic PCNN assemblies (Figure 9.10). Linking field 

weights decrease linearly with distance. Both layers make similar non-uniform lateral linking 

field connections with λ decreasing, e.g. linearly, with distance from source to destination node. 

For example, suppose layer-1 is composed of 50 nodes. Node 25 might make lateral linking field 

projections to layer-1 nodes 20, 21, 22, 23, 24, 26, 27, 28, 29, and 30. Five of these nodes, e.g. 23, 

24, 25, 26, and 27, might project to a single layer-2 node. These five nodes make up the receptive 

field (RF) of the layer-2 node to which they project. The layer-2 node projects parallel linking 

field feedback back to nodes 23, 24, 25, 26, and 27 of layer-1, again in a patterned footprint.  

Typically the number of nodes in layer-2 is less than the number of nodes in layer-1. Ratios on 

the order of 1:2 or smaller are typical. The layer-2 nodes are said to each have a larger receptive 

field (RF) than those of layer-1 because the of feeding field tracts converging from layer-1 at each 

layer-2 node. The RF of a layer-2 node is defined by the set of layer-1 nodes projecting to it. The 

RF of one layer-2 node is said to be separate from that of another because these nodes receive 

feeding field inputs from different sub-pools of layer-1 nodes. Top-down linking field feedback 

from layer-2 indirectly provides feedback across a wider span of layer-1 nodes because of the 

overlapping lateral linking field connections in this assembly. Top-down linking-field-induced 

firing of a layer-1 node can lead to the firing of other layer-1 nodes, which can in turn lead to 

firing of another layer-2 node; top-down feedback from this node can in turn lead to even more 

nodes firing in layer-1, etc. This would particularly be a likely dynamic if layer-1 operates in 

highpass filter mode in the absence of top-down feedback. Induced firing of layer-1 nodes would, 

of course, occur only in those nodes receiving sufficient nonzero activity inputs of their own; in 

the absence of feeding field signals, the linking field input of an ENU cannot reach the NMPG. 

Thus, firing activity can quickly spread across a wide breadth of layer-2, and this is the binding 

mechanism by which the RFs of layer-1 are said to be combined in a composite representation of 

feature fragments.  

Eckhorn has used this network dynamic to model visual feature binding for the case where an 

object is divided into two parts by an obstruction (this is known as visual occlusion by vision and 

by image processing theorists) [ECKH3]. Despite the partial loss of data representing the visual 

object, the network is able to "fill in" the missing data and nonetheless "recognize" the occluded 
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object (assuming the object would have been recognized if the occlusion had not occurred). This 

phenomenon is a well-known capacity of the mammalian visual system. Although data is lost due 

to the occlusion, information theory tells us that the occlusion did not cause information loss (data 

and information are not the same thing [WELL7]), i.e. there was sufficient redundancy in the 

visual data to permit object recognition from the non-occluded data9. In this sense, the PCNN of 

Figure 9.13 can be called a "decoder" of information "encoded" by earlier signal processing in 

forming the RFs of the individual ENUs in layer-1. To date there has been very little 

mathematical theory developed for PCNNs such as that of Figure 9.13; it is an under-studied 

topic in computational neuroscience.  

§ 5.4 Two-layer Eckhorn Network with Slow, Lateral Feeding Field Inhibition Feedback 

Neuroscience currently hypothesizes that the strength of many types of stimuli are signaled in 

the early cortical networks (and in the peripheral nervous system) by modulations of spiking rates 

while features are characterized by the receptive field properties of neurons. At the modeling 

level we are dealing with here, the equivalent of this hypothesis is to say strength of stimulus is 

represented by activity ρ (9.2) and features by receptive field properties of population assemblies. 

 
Figure 9.14: Two-layer PCNN of Figure 9.13 with additional negative feeding field feedback from layer-2 
to layer-1. Negative feedback is from the layer-2 ENU to all layer-1 ENUs within the red-shaded triangle. 

                                                 
9 It is a fundamental theorem of information theory that once information is lost it cannot be recovered by 
any means. Data, on the other hand, can be lost without information necessarily being lost if the 
information has been represented with redundancy in the data representation. This is the principle that 
makes error-detecting and error-correcting codes possible in communication systems.  
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In addition to the feature-fragment-binding function just discussed above, there is another 

representational function neural networks are called upon to perform. This is segmentation, the 

separation of signals into representations of individual objects present in the overall receptive 

field of the network system. The most famous example of this class of problem is the classical 

problem of "figure-ground" separation, the separation of one object in a background scene. A 

closely related example is provided by the so-called "cocktail party problem," in which you can 

"filter out" the hum of background conversations in order to listen to just one person who is 

speaking but, nonetheless, still remain cognizant enough of the background to, e.g., have your 

attention captured if someone else in the room speaks your name. Both problems call for the 

ability to bind feature fragments together to represent an object and to keep these objects separate 

enough that any one of them can be "brought into the foreground" as the others are "relegated to 

the background" using any sort of combination. The PCNN of Figure 9.14 is aimed at providing 

one key component for addressing compound problems of this sort.  

