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Chapter 12 

 
Adaptation and Learning 
 

§ 1. Memory and Learning 

The phenomenon of memory has long fascinated scientists and philosophers. Theorizing about 

memory dates back some twenty-five centuries.  

 Memory is, therefore, neither perception nor conception, but a state or affection of these, 
conditioned by the lapse of time. As already observed, there is no such thing as memory of the 
present while present; for the present is object only of perception, and the future, of expectation, 
but the object of memory is the past. All memory, therefore, implies a time elapsed; 
consequently only those animals which perceive time remember, and the organ whereby they 
perceive time is also that whereby they remember. 

 As regards the question, therefore, what memory or remembering is, it has now been shown 
that it is the having of an image, related as a likeness to that of which it is an image; and as to the 
question of which of the faculties within us memory is a function, it has been shown that it is a 
function of the primary faculty of sense-perception, i.e. of that faculty whereby we perceive time 
[ARIS: 714, 715].  

Today we know things are not quite so simple as Aristotle thought, although it would be 

wrong to conclude he erred in all his particulars. There is a large corpus of literature on the 

psychology of memory, and this textbook is not the place to attempt a review of this. Our 

discussion here will be restricted to only a few illustrative remarks. William James wrote,  

 Memory proper . . . is the knowledge of a former state of mind after it has already once 
dropped from consciousness; or rather it is the knowledge of an event, or fact, which meantime 
we have not been thinking, with the additional consciousness that we have thought or 
experienced it before. 
 The first element which such a knowledge involves would seem to be the revival in the mind 
of an image or copy of the original event. And it is an assumption made by many writers that the 
revival of an image is all that is needed to constitute the memory of the original occurrence. But 
such a revival is obviously not a memory, whatever else it may be; it is simply a duplicate, a 
second event, having absolutely no connection with the first event except that it happens to 
resemble it. . . No memory is involved in the mere fact of recurrence. The successive editions of 
a feeling are so many independent events, each snug in its own skin. . . A further condition is 
required before the present image can be held to stand for a past original. 
 That condition is that the fact imaged be expressly referred to the past, thought as in the past. 
But how can we think a thing as in the past, except by thinking of the past together with the 
thing, and of the relation of the two? . . . [If] we wish to think of a particular past epoch, we must 
think of a name or other symbol, or else of certain concrete events, associated therewithal. Both 
must be thought of to think the past epoch adequately. . .  

 It follows that what we began by calling the 'image,' or 'copy,' of the fact in the mind is really 
not there at all in that simple shape, as a separate 'idea.' Or at least, if it be there as a separate 
idea no memory will go with it. What memory goes with is, on the contrary, a very complex 
representation, that of the fact to be recalled plus its associates, the whole forming one 'object' . . 
. known in one integral pulse of consciousness . . . and demanding probably a vastly more 
intricate brain-process than that on which any simple sensorial image depends [JAME: 648-651]. 
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A specific "memory" is not some photographic-like image, a "snapshot" snipped from the 

pages of one's experience as a whole. Science has found, as James had predicted, that there is 

much more to it than that. There appears to be no one special place in the brain where memories 

reside. Rather, the situation appears to be that the process of "having a memory" involves the 

participation of numerous regions of the brain, including parts of the cortex involved with motor 

functions. This is one of the many facts psychology has unearthed contributing to the refutation of 

the old idea of the British empiricists (and, for that matter, of Aristotle) that some "copy of 

reality" mechanism exists that stamps the impress of external objects into the brain (or mind). 

Piaget et al. found that memory is intimately tied to sensorimotor schemes of actions. 

 We can, in fact, establish three major hierarchic types of memory, each with several sub-
levels: the recognitory memory (1-3); the reconstructive memory (4-7) and the recollective 
memory . . .  
 Type I: the recognitive memory. Recognition at all levels is an assimilation of the data to 
schemes of various kinds, ranging from reflex and elementary habits to the motor schemes of 
sensory exploration. 
 (1) Elementary recognition is bound up with the continuation or repetition of a reflex action or 
a potential habit extending that reflex . . .  
 (2) Next, there is recognition by assimilation to an existing scheme (in the repetition of the 
schematized action): this is the recognition of signs as signifiers and is bound up with habits and 
acts of the sensori-motor intelligence – the fact that the signs are treated as signifiers is due 
precisely to their links with the schemes. 
 (3) Recognition at the higher levels is bound up with mobile and differentiated schemes 
(classifications, etc.). . .  
 Type II: mnemonic reconstruction. In contrast to elementary habits, which involve the 
reproduction, intentionally or otherwise, of schematized actions or of sensori-motor schemes 
tending towards generalization, a reconstruction is the intentional reproduction of a particular 
action and of its results. Hence, it involves the recognition of signs, etc. but goes beyond 
recognition proper in that it constitutes a form of recall by action: it tends to reconstruct a model 
no longer available for perception, while recognition occurs in the presence of the model. 
 (4) We may seek the elementary form of the reconstructive memory in sensori-motor imitation, 
considered as the intentional reproduction of an action performed by oneself, or by somebody 
else, and often of the motion of an object. Now, this interpretation of the reconstructive memory 
bears out the genetic point of view, because sensori-motor imitation heralds recall and already 
constitutes a kind of recall by actions. Moreover, in its deferred and above all in its internalized 
forms, it becomes representative recall and constitutes the source of the mental image which 
plays so important a rôle in the recollective memory.  
 (5) Next comes the reproduction of an isolated and not fully schematized action and 
reconstruction of its result: this is the situation . . . where the model was copied before it was 
reconstructed. 
 (6) Then there is the reconstruction of an object or a configuration (without prior constructions 
of an imitative or spontaneous kind): this is the situation examined . . . where the model was 
recalled by memory-drawings and reconstructions, with the latter producing considerably better 
responses than the former. 
 (7) Finally, we have reconstruction of a schematized action. . .  
 Type III: mnemonic recall. There is no need to stress the fact that even the recollective 
memory depends on actions and action schemes, thus ensuring the complete continuity as 
between reconstructions by actions (type II) and internalized reconstructions represented by the 
memory-image as the instrument of recall:  
 (8) The memory-image of a schematized action: . . . here we found precisely that from the age 
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of seven years . . . simple recall produces the same results as reconstruction . . . which proves the 
complete internalization of reconstructive procedures.  
 (9) Recall by images of any non-schematized action: this is the direct result of the 
internalization of imitation by images. 
 (10) Recall by images of objects or events extraneous to the action: this is the 'pure' memory of 
classical psychologists, but as we saw . . . these 'ill-assorted' configurations are nevertheless 
subject to active schematizations, the sine qua non of their retention. 
 From the foregoing remarks, the reader will have gathered by what slight transitions children 
advance from elementary recognitions, closely bound up with actions, to the higher forms of 
recall, which, thanks to their links with the operational schemes, cannot be entirely divorced 
from actions because, as we say, operations spring directly from the latter [PIAG16: 392-395].  

Educators have long taken note of the distinction between "active learning" and "passive 

learning," and have known that the former is effective in producing learning while the latter is 

not. This is why teachers use repetition and drills to convey lessons. It is why students are 

assigned homework exercises that go beyond mere textbook-reading, and it is why students who 

do these exercises learn the material while those who do not are unsuccessful in learning. The 

development of memory in its various forms is tied to actions and action schemes. Learning is 

the word we use to describe the successful development of memory. A learner who does not pass 

beyond rote imitation and recitation is merely a pupil; one who develops the operational schemes 

for generalizing beyond the particular to a wider range of usage for his or her memory structure is 

a student. Many young people just entering college find the transition from high school to college 

difficult precisely because, while previously it was possible for them to be successful by merely 

being good pupils, in college they are expected and required to be good students.  

§ 2. Synaptic Plasticity 

Learning implies change of some sort taking place in the mind-brain system. In the physical 

dimension of the mind-brain system, this change can only be change of some kind in the neural 

system. Now, normal full-term human infants are born with, in complete or nearly complete 

measure, all the neuron cells their brains will ever have. True, these cells will grow in size for 

awhile, but not in number. What does change, and dramatically so, is the growth and 

establishment of synaptic connections. Synapses form in great profusion and either become 

established or else disestablish and disappear. Between the ages of two to ten or eleven years, a 

normal child's brain has on the order of twice the number of synapses as an adult. Furthermore, in 

many parts of the brain there is found to be a critical time period in development, during which 

synaptic structures can form and become established through neural activity. After this critical 

period has passed, these structures no longer will form. Thus, deprivation of particular kinds of 

sensorimotor experience during the critical period results in permanent disability of the particular 

neural function involved with that experience.  