In this network, the network of Figure 9.13 is modified by the addition of inhibitory feeding 

field feedback from each layer-2 ENU to both the subpopulation of layer-1 ENUs projecting to it 

and to neighboring ENUs not providing feeding field projections to the layer-2 node. The 

inhibitory feedback footprint is indicated by the red-shaded triangle shown in the figure. The 

inhibitory feeding field time constant τiff in the layer-1 ENUs is typically much larger (slower) 

than the excitatory feeding field time constant τff by a typical factor of from 3- to 6-fold. (This 

makes the addition of a second "dendrite" desirable for the layer-1 ENUs because the inhibitory 

FFLI must now be different from the excitatory FFLI in each ENU; when this is the case, the 

inhibitory dendrite typically does not have a linking field and the inhibitory FFLI is summed in at 

the input of the NMPG as shown in Figure 9.5). Feedback weights are typically non-uniform 

across the inhibitory footprint, with a Gaussian footprint of weights, largest at the center and 

falling off rapidly toward the edges of the footprint, being commonplace.  

How does this neural network help to accomplish the joint binding/segmentation problem? 

Eckhorn writes:  

There are many reasons why neighboring features belonging to the same object will 
evoke different spike rates in neighboring neurons. If such activities have to be linked by 
synchronized signal components this can obviously not be accomplished by a precise 
spike-to-spike synchronization where every spike is coincident with those in other 
neurons. This would unify the spike patterns and suppress the information about the 
individual contrasts carried by single neuron spike patterns. In addition, precise 
synchronization of entire spike patterns has never been observed in recordings. . . 
However, the coding of features as belonging together requires only a few bits of 
information and hence loose coupling of many spikes or tight coupling of a few spikes 
would suffice for it. Such coupling operations seem plausible because they would not 
interfere with the single neuron's rate coding (keeping rate coding and feature-binding-
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by-synchronization nearly independent). [ECK3] 

As a minor comment, note that we must read "neuron" as "ENU" in this quote at this level of our 

modeling hierarchy. Eckhorn's remarks go on to note that linking field signaling tends to 

synchronize firing activities but non-uniform inhibitory feeding field feedback signaling tends to 

separate tract signaling by causing small differences in firing rates. Referring specifically to 

Figure 9.14, inhibitory feedback to the layer-1 pool projecting to the layer-2 ENU is offset by the 

linking field feedback to these same ENUs. Inhibition to layer-1 ENUs outside of this pool, on the 

other hand, is not compensated for by linking field feedback from the layer-2 ENU supplying the 

inhibition. With the larger value of τiff employed in the feedback configuration, this leads to a 

gradual build-up of contrast enhancement across the layer-2 output vector and, thus, clearer 

separation of "figure" from "background" in the layer-1 activity patterns.  

§ 5.5 Example: A Neocortical Column Model 

Owing to the lack of a general theory for PCNNs, the modeling of neural systems by use of 

PCNNs tends to be rather more of an art than a science at present. Nonetheless, it is often not 

particularly difficult to obtain interesting models and model parameters. This author has noticed 

there is an intriguing similarity between PCNN modeling and the logical design of computer 

systems as practiced in computer engineering. Figure 9.15 presents one such example.  

   
A                 B 

Figure 9.15: Neocortical column models constructed from Eckhorn PCNNs and based on known 
anatomical connectivity in the neocortex. (A) A column implementing a highpass filter function. (B) A 

column implementing a bandpass filter function by using two highpass subcolumns with the cut-in 
frequency of the second subcolumn higher than the cut-in frequency of the first. The second subcolumn 

projects inhibitory feedback into the first subcolumn when that subcolumn signals at a high rate. The 
assemblies represented by the small cylinders in the figure are implemented as spike density modulators. 

The two subcolumns each form large cell groups, denoted as group 1 and group 2, respectively. The 
highpass filters are each designed for M = 1 highpass operation with the cut-in frequency set by the choice 

of excitatory feeding field time constant. The ENUs have one excitatory and one inhibitory dendrite. 
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Wells, Lu, and Montoya [WELL4] proposed this PCNN in 2005 as a model for studying the 

generation and propagation of signals by neocortical columns in the low (0-3.5 Hz), alpha (7-14 

Hz), beta (14-28 Hz), gamma (28-70 Hz), and high (> 70 Hz) frequency bands. The model 

structure was made to conform to known anatomical connectivities among the layers of the 

neocortex as reported by Douglas and Martin [DOUG1]. Our immediate purpose was to see if the 

Douglas and Martin cortical organization represented in Figure 9.15 could explain experimentally 

observed frequency domain and signaling correlation characteristics obtained from subdural 

recordings of an awake human subject as reported by Bruns and Eckhorn [BRUN].  

The model is constructed from PCNN "kernels" composed of five ENUs. Each kernel is an 

Eckhorn spike density modulator (Figure 9.11). Full details about the model including all 

parameter and connection weight values are provided in [WELL4]. These SDM kernels are 

interconnected to represent neocortical layers II/III (L-III(1) and L-III(2) in the figure), IV (L-IV 

in the figure), V (L-V(1) and L-V(2) in the figure) and VI (L-VI in the figure). The overall 

cortical model is arranged in terms of cell groups of six kernels each (a total of 30 ENUs per 

group, Figure 9.15A). Parameters of the L-IV kernel were designed such that this kernel operates 

in highpass filter mode with M = 1 for synchronous volley inputs of a specified frequency band 

(alpha, beta, or gamma). Afferents are applied to the four excitatory ENUs that make up the L-IV 

SDM kernel. Within the highpass filter group, projections from each SDM kernel to the others are 

weighted such that a synchronous volley output from all four excitatory ENUs in the source 

kernel evokes an all-pass firing response in the destination kernel.  

Wells et al. were able to show that two such highpass groups operating at different cut-in 

frequencies could be connected as shown in Figure 9.15B to form an overall column with 

bandpass signaling properties. For example, a group-1 subcolumn designed to pass beta and 

higher frequencies coupled with a group-2 subcolumn designed to pass gamma and higher 

frequencies forms a beta-band bandpass filter. Synchronous input volleys coming in below the 

beta band evoke no firing response from group-1. Volley inputs in the beta-band evoke a well 

synchronized cell group response from group-1 but no response from group-2. Input volleys in 

the gamma-band initially evoke a gamma-band response from both group-1 and group-2 but 

inhibitory feedback from group-2 into group-1 then suppresses firing by L-V and L-VI kernels in 

group-1. L-VI is taken as the output projection from group-1 to the next cortical column and so 

this feedback inhibition from group-2 prevents gamma- and higher-band synchronous input 

volleys from being propagated to other cortical columns by group-1. Projections from one cortical 

column to the next in a chain are made from L-VI of the source column to L-IV of the next 

column in the chain.  
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Figure 9.16: Synchronized response of gamma-band highpass group to unsynchronized tetanus inputs 

above and below its cut-in rate. ENU N1 of L-IV receives a tetanus of 28.57 Hz while ENUs N2-4 receive 
synchronized 27.03 Hz volley inputs. The group was designed to have a gamma-band cut-in rate of 28 Hz. 
The numbers at the left of each graph are ENU numbers in the group (see Figure 9.15A). ENUs 5, 10, and 
15 are the inhibitory ENUs. SDM kernels L-IV, L-III(1), and L-III(2) responses are shown in this figure. 

For well-synchronized input tracts the model group behavior is unremarkable. It behaves as 

one expects: passing signals above the designed cut-in rate, rejecting those below this rate, 

operating in bandpass mode (Figure 9.15B only) over the designed range of input signaling 

frequencies. The novel and interesting behaviors of this model show up when the input tracts are 

asynchronous. Figure 9.16 illustrates one such behavior, which Wells et al. termed "pull-in by 

secondary stimulation." A highpass group designed to pass gamma-band signals was given one 

gamma-band input tetanus (applied to ENU-1) at 28.57 Hz (designed cut-in rate = 28 Hz). The 

other three ENUs in L-IV received synchronous beta-band (27.03 Hz) inputs. Normally ENUs 2-

4 would fail to respond to their inputs because the incoming firing rate is below their cut-in rate. 

However, because ENU-1 responds to its input (which is above its cut-in rate), its linking field 

projections to the other ENUs in the kernel evokes firing from them as well. The result is well-

synchronized beta-band firing by the other kernels in the group. However, because the ENU-1 

input is asynchronous to the others, there eventually develops a higher-than-beta firing response 
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beginning at around 300 ms, which in turn fires the inhibitory ENU and produces packeting of the 

group's firing response. The ability of this gamma-band highpass filter to respond to beta-band 

signaling near its cut-in due to the presence of a single gamma-band input shows the PCNN can 

"pull in" near-band-edge signals due to linking field action. Because the evoked response in the 

highpass cell group is packeted, this beta-band response travels as an evanescent wave in a chain 

of identical highpass columns, with the packet widths becoming shorter and shorter at each link in 

the chain. In this simulation, no signal propagated farther than the fifth link in the chain.  