In established synapses, the efficacy or strength of the synaptic connection – by which we 
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mean the amount of postsynaptic response to presynaptic excitation – increases or decreases 

according to the level of activity at the synapse. This is termed long term synaptic plasticity and 

comes in two general categories: long term potentiation (LTP) and long term depression (LTD). 

The discovery of activity-dependent long term potentiation and long term depression underscored 

a speculation made much earlier by Cajal (1911) and later by psychologist Donald Hebb (1949) 

that learning and memory result from changes in the strength of synaptic transmission.  

Synapses capable of exhibiting LTP and LTD exist in significant numbers in the 

hippocampus, neocortex, and amygdala – brain structures heavily implicated in the psychological 

phenomena of memory and learning. The synaptic plasticity model is generally accepted by 

neuroscientists as the most likely hypothesis for explaining memory and learning phenomena. 

Indeed, it is difficult to imagine any other mechanism. Nonetheless, experimentally confirming 

this hypothesis is very, very challenging [GRIM], and so it is worth bearing in mind that what we 

are discussing here is hypothesis rather than definitely established fact. The SPM ("synaptic 

plasticity and memory") model does occasionally face challenges from findings coming out of 

experimental laboratories. It has so far not been overthrown, but this does not necessarily mean 

that could not happen some day. 

The marriage of neural network theory and psychology is often called "connectionist theory." 

Not all psychologists are "connectionists," and it is probably accurate to say the majority of 

connectionist psychologists are found in America. American psychology has long tended to go its 

own way with disregard for trends in European psychology. Connectionism is strongly associated 

with what is called "the cognitive revolution" that took place in American psychology in 1960 

following American psychology's long and sterile love affair with behaviorism dating from the 

1920s. The connectionist paradigm played an important role in coming to think of brain 

organization in terms of computer and computer-like "information processing" analogies. This 

shows up when a neural network or an artificial intelligence (AI) theorist speaks of "symbols" 

and "symbolic processing" in the brain. "Symbol," however, is a nice vague term that can mean 

almost anything someone wants it to mean. Reber's Dictionary of Psychology lists nine different 

"usages" for the term in psychology, none of which tie the word to neurological entities.  

Computer science jargon usually ties the word "symbol" to whatever is stored in a unit of 

computer memory, this "unit" being conveniently defined to fit whatever context seems the most 

appropriate for the computer science topic at hand. Because synaptic efficacy is what is 

represented by the weights in a map model, it is but a short metaphorical step to regard synaptic 

plasticity as not merely the basic mechanism underlying the phenomenon of memory but, rather, 

as "the memory" itself. One sees the shadow of this metaphor when a neural network theorist 
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makes a remark to the effect, "the long term memory is stored in the weights." However useful 

this metaphor may be, it tends to promote thinking of "memory" in computer terms rather than in 

the proper psychological context of the word "memory." Grimwood et al. remark,  

 Learning and memory are generally divided into a set of constituent processes – encoding, 
consolidation, storage, and retrieval – that occur at different phases of learning and recall, that 
may involve different brain areas, and that are very likely to involve distinct activity patterns. 
When considering the role of synaptic plasticity in learning and memory, we must recognize that 
this role might be different at these different phases. It seems likely that synaptic plasticity is 
involved in encoding, storage, and the initial stages of consolidation of information, but not in 
retrieval of that information. 
 It is worth mentioning that memories should not be confused with the traces that subserve 
them. Trace encoding can be thought of as the momentary collective activity of large numbers of 
neurons whose patterns of firing give rise to increases and decreases of synaptic strength that 
then outlast these very patterns. Memory retrieval is the process of passing neural activity 
through the network to create patterns of firing that constitute a "memory." The SPM hypothesis 
asserts that activity-dependent synaptic plasticity is the fundamental mechanism responsible for 
creating and storing traces. In this sense, LTP enables memory; it is not equivalent to it [GRIM: 
525-526]. 

This is a cautionary remark worth remembering.  

§ 3. Long Term Potentiation and Long Term Depression Mechanisms 
Long term potentiation (LTP) is a long-lasting increase in the magnitude of synaptic strength. 

Long-lasting in this context means hours, days, months, years, a lifetime. This is in sharp 

distinction from short term potentiation (STP), which in this text is called an elastic modulation 

of synaptic strength because in STP the synaptic strength eventually returns to its original level. 

The functional opposite of LTP is long term depression (LTD), which is a long-lasting decrease 

in the magnitude of synaptic strength. As we come up to our discussion of adaptation algorithms 

used in map and network system models, it is worth noting that all the widespread algorithms in 

use today are LTP/LTD models. There are presently no adaptation algorithms in widespread use 

in biological signal processing or computational neuroscience aimed at elastic modulations.  

The physiological mechanisms for LTP are metabotropic. This means they involve complex 

biochemical reactions taking place inside the cell. The effect of this metabotropic signal 

processing acts on the ionotropic channels by means of which signals are produced, processed, 

and transmitted in neural networks. Thus, the LTP concept belongs to "control processing" rather 

than to immediate "data processing" (to use some more computer jargon) in neural systems. To 

the extent that it is conceptually helpful to think of certain neural structures as being "like" the 

memory elements in a computer (and to no more extent than this), LTP and LTD can be regarded 

as mechanisms by which network systems build and organize their own 'memory circuits' 

within the overall neural system. This is, of course, a simile for talking about the biological 

function.  
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LTP mechanisms can be either presynaptic or postsynaptic. This means that the long term 

changes in synaptic strength are tied to physiological changes taking place in one or the other side 

of the synaptic junction. Presynaptic LTP and postsynaptic LTP have qualitatively different 

physical characteristics in terms of conditions that are present in the initiation of LTP. This means 

that the basic biochemical mechanisms are different for presynaptic LTP and postsynaptic LTP. 

Likewise, the sites within the brain where these two types of LTP are found are also different.  

§3.1 NMDA-Mediated LTP 
Historically, postsynaptic LTP was the first type of LTP discovered experimentally (in 1973). 

It is this type of LTP that appears to correspond to Hebb's now-famous 1949 conjecture: 

When an axon of a cell A is near enough to excite cell B or repeatedly or persistently takes part 
in firing it, some growth or metabolic change takes place in both cells such that A's efficiency, as 
one of the cells firing B, is increased [HEBB].  

Although today some evidence suggests it might not be necessary for changes to take place in 

both cells (although this does happen in many cases, i.e., in those cases where new synapse 

growth occurs), the principal condition of Hebb's speculation is found in postsynaptic LTP. This 

is to say that both the presynaptic and postsynaptic cell fire action potentials, and the presynaptic 

cell must fire first and within a short time period of the firing of the postsynaptic cell. This 

pairing of cell firings with subsequent change in the synaptic strength is today called Hebbian 

learning.  

The region of the hippocampus called CA1 is the most-studied brain structure for postsynaptic 

LTP, and findings from these studies serve as a model for postsynaptic LTP elsewhere in the 

brain. Two conditions must be satisfied for this form of LTP to be elicited [NICO]. First, the 

synapses must be activated at a high frequency; this is to say, the presynaptic cells involved must 

present a tetanus to the postsynaptic cell, and this tetanus must have a high firing rate. Second, the 

overall intensity of the stimulus must be above a certain threshold intensity. What this means is 

that there must be a sufficient number of synaptic inputs involved in volley firing of the tetanus or 

else the LTP effect does not take place.  

A great step forward in understanding this phenomenon was made when the NMDA channel 

was discovered and this channel was found to be involved in those experimental cases where 

postsynaptic LTP had been observed [MALE]. As you will recall from the earlier chapters, 

NMDA channels are glutamate-enabled/voltage-activated Ca2+ ionotropic channels. For small 

EPSPs induced in the target cell, these channels are blocked by Mg2+ and the NMDA channel 

plays little part in ionotropic signaling. However, when the postsynaptic membrane is 

depolarized, this leads to the ejection of the blocking Mg2+ particle and the opening of the Ca2+ 
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channel. Because the amount of depolarization required to open many NMDA channels is 

typically also large enough to elicit an action potential response by the postsynaptic cell, this 

explains why pairing of pre- and post-synaptic action potentials is necessary for LTP initiation. It 

also explains why the volley input must surpass a particular threshold of intensity (because a 

sufficient EPSP must be produced to open the NMDA channels), and why the presynaptic cells 

must fire first (because they must fire first in order to enable the NMDA channels).  

Ca2+ is one of the most potent metabotropic agents found in biological systems. Under normal 

resting conditions, the intracellular concentration of free Ca2+ is extremely low, on the order of 

about 50 to 100 nM, compared to extracellular concentration levels (on the order of about 1.5 

mM). Basal intracellular Ca2+ concentrations are set by the cell's calcium buffering mechanisms, 

and free Ca2+ is taken up in the endoplasmic reticulum (ER), which serves as the cell's "calcium 

warehouse." The opening of NMDA channels produces a significant rise in intracellular Ca2+ 

levels which, in sufficient quantity, kick off the metabotropic biochemical cascade reactions now 

thought to be responsible for NMDA-mediated postsynaptic LTP.  

Although today there is no doubt that NMDA-receptor-dependent LTP exists, it is less clear 

whether there is one or more than one form of NMDA-receptor-dependent LTP process [MALE]. 

The research of Kandel and his co-workers [CHAI], [KAND3] has shed much light on at least 

some of the biochemical mechanisms involved. We thus have at least one basic qualitative model 

for an LTP process, although little has been published in regard to turning this into a quantitative 

model. Figure 12.1 illustrates the signal processing cascades in the Kandel model.  

 

Figure 12.1: Metabotropic cascades thought to be responsible for NMDA-mediated LTP. CAM = 
Ca2+/calmodulin kinase; PKC = protein kinase C; cAMP = cyclic AMP; CREB = cAMP response element 

binding protein; NTX = neurotransmitter (glutamate). EPSP = excitatory postsynaptic potential; NO = nitrous 
oxide. 
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Figure 12.2: The cAMP/CREB metabotropic cascade leading to new synaptic growth in NMDA-mediated 
LTP. AC = adenylyl cyclase; PKA = protein kinase A. 

Free Ca2+ introduced into the cell from NMDA channel current binds with calmodulin, a 

calcium-sensing compound, to form Ca2+/calmodulin. This compound activates a number of 

different enzymes, called protein kinases, thought to be involved in both short-term synaptic 

plasticity (elastic modulation) and long-term synaptic plasticity [SCHW2]. Ca2+/calmodulin is 

called a second messenger in a metabotropic reaction; the protein kinases are called secondary 

effectors. The three protein kinases involved in the NMDA-mediated LTP process are the CaM 

kinase (Ca2+/calmodulin protein kinases) [HANS], PKC (protein kinase C) [TANA], and PKA 

(protein kinase A) [FRAN]. 

The end effect of the CaM cascade is a redistribution of AMPA receptors, placing more of 

these in the synapse [LÜSC]. AMPA receptors have to be recycled in the cell over a relatively 

short period of time. This has led to the hypothesis that an available pool of AMPA receptors is 

set up by the cell [MALE], an idea not altogether dissimilar to that of the available pool of 

vesicles in the model of the presynaptic terminal. Under this model, CaM catalyzes the transport 

of ready AMPA receptor proteins to (and from) the cell membrane.  

The PKC cascade model is a bit more speculative. There is considerable evidence pointing to 

the involvement of PKC in LTP [NICO], but the precise mechanism by which it acts is not firmly 

proved. There is experimental evidence for the existence of retrograde messengers, i.e. small 

molecules, produced by reactions catalyzed by PKC, which diffuse back to the presynaptic 

terminal [MALE]. There, the hypothesis has it, they stimulate some kind of chemical reaction that 

leads to enhancement of neurotransmitter release. Nitrous oxide (NO) is postulated to be one 

possible retrograde messenger. The cell membrane is transparent to NO, meaning that NO 

produced in the postsynaptic cell can freely diffuse out to other nearby cells. Nonetheless, clear 

evidence confirming the retrograde messenger hypothesis has not yet been reported, so this part 

of the model must presently be regarded as merely a probable mechanism for LTP.  

Both metabotropic reactions just described are related to what is called early LTP. Early LTP 

is a transient effect lasting 1 to 3 hours. The third metabotropic cascade in figure 12.1 produces 
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LTP lasting for at least 24 hours. This consolidated form of LTP is called late LTP [KAND3]. 

The cAMP/CREB cascade, illustrated in more detail in figure 12.2, leads to the growth of new 

synapses at the site of LTP induction. This mechanism affects both the pre- and the post-synaptic 

cells. The presynaptic axon must produce a new presynaptic terminal, and the postsynaptic cell 

must develop a new postsynaptic density to mate with it [LÜSC].  

The cAMP/CREB cascade begins when Ca2+/calmodulin activates adenylyl cyclase (AC), an 

enzyme that catalyzes the conversion of intracellular ATP (adenosine triphosphate) into the cyclic 

form of adenosine monophosphate (cAMP). This leads to the activation of the cAMP-dependent 

protein kinase (PKA). PKA is then translocated to the nucleus of the cell, where it catalyzes a 

series of reactions leading to phosphorylation of CREB (the cAMP response element binding 

protein) [CHAI]. CREB activates genes responsible for regulating the synthesis of new proteins. 

This produces new growth effectors that are, in turn, translocated back to the region of the 

original synaptic site, where they cause the growth of the new synapse [KAND3].  

The model just described is the currently most widely accepted model of NMDA-mediated 

LTP. It is no doubt clear that this is a qualitative model of the process. More detailed quantitative 

modeling is, of course, a research subject in progress. One possible approach to modeling this 

process for augmentation of a Hodgkin-Huxley-like neuron model is to employ the Linvill 

modeling schema introduced earlier in this textbook.  

§3.2 Non-NMDA-Mediated LTP 

It is known that NMDA-mediated LTP is not the only form of LTP [NICO], [MALE]. LTP 

that does not require NMDA receptor activation is known to occur at mossy fiber synapses in the 

hippocampus, at synapses between parallel fibers and Purkinje cells in the cerebellum, and at 

corticothalamic synapses in the neocortex. Virtually all investigators agree the site of expression 

for this form of LTP is presynaptic. This form of LTP is less extensively investigated than the 

other form just discussed, but evidence suggests that, once again, Ca2+/calmodulin is involved, 

and that cAMP and PKA are again factors in the process. It appears to be the case that one 

important action of PKA is to modify some aspect of the synaptic vesicle cycle or perhaps the 

vesicle release machinery itself [MALE]. To effect long-lasting changes in the efficiency of 

neurotransmitter release, it would seem necessary for PKA to become persistently active in the 

terminal. It is known from the work of Kandel et al. that a metabotropic cascade process similar 

to the cAMP/CREB signaling cascade discussed above leads to the production of ubiquitin 

hydrolase (in the cell nucleus) in Aplysia, and this compound is capable of persistently 

phosphorylating (that is, persistently activating) PKA enzymes located back at the presynaptic 

terminal [KAND3], [CHAI].  
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§ 3.3 Long Term Depression 

It appears to be the case that any synapse capable of expressing LTP is also capable of 

expressing LTD and vice versa. In other words, it appears likely that there are no synapses that 

express only LTP or only LTD [BEAR]. It is therefore unsurprising that intracellular Ca2+ should 

again be found a focal point for initiation of LTD. However, because LTD is the precise opposite 

of LTP, it seems clear that its underlying metabotropic mechanism must in some way be different 

from those of LTP discussed in the previous section.  

The two best-understood forms of LTD are those of the cerebellar parallel fiber-Purkinje cell 

synapse and the hippocampal Schaffer collateral/commissural-CA1 pyramidal cell synapse. 

Mature Purkinje cells do not express functional NMDA receptors, but they do express 

metabotropic glutamate receptors (MGluRs). These MGluRs do not produce ionotropic currents, 

but they do initiate two metabotropic signaling cascades. The first produces the second messenger 

chemical IP3 (inositol-1,4,5-triphosphate), which binds to receptors located in the endoplasmic 

reticulum and thereby stimulates release of Ca2+ from the cell's "calcium warehouse." The second 

produces the second messenger DAG (diacylglycerol), which activates the secondary effector 

protein kinase C (PKC). Thus, so far we have two of the factors present in this cascade that were 

involved in Kandel's LTP model. Further evidence shows that MGluR activation by itself is not 

sufficient to produce LTD. Another factor necessary for LTD induction is the opening of voltage-

gated calcium channels, which is, of course, an effect that can be brought about by the firing of an 

action potential by the Purkinje cell. This is something that is, on the face of it, rather strange 

since a rise in intracellular free Ca2+ triggered by the MGluR cascade is certainly sufficient to 

provide a significant source of calcium by itself. Nonetheless, the fact remains. In addition, it is 

also found that an influx of Na+ current is also necessary to evoke LTD in the Purkinje cell. This 

current is, of course, provided by the ionotropic AMPA channels in the synapse, but it remains 

unclear why this influx is needed to evoke LTD.  