 
Figure 9.17: Spontaneous emergence of a traveling wave dipulse packet by asynchronous beta-band input 

signals. ENUs 1-30 belong to group-1 of the first column. ENUs 61-90 belong to group-1 of the second 
bandpass column connected in a chain to the first. Responses of subsequent columns in the chain is similar 
to ENUs 61-90. Afferent inputs to the first column in the chain were 19, 20, 21, and 22 Hz (mid-beta-band) 

applied to ENUs 1-4, respectively. The time axis is in milliseconds. 
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Figure 9.18: Measured spectrum modeled using an idealized subdural probe mimic for the chain response 
of the example of Figure 9.17. The frequency content of the firing patterns in the model columns shows a 
general attenuation of beta-band energy levels, the production of alpha- and low-band energies, and the 
spontaneous creation of gamma-band and high-band frequencies in response to asynchronous beta-band 

stimulation of the first link in the beta-band bandpass filter chain. 

An even more interesting behavior is exhibited by beta-band bandpass columns in response to 

asynchronous beta-band input signals. This is illustrated in Figure 9.17, which illustrates two 

successive group-1 links in a chain of beta-band bandpass columns (Figure 9.15B). The first link 

received asynchronous L-IV beta-band input signals at rates of 19, 20, 21, and 22 Hz, 

respectively. Each L-IV excitatory ENU would by itself respond to its input tetanus because the 

incoming signal is in its passband. The linking field action of the L-III(1) kernel synchronizes the 

firing of this kernel in response to the first two ENU inputs it receives from L-IV, and this in turn 

stimulates firing in the other kernels in group-1. However, the firing of L-VI stimulates a pull-in 

response in L-IV and causes this entire kernel to re-fire in a network-induced rate multiplier 

mode at a firing rate much higher than beta-band. This firing rate is controlled by propagation 

delay down through the column. L-VI induces re-stimulation of L-III(1) but not the other kernels 

because these are still within their relative refractory periods. This re-firing of L-III(1) never 

reaches the L-VI kernel and so only one RMM-induced extra pulse is produced in L-IV and L-

III(1). 

However, at t = 103 ms ENU-1 receives its second external input pulse and re-fires when it 

comes out of its relative refractory period at t = 110 ms. Its linking field action then re-fires the 
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rest of kernel L-IV at t = 111 ms and this firing action propagates down to L-VI. It fires and again 

induces an RMM response in L-IV, which re-fires L-III(1). At this point the inhibitory ENU, N10 

in L-III(1) fires and packets the response.  

The network-stimulated RMM response of group-1 has produced a synchronized dipulse 

volley out of L-VI with a relative spacing between its two pulses of 17 ms (a 58.8 Hz, i.e. gamma-

band, rate). This is sufficient to trigger the group-2 highpass part of the column, which responds 

by inhibiting L-V(1), L-V(2), and L-VI in group-1 until t = 200 ms. More significantly, however, 

this dipulse is transmitted to the second link in the chain (group-1 ENUs 61-90) where this 

dipulse packet stimulates the second column into its own network-induced rate multiplier mode 

of response. The net result is that the second link in the chain produces its own synchronized 

dipulse volley (spacing = 11 ms, a 90.9 Hz firing rate). This dipulse, transmitted to the third link 

in the chain, triggers network-induced RMM there as well, and the dipulse wave continued to 

propagate down the chain. This is not an evanescent propagation. The dipulse will continue to 

propagate down a chain of identical columns for however long the length of this chain is made.  

What makes this dynamic particularly interesting is the mix of frequencies produced by this 

complex ensemble of firing activities. Figure 9.18 illustrates the spectrum of frequencies 

produced. Although the input stimuli were each a beta-band tetanus, relatively low beta-band 

energy is produced by the network. On the other hand, significant energy is produced in the low, 

alpha, gamma, and high bands by the network. This is at least qualitatively in agreement with the 

measured data of Bruns and Eckhorn. Furthermore, because these spectral energies are produced 

by a complex signaling ensemble rather than by a clean, well-defined tetanus of synchronized 

signals, standard instrumentation techniques (which work by employing electronic bandpass 

filters) would find relatively little time correlation between signals measured at one point in the 

neocortex and those measured at another. This, too, is consistent with a large body of established 

experimental findings. This behavior, and other interesting ones as well, emerged as a property of 

the network, the design of which only aimed at establishing the correct cut-in rates for its column 

groups. It is not known whether dipulses are actually produced and propagated in the neocortex in 

vivo, but the model raises interesting research questions in this regard.  