These confusing, and sometimes contradictory, experimental findings illustrate that we have 

much yet to be discovered before being able to claim an understanding of cerebellar LTD on par 

with the models for LTP discussed earlier. A more detailed discussion of this topic can be found 

in [BEAR]. In view of the unsettled nature of non-NMDA-mediated LTD at the present time, we 

will forego an attempt to summarize this process as we did earlier for LTP. The simple fact is that 

we currently lack a sufficiently established qualitative model for the biochemical mechanism or 

mechanisms at work here. 

LTD can also be mediated by NMDA receptor channels. Although at first glance it might 

seem very contradictory that NMDA currents could produce either LTP or LTD, the critical 
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factor here seems to be the amount of Ca2+ entering the cell via the NMDA channels. In the case 

of LTP, a strong stimulus is required, which produces a large Ca2+ current influx. However, some 

lower level of Ca2+ current flow does take place for EPSP levels insufficient to evoke an action 

potential. The obvious implication is that it is not the mere presence of free Ca2+ in the post-

synaptic cell that matters, but rather the concentration of Ca2+. Experiments have pointed to the 

existence of at least three different mechanisms for LTD, all of which require Ca2+ concentrations 

to be above some critical threshold for LTD induction but below some other, higher threshold for 

LTP induction [BEAR].  

§ 4. The BCM Model 
While the mechanistic modeling picture of long term synaptic plasticity still appears 

somewhat cloudy, more significant success has been achieved by functional modeling. One of the 

most important of these models was proposed in 1982 by Bienenstock, Cooper, and Munro. It is 

known as the BCM model [BIEN]. Indeed, the BCM model was an important inspirational idea 

for researchers investigating LTD [BEAR], which is something to be highly prized in a functional 

model: function suggestive of mechanism.  

In 1982 the existence of LTP/LTD was already known but the physiological mechanisms were 

not. Bienenstock et al. therefore based their model on phenomenological signaling characteristics. 

They used an Instar map model, which they called a "neuron model with 'ideal' synapses" – a 

terminology they explained could imply "a complex system including perhaps several 

interneurons." The activity levels of the Instar's inputs and outputs were taken to be firing rates 

relative to the level of average spontaneous activity. The Instar's weights W represented the 

"efficacy" of "synaptic connections" to the "neuron."  

The novel ideas in the BCM weight adaptation rule were: (1) weight modification was a 

function of average activity levels determined over some time interval much larger than the 

membrane time constant of a neuron; this type of "average" is elsewhere called a "moving 

average" because average output activity 〈y〉 is actually a function of time t; (2) the weight 

modification function is a function of a weight modification threshold θ; and (3) θ is itself a 

function of a running average of the activity levels; this has since come to be called a sliding 

threshold. Property (3) is essential for the operation of the adaptation operation. If θ is held to a 

fixed constant value, the adaptation is generally unstable.  

The BCM rule is actually a rule schema. This is to say Bienenstock et al. did not provide one 

specific adaptation rule but rather a general form an adaptation rule should obey. This was 

expressed in [BIEN] through the use of an unspecified adaptation function φ and an unspecified 
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function for θ(t). Furthermore, they did not specify how temporal averages, 〈y〉 and 〈X〉, were to 

be determined for the Instar's output and input activities. There are a number of different ways in 

which a "running average" over some time window can be defined and computed. These include 

the un-weighted moving average (where each past value is given equal weighting in determining 

the overall moving average), the weighted moving average (where typically "older" past values 

are given less weight than "newer" past values in determining the average; this is sometimes 

called "averaging with a forgetting factor"), and a recurrent form of averaging called the 

autoregressive moving average or ARMA. The only hard requirement is that 〈y〉 should change 

less rapidly than y(t) and 〈X〉 should change less rapidly than X(t). Thus, BCM is a rule schema 

and there are many possible BCM "rules."  

Bienenstock et al. did make one specialization, namely that it was sufficient to determine 〈y〉 

in terms of 〈X〉, i.e. 〈y〉 = g(WT(t) ⋅ 〈X〉) where g is the Instar activation function. The only 

requirements placed on g are that g should be a continuous and monotonic function. Of the 

activation functions introduced in chapter 11, this requirement rules out only the discontinuous 

functions and the radial basis function. The rule for 〈y〉 requires that the weights W change slowly 

relative to changes in X(t) so that 〈y〉 changes slowly relative to y(t).  

The BCM adaptation schema implements what Bienenstock et al. termed "temporal 

competition between input patterns." This vaguely explained term means, in effect, that weight 

changes depend on "average" activities compared to the sliding threshold θ(t). To the extent that 

one could say the Instar "learns the average activities" in the setting of W, BCM constitutes a 

form of what is called unsupervised adaptation. As is common in the literature dealing with 

unsupervised adaptation algorithms, Bienenstock et al. expressed the BCM rule schema in the 

form of a differential equation,  

   ( )( ) ( ) ( )[ ] ( ) ( )tWttytytW
dt
d

⋅−⋅φ= εXθ,,  

where ε > 0 is a small constant called the "uniform decay term constant." Its presence in the 

equation is necessary to ensure stability in the differential equation.  

Because so many terms in BCM are left unspecified, it is typically unnecessary to go to a great 

degree of exactness in converting the BCM weight equation into difference equation form for 

computer implementation. Rather, it is perfectly legitimate to pose a "BCM rule" directly in 

difference equation form. The general difference equation form for BCM is 

   ( ) ( ) ( ) ( ) ( )[ ] ( )ttytytWt X⋅θφ+⋅−=+ ,,11 γW           (12.1) 
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where γ > 0 serves as the "uniform decay term" constant. The adaptation function φ is a scalar-

valued function multiplying input vector X.  

The sliding threshold for weight modification is generally some nonlinear function of y, and is 

typically a direct function of 〈y〉, the running average of y(t). Most commonly 〈y〉 = g(WT(t) ⋅ 〈X〉) 

is used and θ(t) is described by a difference equation of the form 

   ( ) ( ) ( ) ( )pytt ⋅+θ⋅−=+ 2211 ααθ               (12.2) 

where 0 < α2 < 1 and p ≥ 2 are fixed constants. The simplest form for (12.1) is  

   ( ) ( ) ( ) ( ) ( )( ) ( )tttytWt XW ⋅θ−⋅+⋅−=+ 1αγ11            (12.3) 

when the activation function g is non-negative (e.g. the unipolar sigmoid function), 0 < α1 < 1 

and α1 < α2. The condition 0 < γ < α1 < α2 ensures θ(t) changes more quickly than W and the 

adaptation is not unduly dominated by γ. Typically α2 is on the order of about three times larger 

than α1 and γ is on the order of about five times smaller than α1.  

When g is a non-negative activation function, the elements of X will likewise be non-negative. 

It might therefore appear that equation (12.3) then will decrease W whenever y – θ < 0, and 

increase W whenever y – θ > 0. However, this is not the case since the values approached by the 

elements of W are also functions of the values of the elements of X. Figure 12.3 illustrates the 

dynamic for a two-input example with constant X = [0.15  0.7]T. The Instar used a unipolar 

sigmoid activation function with threshold Θ = 0.5 and slope parameter σ = 3. The adaptation 

parameters for the BCM rule were α1 = 0.1, α2 = 0.3, and γ = 0.02. The initial conditions are as 

shown in the figure. Although the weight for the weaker input, w1, was initially larger than w2, the 

figure shows that the adaptation produces a redistribution of the weights such that the larger input 

comes to have the larger weight associated with it.  
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Figure 12.3: Two-input Instar adaptation using the BCM rule with constant inputs. See text for parameters. 
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Figure 12.4: BCM rule adaptation of the same Instar when the inputs are time-varying. 〈X〉 is the same as in 
the previous example, but the two input signals have sinusoidal variations about the mean value. 

The adapted Instar response from figure 12.3 can be said to be "selective" in the sense that the 

final weight vector W comes to weight the more active input (x2) more heavily than the lower-

activity input x1. With a sigmoid function threshold of Θ = 0.5, x1 would be regarded as having 

lower-than-background activity while x2 would be said to have higher-than-background activity. 

Bienenstock et al. defined a statistical selectivity metric based on the assumption X was a vector 

of random variables following some probability distribution. Their metric is 

   
X

X
ofondistributioverofvaluemaximum

ofondistributioverofvaluemean1
y

yS −=
∆

 . 

For the example system of figure 12.3, if we assume x1 and x2 are statistically independent and 

each is uniformly distributed over the range from 0 to 1, the selectivity metric function is 

   ( )( )
( )21

21

g
5.0g1

ww
wwS

+
+⋅

−=  

where g is the unipolar sigmoid function used for the Instar. Using the final weight values for the 

simulation in figure 12.3, the selectivity in this example is S = 0.385. 

Bienenstock et al. presented several theorems governing convergence of the algorithm, the 

selectivity achievable with it, and whether or not the final weight settings would become stable – 

that is, unresponsive to statistical variations in X once the adaptation process had run its course. 

The theorems are based on several conditions, most notably the assumptions that the probability 

distributions for X are stationary (not changing over time) and that the Instar was adequately 

exposed to a statistically sufficient number of input cases X. Figure 12.4 presents the results of 

another simulation using the same Instar, adaptation parameters and 〈X〉 as before. This time, 

however, x1 and x2 varied sinusoidally about their mean values. We see that the parameters of the 
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system show time-varying responses to these time-varying inputs, although the average of the 

responses tracks figure 12.3 reasonably well. (The inputs in this case are said to be statistically 

"cyclostationary"). Using a snapshot value for W at the end of the simulation, the BCM selectivity 

is S = 0.369, which is reasonably close to the first case.  

However, the fact that the adaptation does track time-varying changes in the input signal 

presents certain practical considerations in using BCM in a network system model. In [BIEN] the 

biological system under consideration was the region of the primary visual cortex where neural 

structures, called ocular dominance columns, form during early post-natal brain development. 

There is a critical development period in this cortex, during which neural connections develop 

and become permanent. If a baby is deprived of appropriate stimulus during this period, these 

crucial structures do not develop and serious and permanent visual impairments results. 

Mathematically, this situation is equivalent to setting α1, α2, and γ = 0 outside the time span of 

the critical development period, and setting them to their non-zero values inside this time span. 

Thus, the adaptation stability theorems in [BIEN] implicitly assume appropriately time-varying 

changes in the adaptation parameters such that W is established for a specific environment at a 

specific stage of development.  

In BCM-based adaptation for other network system models, where a "critical development 

period" is not part of the system phenomena being modeled, non-stationary input statistics for X 

will have the consequence that W will track these statistical changes, "forgetting" whatever W 

settings it "learned" earlier. All unsupervised adaptation algorithms must make some kind of 

tradeoff between plasticity (the ability to adaptively respond to input signals) and stability (the 

ability to develop robust final weight settings that no longer adapt to changes in input signals). 

This is because adaptation functions favoring plasticity tend to be detrimental to stability, and 

vice versa. The BCM rule favors plasticity at the expense of stability in the face of nonstationary 

input statistics unless the adaptation parameters α1, α2, and γ are themselves controlled in some 

appropriate fashion (i.e., unless they are not strictly constants). Control functions added to the 

network system for this purpose are said to address the stability-plasticity dilemma (if, that is, 

they are successful).  

Another issue the BCM rule has, in common with many other adaptation algorithm schemes, 

arises when we are dealing with a network system with multiple Instar nodes. Suppose we have N 

Instars arranged in a single layer, all receiving the same input vector X, and let us further suppose 

these Instars do not connect to each other. Let us further assume their initial weight vectors Wn 

are not identical, nor are their initial values for θn (the weight modification thresholds). (If all the 

Instars have identical initial conditions, they will all respond exactly the same way, assuming 
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each has the same adaptation parameters). Depending on the statistics of the input signals X and 

the order in which the inputs are presented, at least some of the N Instars might achieve different 

final stable weight settings eventually [BIEN]. On the other hand, it is also possible they might all 

reach exactly the same final weight setting. Except in very special circumstances, it is usually 

impossible to predict a priori which of these outcomes will occur.  

Bienenstock et al. provided a brief discussion about multiple-Instar networks, and they tell us 

they have achieved some unreported test cases where the Instars reached different and stable 

weight settings – and could therefore be said to have succeeded in classifying their input space, 

analogously to our earlier discussion in this chapter. We are told this was achieved by providing 

fixed (non-adaptive) feedback weights interconnecting the Instars. However, this discussion in 

[BIEN] is dialectic, non-quantitative, non-specific, and is insufficient to form a basis for 

generalization. This problem – that is, adaptation of a network system, as opposed to merely 

adapting a network node – is one of the principal issues of interest in neural network theory. 

There does not currently exist any general theorem or solution, applicable in all circumstances, 

for the general problem of network system adaptation.  

 Equation (12.2) is not in the most general form proposed by Bienenstock et al. An adaptation 

threshold rule in more general form replaces (12.2) by 

   ( ) ( ) ( ) y
c
y

tt
p

⋅







⋅+θ⋅−=+

0
2211 ααθ             (12.4) 

where c0 is a positive constant. Figure 12.5 illustrates the behavior of this adaptation rule for θ(t) 

for c0 = 0.65, p = 2, and the other simulation parameters unchanged from the previous cases. 

Comparing this to figure 12.4, the main difference made by (12.4) is a reduction in average levels 
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Figure 12.5: Simulation of BCM adaptation under the same conditions as for figure 12.3 using rule (12.4) 
with c0 = 0.65 and p = 2. 
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for y(t) and W. In effect, parameter c0 determines the point where y(t) – θ(t) changes sign in the 

weight adaptation, leaving α2 to be used exclusively to control the rate of adaptation. For the 

special case where the second term on the right-hand side of (12.4) is a constant, the asymptotic 

value for θ(t) as t becomes very large is easily shown to approach 

   ( ) y
c
y

t
p

t 







→θ

∞→ 0
lim                   (12.5) 

independently of the initial condition on θ(t) and independently of α2, provided the magnitude of 

α2 remains less than 1.  

§ 5. The Instar Rule 
The BCM rule developed from efforts to find stable adaptation methods capturing the 

experimentally observed signaling features of LTP and LTD. These efforts were inspired to a 

large degree by Hebb's postulate. Cooper, Lieberman, and Oja had proposed a rule that was a 

direct precursor to the BCM rule in 1979 [COOP]. The Cooper-Lieberman-Oja rule tended to 

lack robustness and had problems with stability and selectivity owing to their use of a fixed 

threshold for adaptation. The BCM rule, with its sliding threshold mechanism, overcame these 

early issues. It is, however, a mathematical answer to a mathematical problem. One could justly 

ask what physiological basis there could be for the BCM adaptation rule.  

Bienenstock et al. discussed this briefly in their paper, but it would have to be admitted that 

this discussion was a plausibility argument rather than a physiological argument. The fact is that 

the BCM rule is phenomenological and is more "inspired" by biology than "descriptive" of 

biology. The same can be said for many adaptation rules in use today. Some theorists note a 

degree of similarity between the BCM rule and other more physiologically-motivated (but still 

phenomenological) adaptation models. An example of this is a spiking-neuron-model adaptation 

rule based on what is called the calcium control hypothesis [GERS1: 362-383]. This adaptation 

rule has features similar to, and tends to bolster the plausibility argument for, the BCM rule but 

does not demonstrate the biological fealty of the model.  

In this section we will look at an adaptation rule treated by Grossberg several years before the 

BCM rule. We will call it the Instar adaptation rule or IAR. Letting X = [x1 x2 . . . xN]T be the 

vector of inputs to the Instar, W = [w1 w2 . . . wN]T be the weight vector, and y = g(X,W) be its 

output activity level, the IAR in difference equation form is 

   ( ) ( ) ( ) ( )( ) ( )tytWtXtWttW ⋅−⋅+=∆+ η             (12.6) 
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where η is called the adaptation rate parameter and 0 ≤ η < 1. We easily see from (12.6) that 

when X(t) = W(t) no change in the weight settings occurs. The IAR acts to produce a set of 

weights that constitutes a copy of the input pattern. For this reason, the pattern X is said to be 

"stored in the weights" and the Instar is said to "learn the input pattern." Thus Grossberg refers to 

the weight settings Wn in a network of Instars as the "long term memory" or LTM of the network. 

(One should bear in mind that this "memory" terminology is made in a mathematical context and 

is not to be confused with the psychological meaning of the word "memory").  

Relatively few constraining conditions are necessary for (12.6) to have stable fixed-point 

solutions. The analysis is non-trivial owing to the fact (12.6) is a nonlinear difference equation. 