§ 5.6 Johnson Networks 

We close this chapter with a few brief remarks on an interesting artificial PCNN that has been 

popular with engineers working in the field of image processing. This network was first reported 

by Johnson [JOHN1-2], [RANG] and so we will call it a Johnson network. This early work led to 

a number of later refinements in engineering implementations of this artificial PCNN. 
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Figure 9.19: The basic cell of a Johnson PCNN. 

Since its first publication in the mid-1990s, the Johnson network has seen some application by 

engineers and has had some interesting dynamics reported. However, it is not thought to be 

representative of actual biological organization, e.g. the visual system, and has had little note or 

importance in neuroscience. The Johnson PCNN (often called "the PCNN" by engineers) is 

arranged as a planar "crystalline" neural network of Eckhorn neural units, usually in a rectangular 

grid where all ENUs except those at the edges have four nearest neighbors. Figure 9.19 illustrates 

the basic crystalline cell structure of a Johnson PCNN. The center ENU defines the cell; the other 

ENUs are its nearest neighbors in a rectangular grid.  

Little mathematical theory on the network-level dynamics of the Johnson network has been 

published to date, although a considerable number of papers and one book [LIND] have appeared 

in the engineering literature. These publications are entirely slanted toward the engineering 

aspects of the network as a signal processor for planar images. Every ENU in the network 

receives a single feeding field input from an image retina (usually presented as a gray-scale value 

rather than as a series of pulses). No ENU receives a feeding field input from any other ENU, 

although all project linking field signals to neighboring ENUs with connection weights generally 

decreasing with distance according to typically either a 1/distance variation or some version of a 

Gaussian footprint. The Johnson network is therefore a "flat" network in terms of input-output.  

The most interesting feature of the Johnson PCNN is that its linking field connections produce 

the presence of wave-like firing actions across the network [JOHN2]. These have been termed 

"autowaves" by the engineers [LIND]. The source image tends to appear and disappear in a 

temporal sequence as the autowaves propagate in the network. The PCNN output signals are 
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typically processed by a post-processing image-processing algorithm of some sort. The autowave 

action of the network enables this post-processing to perform such image-enhancing operations as 

noise removal, smoothing, edge identification, etc.  

In many ways, the Johnson network might be regarded as a kind of two-dimensional version 

of the basic Eckhorn layer of Figure 9.10. By itself, it seems to have very little relationship to 

biological signal processing; but this does not necessarily mean that multi-layer Johnson-like 

PCNN topologies, as two-dimensional versions of, e.g., Figures 9.12 or 9.13, have no relevance 

for biological processing. At the present time, though, this is mere conjecture.  

§ 6. Summary 

Pulse-coupled neural network models occupy a middle position in the modeling hierarchy of 

Figure 9.1. They have a number of interesting capabilities having to do with synchronization, 

segmentation, binding, foreground-background separation, and spectrally-rich spontaneous signal 

generation functions. Only very simple PCNN structures have been investigated and reported thus 

far and no large-scale, network-level general theory has yet appeared. They are capable of 

producing wave-like behaviors within the overall network activity profile, being capable of both 

evanescent wave, traveling wave, and autowave propagation. A small amount of theory 

attempting to describe PCNN wave-like behavior has been produced, e.g. [HAYO], but the theory 

is still in an incomplete state.  

The basic unit of a PCNN models a putative cell group population. The neural network itself is 

capable of modeling more dynamical cell assemblies and is capable of exhibiting the formation as 

well as the disestablishment of such assemblies under differing signaling conditions. As a 

modeling-level abstraction, PCNNs provide a linkage between neural netlet models at the level of 

abstract neuron models (e.g. Rulkov, Izhikevich) and map-level models modeling much larger 

scale neural structures in the CNS. PCNNs have also been shown to be capable of biologically-

plausible modeling of spino-neuromuscular systems [GOTS]. Although PCNN research has now 

been conducted for well over a decade, there is still much to learn about their network-level 

dynamics and the field is still a largely-open research area. PCNNs have a more direct link to 

experimental data obtained from probes (as opposed to brain imaging), but the state of the art in 

instrumentation has not yet advanced to the point where the more intriguing possibilities 

suggested by mathematical (speculative) network models can be put to the test. It remains an 

open possibility that PCNN dynamics might provide a more direct link to information theoretic 

questions regarding the putative "neural code" or codes the CNS is thought to use as its "von 

Neumann language."  
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