Nonetheless, there are a few features of (12.6) we can bring into the light without resort to 

complicated nonlinear analysis. Rewrite (12.6) as 

   ( ) ( )[ ] ( ) ( ) ( )tXtytWtyttW ⋅+⋅−=∆+ ηη1 .           (12.7) 

The order of the nonlinearity in (12.7) depends on the activation function. For example, if the 

activation function is the simple linear function y = XTW, (12.7) can be written as 

   ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )tXtWtWtWtXtXtt TT ⋅−⋅⋅+=∆+ ηηIW  

which is a quadratic function of the weights and the input signals. (Here I is the identity matrix). 

Other choices for activation function g can lead to a higher-than-quadratic equation. This makes 

general analytic solutions of the difference equation (12.7) impossible to obtain in closed form. 

However, some useful information can be obtained from some simple cases. 

Suppose the input stimulus is held constant, i.e. X(t) = X is a constant-valued vector. If there is 

a fixed point solution for (12.6), it is defined by W(t + ∆t) = W(t), for which we obtain W = X as 

noted before. The question is: Is this a stable fixed point solution? That is, if W at some time t is 

given by W = X + ∆W, where ∆W is some perturbation, will (12.6) converge to W = X or will it 

diverge away from this solution?  

To explore this, let us set W(t) = X + ∆W(t) and W(t + ∆t) = X + ∆W(t + ∆t) and insert these 

into (12.7). From this we obtain 

   ( ) ( ) ( )( ) ( )tytWXXtWXttWX ⋅∆−−⋅+∆+=∆+∆+ η . 

After some minor algebraic manipulation, this reduces to 

   ( ) ( )[ ] ( )tWtyttW ∆⋅⋅−=∆+∆ η1 . 

Our interest now focuses on the scalar term on the right-hand side of this expression. A sufficient 
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condition for this equation to converge to ∆W = [ 0 ] is to have the magnitude of this term strictly 

less than 1 at all time steps. Stated symbolically, the condition is satisfied if  

   0 ( ) 2<⋅< tyη .                    (12.8) 

This condition is guaranteed if η is constrained as 0 < η < 1, ymin(t) ≥ 0 and ymax(t) < 2. (This is 

a sufficient condition; it is not a necessary condition). At first glance, this constraint might seem 

very artificial and non-biological. However, it really is not. First, if signal variables x are non-

negative, any saturating non-negative activation function will do. Even if g is non-saturating, the 

condition can be enforced by a suitable normalization of vectors X and W. Grossberg has shown 

that a normalization condition on X can be automatically produced by a relatively simple single-

layer Instar network [GROSS5]. Following Grossberg's terminology, we will call such a single-

layer network a shunting network. If the initial settings of the Instar weights, W(0), is set up so 

that W(0) likewise meets the normalization constraint (with W a non-zero vector), then an Instar 

fed by a shunting network and undergoing IAR adaptation will converge to X when X is held 

constant.  

Is the idea of a shunting network biologically plausible? Grossberg argues that it is. To follow 

this argument, two things are noteworthy. First, the nodes within a Grossberg shunting network 

are not simple Instars as we have earlier defined them. We will call them shunting node Instars. 

The details of this model will be explained later, but suffice it to say for now that they are linear, 

time-varying Instars in which the excitation variable s is governed by a state variable equation 

(i.e., it is not merely the sum of inputs; thus, the node is said to "have short-term memory"). 

Second, an individual biological neuron is not a shunting node Instar. However, Grossberg's 

networks work on the scale of a map model, not a neuron model. As we have already seen earlier 

in this textbook, biological structures at this scale are networks made up of large numbers of 

interconnected excitatory and inhibitory neurons. It is not at all unfeasible to make the hypothesis 

that such a network can act to limit the total state of excitation in its population of neurons, and 

this is all that a shunting node Instar model asks.  

As for IAR adaptation, this adaptation scheme is likewise true to the phenomenological 

dynamics of LTP/LTD. In the presence of a persistent input X, the weights of the Instar become a 

mirror of this input (provided η ≠ 0), and thus large inputs xi eventually produce a large wi (LTP), 

and small xi produce a small wi (LTD). The rate at which the Instar adaptation approaches this 

steady-state solution depends on the adaptation rate factor η and on the total amount of excitation 

s produced by the input vector. Like the BCM rule, the IAR will attempt to "follow" the changes 

in a time-varying sequence X(t) of input vectors.  
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If the adaptation rate is too fast, the Instar weights will not converge to a single, stable fixed-

point value. The weights in this case are said to be "too plastic." If the Instar is to have any 

chance of obtaining relatively stable "learning" (again, "learning" in a mathematical, not a 

psychological, context), the adaptation rate must be slow relative to the time variations in X(t). 

This property of adaptation turns out to be a rather general feature of most adaptation methods 

and it goes to the heart of the stability- plasticity dilemma. With a slow adaptation rate, "learning" 

is statistical, that is, the weight adaptation tends toward the mean value of the probability 

distribution of the inputs X(t), assuming this distribution does not itself change over time. (Such a 

probability distribution is said to be "stationary").  

To see the general character of this process, let us briefly examine the statistics of equation 

(12.6). The statistical expectation or "expected value" of a random variable u with probability 

distribution function p(u) is defined as E{u} = ∫ u⋅p(u)du where the integral is taken over all 

possible values of u. Note that time does not appear as a parameter in this expression; for this 

reason, the expectation is also often called an ensemble average because the statistic is the mean 

value of everything that could happen at any given time t. If the probability distribution function 

is independent of time (stationary), then the expectation is also independent of time. Applying 

this operation to both sides of (12.6) gives us 

   ( ){ } ( ){ } ( ) ( )( ) ( ){ }tytWtXEtWEttWE ⋅−⋅+=∆+ η  . 

Now, without further assumptions this expression defies closed-form solution. Therefore let us 

assume the adaptation rate is slow relative to the rate at which X(t) can change, and let us further 

assume that successive time values of X(t) are statistically independent. Then since the present 

value of W(t) depends only on past values of X, W(t) and X(t) are likewise statistically 

independent at time t. This is called the independence assumption, and was first introduced into 

the theory of adaptive systems by Widrow [WIDR5].1 If u and v are two statistically independent 

random variables, then E{uv} = E{u} ⋅ E{v}. Applying this to the expression above and noting 

that E{W(t + ∆t)} = E{W(t)} if the statistics of the overall system are stationary, we obtain 

   ( ) ( ){ } ( ) ( ){ }tytXEtytWE ⋅=⋅  . 

A quantity E{u⋅v} is called the cross correlation of u and v. We can see from the expression 

above that what is enforced by the IAR is equality between the cross correlations of the products 

of W and X with the output activity. Because y(t) is expressly not independent of W and X, we 
                                                 
1 Strictly speaking, the independence assumption is rarely true of an adaptive system. However, under the 
condition of slow adaptation under stationary probabilities, many years of research in adaptive systems has 
shown it to lead to results that, while approximate, are very accurate.  
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cannot merely separate the terms as E{W}⋅E{y} = E{X}⋅E{y}. To obtain an approximate 

understanding of the result, let y = WTX. Then invoking the independence assumption gives us 

   { } { } { } { } { } { }[ ] { } { }XEWWEXXEWEXEWWEWEXXE TTTT ⋅⋅=⇒⋅=⋅
−1

 

provided the indicated matrix inverse exists (which will be the case in practical situations).  

Under the conditions stated for this derivation, the product of the two terms multiplying E{X} 

will approximate the identity matrix and E{W} ≅ E{X} in the steady-state. In most practical 

circumstances, the cancellation of the two autocorrelation matrices will not be exact and so W 

will only approximately equal E{X}, but in such cases the error is usually quite small. In 

somewhat more technical language, the bias in the weight vector solution is said to be bounded 

[McCA]. Often, in practical circumstances, this bound can be quite tight.  

§ 6. Network Adaptation 
The remarks made earlier concerning network adaptation in the case of the BCM rule apply 

also to the IAR and, indeed, to adaptation in all network systems. Consider a single layer of non-

interconnected Instars all receiving the same input vector X. If all the Instars are allowed to adapt 

in response to all inputs X(t), then, as the statistical analysis presented above shows, they will all 

adapt to the same steady-state solution. To a limited degree this may be biologically useful; 

redundant networks protect the organism from suffering disastrous consequences from neural cell 

death (up to a point). However, it is clearly undesirable – and biologically unrealistic – to have 

complete redundancy in the adaptive solutions of all Instars in a network system. Something must 

be present in the system to prevent this.  

It is clear merely from the multiplicity of different network adaptation schemes neural network 

theory has brought out since the late 1980s that there is more than one possible approach for this 

problem. We will not attempt to survey the entire field in this textbook. That would be an 

undertaking that would either be staggeringly huge (if in-depth coverage were to be given to each 

major method) or disappointingly vague (if we were merely to mention each with a skeletal 

outline of the method used). What we can and will discuss is some of the general reasonings by 

which different network adaptation methods are guided. Beginning in chapter 13, we will also go 

into a select few network methods that appear to be biologically pertinent.  

When one considers a particular biological network system, from a broad perspective it can be 

said that such a system receives a particular set of input tract signals (usually originating from 

some other network system within the central nervous system as a whole) and produces a set of 

output tract signals (usually sent to other network systems in the CNS). To focus our discussion, 
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we will restrict our attention to the network system and postpone consideration of interactions 

among different network systems. We can then regard the set of input tract signals as constituting 

a mathematical input space, and regard the signals within the network system, including also its 

output signal tracts, as constituting a solution space in the abstract sense that one can regard the 

maps within the network system has "solving" some signal processing task, i.e. responding 

"appropriately" to the input signals. When we consider just those signal tracts constituting the 

outputs of the network system, we can say these output signals constitute an output space. If a 

particular map within the network system responds with strong activity to some particular set of 

inputs constituting a subset within the input space, and responds weakly or not at all to signals not 

belonging to this subset, we can call the subset of signals that evoke strong activation responses 

from the map the response space of the map.  

Figure 12.6 is a conceptual representation of this idea of partitioning spaces within an input 

space. Let us assume the dashed lines in the figure delimit regions of the input space where some 

network mechanism has determined that a particular Instar will respond by adapting its weights 

when an input vector X falls within this region. We will suppose the symbols x represent actual 

instances where a particular input vector has occurred. We will further suppose the symbols o are 

 

Figure 12.6: Conceptual diagram of space partitioning in a network system of Instars. The dashed boundary 
lines denote regions for which some network decision mechanism has selected a particular Instar to respond 
to an input by adapting its weight values. x denotes an actual input vector applied to the network. o denotes 
an Instar weight vector, which is presumed to have taken on a value representative of the estimated mean 
value of the input vectors to which the Instar has adapted. For discussion purposes, we assume this figure 

represents one planar projection of a multi-dimensional input space with more than 2 dimensions. 
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representations of the Instars' weight vectors W. Because of the hypothetical selection mechanism 

determining which Instar will adapt in any given case, the adaptation rule for a specific Instar 

does not "see" the entire probability distribution of X. Rather, it "sees" only some subset of this 

probability distribution, namely the one corresponding to the adaptation region "belonging" to 

that Instar. Given enough adaptation epochs, the Instar will eventually adapt its W vector to the 

expected value of the X vectors lying within the Instar's designated adaptation region.  

The resulting steady-state W vector for a particular Instar is said to be a prototype vector 

describing its region of the input space. In effect, and under certain reasonably benign conditions, 

the W vector can be said to "represent" all the input vectors in its region in a statistical sense. In 

principle, then, when the next X vector is received, the Instar with the closest W vector, i.e. the W 

vector for which ||W – X||2 is the least, will respond with the strongest positive activation if certain 

conditions apply to the vectors X.  

To see this we need some concepts from analytic geometry. Let us assume figure 12.6 is a 

two-dimensional plane within some N >> 2 input space, and let us further assume the x and o 

symbols in the figure are projections onto this space from vectors lying almost in this plane. Let 

us further assume that all actual input vectors are normalized so that ||X||2 = 1. Assuming the 

adaptation process has reached steady-state for all the Instars, this likewise implies ||W||2 = 1 for 

each Instar. The scalar quantity WTX is called the dot product or scalar product of W and X in the 

language of the mathematicians. Let us use the notation cos(W, X) to denote the cosine of the 

solid angle between vectors W and X. cos(W, X) = 1 implies the angle is zero and W = X. It is a 

basic property of vectors that s = WTX = ||W|| ⋅ ||X|| ⋅ cos(W, X). Since we have assumed the 

vectors are of unit length, the largest scalar product s (the excitation variable of the Instar) has the 

largest magnitude for that Instar for which cos(W, X) is closest to zero. This means the Instar 

response will be the strongest for that Instar with weight vector most nearly equal to X. The Instar 

is said to have the capacity for generalization in the sense that it most strongly responds to any X 

that is closest to (in the Euclidean sense) its weight vector than to that of any other Instar.  

What we have just discussed is, of course, a special case because we have put some restrictive 

assumptions on the nature of the input space of X vectors. In the terminology of neural network 

theory, this special case is called the classification problem. You should be able to easily see the 

similarity of this example in comparison to the discussion of separating boundaries from chapter 

11. Classification is one thing artificial neural networks do very well. We can, however, ask if 

this problem is pertinent to biological signal processing.  

To this question, the answer is "yes." There is very solid experimental evidence telling us that 

neuronal organization in the primary sensory cortices of the brain during the critical development 
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phase of an organism's life adapts in such a way that specific neural network systems develop a 

strong response to very particular and restricted kinds of afferent sensory signals, and develop 

weak or no response to others. The same has been found to be true for some neuronal structures 

that adaptively form in the cerebellum. While it would be naive and more than a bit rash to over-

generalize this and say the same is true for all neuronal structures in the CNS, it is nonetheless 

clear that one important functional task the brain organizes itself to carry out is signal 

classification. In the language of Piagetian developmental psychology, neural network systems 

which develop to carry out solutions to the classification problem are said to assimilate the 

afferents they classify. Classification theory is arguably the most highly developed topic in neural 

network theory. 

Still, our discussion leaves hanging the question of what hypothetical mechanism was 

responsible for selecting which Instar was to adapt in response to a given afferent signal X. 

Selection mechanisms constitute an important part of the core of the theory of network adaptation 

in neural network theory. Indeed, it was lack of progress in precisely this area of the theory that 

led, in part, to Minsky's and Papert's scathing 1968 critique of the field. Equally, it was the 

discovery of workable mathematical mechanisms for addressing this problem that led in large 

part to the widespread "rebirth" of the field in the mid- to late- 1980s. The groundwork for this 

was set during the "dark age" of neural network research from the end of the sixties to the eighties 

by pioneers such as Grossberg, Kohonen, Malsburg, and others. chapter 13 begins our discussion 

of network adaptation theory.  

§ 7. The LMS Algorithm 

This chapter would not be complete without a discussion of the best-known and most widely 

used adaptation algorithm, the least-mean-squared or LMS algorithm. Although its biological 

significance has been called into question by some, most notably by Grossberg [GROSS10], the 

LMS algorithm has long been a mainstay in the engineering world of artificial neural network 

theory and adaptive signal processing. It was developed, simultaneously and independently along 

side Rosenblatt's perceptron rule, from statistical adaptation theory [WIDR6] and is the algorithm 

used by the special case version of the Instar known as the Adaline [WIDR1].  

Adaline was a more or less direct outgrowth of von Neumann's work with the McCulloch-Pitts 

model; as Widrow and Hoff put it, "This element [the Adaline] bears some resemblance to a 

'neuron' model introduced by von Neumann, whence the name." An Adaline is characterized by 

both its use of the LMS algorithm and its requirement for the signals in the network to be bipolar, 

a signal property necessary for the proper operation of the LMS algorithm.  

The LMS algorithm belongs to the class of – and, indeed, in many ways can be regarded as the 
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father of2 – supervised adaptation rules. In supervised adaptation, some signal variable in the 

map model (usually the excitation variable s) is compared with a desired response signal. The 

numerical difference between the two is called the error signal, and the adaptation rule seeks to 

minimize some measure of this error signal. In the case of the LMS algorithm, it minimizes the 

mean-squared value of the error signal.  

Figure 12.7 illustrates the Adaline map. As is obvious, it is a version of Instar with the explicit 

addition of the adaptation algorithm (LMS), a desired response signal dn, and the generated error 

signal ε. There are in fact two versions of the LMS algorithm, today called µ-LMS and α-LMS, 

as well as a more involved version called LMS/Newton [WIDR7: 142-147] and several other 

variations on the general theme. Historically, µ-LMS was the first of the LMS family to be 

developed, and when someone refers to "the LMS algorithm," this is the one usually meant. The 

µ-LMS and α-LMS algorithms are similar in many ways, although in some circumstances one or 

the other may show superior performance behaviors [WIDR3]. Because µ-LMS is the simpler 

and easier to understand version, our discussion in this textbook will be confined to it, and when 

"LMS algorithm" is used here, it will mean µ-LMS. 

The presence of the desired response signal dn is what makes LMS a supervised adaptation 

algorithm. In neural network contexts, the presence of signal dn is usually taken as equivalent to a 

requirement that the Adaline must be "trained" and, therefore, requires a "teacher." The "teacher" 

 

Figure 12.7: The Adaline map model. 

                                                 
2 R.W. Lucky of Bell Telephone Laboratories also developed supervised adaptation rules for application in 
modems in the early 1960s. Lucky's algorithms are somewhat similar to, but not the same as, the LMS 
algorithm, and his papers on the subject make no mention of Widrow's work. Rather, Lucky's work was 
carried out independently, and so it is not accurate to call his algorithms "children" of LMS. 
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requirement is what leads Grossberg and others to conclude the LMS algorithm, and network 

adaptation algorithms employing it, "does not model a brain process . . . This shortcoming does 

not limit the model's possible value in technological applications, which can benefit from a 

steepest descent algorithm, but it undermines the model's usefulness in explaining behavioral or 

neural data" [GROSS10].  

As true as Grossberg's remark is when the network system directly employs the agency of an 

external "teacher" or "supervisor" in "training" the system, its truth is less obvious if the "teacher" 

is another network system within the overall system. Widrow et al. also introduced, in 1973, a 

system structure by which an Adaline network (called a "Madaline network") can be "trained" by 

another subsystem within the overall system [WIDR8]. Such systems are today called actor-critic 

models. It can be argued that the "critic" in an actor-critic system fulfills the role of affective 

psychological phenomena ("feelings", "values", etc.), and, to the extent this might be true, it 

might also be true the LMS algorithm is not so unfaithful to biological reality as a straight-up 

external teacher method is. It is a psychological fact that "emotions", "values", "interests", 

"motivations", etc. are heavily implicated in learning. Nonetheless, the overall issue is likely to 

remain controversial for the foreseeable future.  

The LMS algorithm is a gradient descent or steepest descent algorithm, so we need to discuss 

what this means. We are all familiar with what the "grade" of a highway going up and down a hill 

means. The steeper the grade, the more rapid is the rate of change in the height of the hill. The 

gradient of a scalar function f of variables w1, w2, . . . wN is a vector of derivatives of the function 

with respect to these variables. Mathematically, 

  ( ) [ T
NwfwfwfWf ∂∂∂∂∂∂≡ L21 ]∇             (12.9) 

In the case of the LMS algorithm, the scalar function is the square of the error signal and the 

variables are the weights of the Adaline map. Widrow has shown that the quantity 

  X⋅⋅− ε
2
1  

is an unbiased estimate of the gradient of the mean-squared value of ε as a function of W (where 

X is, of course, the input signal vector). Accordingly, the LMS algorithm is 

   ( ) ( ) ( ) ( )tXttWtW ⋅⋅⋅+=+ εµ21                (12.10) 

where µ > 0 is the adaptation rate constant. Its value determines the stability or instability of the 

adaptation process. Provided the adaptation is stable, (12.10) converges in the mean to the set of 

weights that minimizes the mean-squared error.  
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It is clear from the language just used that LMS is a statistical adaptation process, and so it is 

not surprising that the stability of the adaptation process should depend on the statistics of the 

input vector X. Let R = E{XXT}, i.e. R is the correlation matrix for X. A sufficient condition for 

the adaptation to be stable is [WIDR7]  

  0 ( )RTr<< µ                     (12.11) 

where Tr(R) is the sum of the diagonal elements of R. If ||X||2 = 1 then Tr(R) = N.  

A great deal has been written on the LMS algorithm and its properties, and we will not repeat 

all this here. The interested reader can consult [WIDR3] and [WIDR7] as excellent starting points 

to probe further. However, a couple general comments are in order here. First, like other 

adaptation algorithms, the LMS algorithm works best when the adaptation process is slow. As a 

rule of thumb, most researchers have reported best results when µ is one or two orders of 

magnitude smaller than the upper limit permitted by (12.11). Because R is a statistical entity, it is 

oftentimes the case that its trace, Tr(R) is unknown a priori unless X is normalized beforehand. A 

common normalization restricts X such that XTX = 1. (This is one of the things accomplished 

automatically by the α-LMS algorithm; refer to [WIDR3] for details).  

The second important remark has to do with the network environment in which LMS is used. 

The success of the algorithm relies upon the squared-error signal being a quadratic function of 

the weights. Because ε = dn – sn = dn – XTW, it is easily shown that 

    WXXWWXdd TTT
nn +⋅⋅−= 222ε

which is a quadratic function of the weights if X(t) is independent of sn(t).3 However, if X contains 

as one of its elements a signal xi that is either a direct or the indirect function of yn, then it can 

also be shown that the embedding of this term in the expression above leads to a function that is a 

higher-than-quadratic function of W. (An additional W term "hides" within the expression for X). 

This has the undesirable result that the gradient function has multiple maxima and minima, and in 

this case no general rule has been found that can guarantee the convergence of the LMS algorithm 

to a global minimum-mean-squared-error solution.  

This property of the LMS algorithm has largely limited its application to feedforward network 

systems, i.e. the LMS algorithm is not very successful in handling recurrent neural network 

systems. A great deal of research effort has been expended over the years trying to extend the 

LMS algorithm to the case of recurrent network systems. Some limited successes, applicable in 

certain very restricted special cases, have been reported. However, an honest appraisal must, in 
                                                 
3 Obviously sn is not independent of X. But X can still nonetheless be independent of sn.  
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the opinion of your author, conclude that these proposed approaches are not very generally 

applicable to widespread practice. Even the special case approaches seem to sacrifice the elegant 

simplicity that is one of the LMS algorithm's most attractive features. None can foresee when 

some breakthrough might change all this, but until and unless this happens, the restriction of the 

practical usefulness of LMS to feedforward network systems is a much more important "un-

biological model" issue confronting it than are arguments against its biological plausibility based 

on its use of a desired response signal dn.  

Finally, it is important to comment that coming up with an appropriate desired response dn is 

usually the trickiest and most crucial step in constructing an adaptive network model based on 

any supervised adaptation algorithm. The general rule of thumb is that dn must represent some 

truly desirable response property of the system so that ε does in fact represent performance 

feedback to the adaptation process. Coming up with an appropriate scheme for generating or 

supplying dn is the keystone for applying the LMS algorithm in a network system model.  

Exercises 

 
1. According to Aristotle's theory, what general regions of the brain would constitute the 

"faculty" of memory? 

2. Explain what James' idea of "memory" adds, in terms of brain structures, in addition to 
what Aristotle thought a "memory" is? 

3. What brain structures do Piaget's findings add to the constitution of memory beyond what 
James' theory calls for? 

4. The simplest mathematical model for Hebbian learning is ∆wij = η ⋅ xj ⋅ yi where xj is the 
presynaptic activity level, yi is the output activity of the ith map node and η is a positive 
constant called the "learning rate." This simple model has a number of fatal flaws in the 
"learning dynamics" it produces. Using an Instar map with unipolar sigmoid activation 
function, propose an adaptation algorithm based on his Hebbian learning rule and 
simulate the weight adaptation performance of your model. What problems do you find 
with this adaptation algorithm? Repeat this exercise for the case where the Instar uses a 
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bipolar sigmoid function.  

5. Propose a Linvill network model for the metabotropic process leading to production of 
Ca2+/calmodulin in figure 12.1. Do not omit the calcium buffering mechanism. You do 
not need to find quantitative parameter values for your model.  

6. Explain how the CaM kinase cascade in figure 12.1 leads to change in synaptic efficacy. 
Do not be hesitant about using mathematics to make your explanation specific and clear. 

7. The simplest form of moving average of a signal y is the M-sample moving average  

    ( ) ( )∑
+−=

=
t

Mtm

my
M

ty
1

1 . 

By using delay elements (a "shift register") to provide the inputs, this computation is 
easily performed by an Instar with its output equal to s. Illustrate this using an Instar 
diagram and simulate the response of this map to a unit step input for M = 2, 5, and 10. 

8. Write a computer simulation program for the BCM rule according to equations (12.2) and 
(12.3) and verify its correctness by reproducing the plots given in the text.  

9. Repeat exercise 8 using (12.4) as the adaptation rule. Verify your simulator against the 
figures given in the text. Then examine the adaptation performance of the Instar for the 
case where X is a sequence of uniformly distributed random variables with the same 
mean values as in the test simulation. (MATLAB and MATHCAD both provide random 
number generators you can use for this). Do the weights reach a steady-state mean value, 
and how does this value compare to the steady state values reach if X is a constant vector 
with elements equal to the mean value? 

10. Derive (12.5). 

11. Create a computer simulation of the Instar adaptation rule and compare its behavior to the 
BCM rule. 
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