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Simple Adaptive Competitive Networks 
 

§ 1. Winner-Take-All Partitioning 

The most basic and fundamental task carried out by adaptive competitive networks is solving 

a partitioning problem. In the standard terminology of neural network theory this is often referred 

to as segmentation, and WTA competitive networks are often called classifiers or feature 

detectors. Nonetheless, in order to accomplish either of these things, the first and most 

fundamental job the adaptation schema of the network system must perform is to determine 

which map will respond to any given input vector with an adaptation response. This is the 

partitioning problem.  

As Grossberg never tires of reminding us, most of the classical network solutions for 

competitive classifiers suffer from the stability-plasticity problem. This will be true for the simple 

networks presented in this chapter. Our objective here is two-fold: (1) to become familiar with the 

basic ideas of competitive classification networks; (2) to understand what causes the stability vs. 

plasticity problem. This will set the groundwork for the transition to ART networks. 

The most basic form of classical WTA partitioning is a two-layer network. The first layer is 

the adaptive layer that performs the actual classification task. The second layer is a non-adaptive 

layer where the competition is actually carried out. The second layer identifies the "winner" in the 

first layer that will be allowed to adapt in response to the input vector signal. The first layer will 

have N > 1 nodes (each a map model), and to each node in the first layer there will be a 

corresponding node in the second layer receiving its output signal.  

When we regard this network system as a classifier, N nodes in the first layer implies N 

different possible classifications of the input vector X. This at once raises a fundamental question 

with which computational neuroscience must concern itself, namely: What determines N? If we 

regard each input vector X as a point in an input space Ξ, N nodes implies partitioning this input 

space into N subspace Ξ1, Ξ2, . . ., ΞN so that Ξ is the union, Ξ = Ξ1 ∪ Ξ2 ∪ . . . ∪ ΞN. Why should 

Ξ be divided up into N subspaces rather than some other number L subspaces? In artificial neural 

networks this is rarely a problem because the designer of the artificial network knows what 

problem he is trying to solve and the problem defines N. But for a model of brain function we 

have no nicely predefined "problem" the network system is to solve.  

Empirical psychophysics can partially help us here, as can physiology studies. For example, 
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we know that neocortical functional columns outnumber anatomical columns in the visual cortex, 

which implies each anatomical column (to the extent these can be identified) carries out some 

usually small plurality of signal processing tasks. If we had reliable statistics for the ratio of the 

number of functional columns to anatomical columns, we could use this ratio to guide the 

selection or selections of N in our network systems models. Likewise, if we observe through PET 

or fMRI scans the involvement of a particular region of cortex in several different kinds of 

psychological phenomena, we again could perhaps use this to take a guess at an appropriate value 

for N by assuming different psychological situations imply differences in the signals X 

converging on that region of the brain. The point, though, is that we generally have no a priori 

empirical reason to prefer one value of N over some other value. This is one of the many reasons 

theoretical neuroscience must stay connected to experimental neuroscience. If computational 

neuroscience is to be explanatory and predictive rather than merely descriptive, this connection 

must be reciprocal.  

For our purposes here, we will take it for granted that by some means or another we have 

made our choice for N (while understanding that this is in fact taking a lot for granted). Several 

other system-level issues must still be addressed. By our selection of N we have put a cap on the 

maximum number of subspaces that can emerge from adaptive partitioning.1 But this does not tell 

us what the topology of this partitioning will be. Should all the Ξn be the same "size"? Should 

they all have the same "shape"? Should all the Ξn be disjoint or should some of them overlap? 

Should some of them initially overlap but later, through adaptation, become disjoint? Again, there 

is no single a priori answer to these questions. However, the choice of map model we make, the 

initial conditions we give to their weights Wn, the adaptation rate (or rates) of the nodes – all these 

decisions will affect the qualitative nature of the solution the network system will develop. Part of 

the task of theory in neural network theory is to understand how different model structures and 

algorithms affect outcomes in the solution space.  

Another question concerns what to do about "ties." It is always possible, in principle, for a 

winner-take-all competition to result in a tie. What does the occurrence of a tie implicate so far as 

neuroscience is concerned? Should we regard a tie as a mechanism setting up one of Piaget's 

cycle ruptures preventing the equilibration of the system (in which case it would be a 

"disturbance" too large for the central process of equilibration to deal with)? Should it be a telltale 

indicator for the "focusing of attention" (a "spot light" for a critic structure to weigh in on) or 

                                                 
1 If a map node never "wins" a competition, it cannot be said with a straight face that this map is actually 
classifying or representing anything. If every input X is "covered" by another map node there is no distinct 
Ξn this "loser" map node represents.  
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should it be a condition for just the opposite response? Briefly put, what is the neurological or 

psychological significance of a tie? One presumption we probably should not make is that a tie is 

a mere "mathematical inconvenience" without either action implication or meaning implication. 

Should the competition require some minimum "margin of victory"? If the activity of one first 

layer node in response to X is yi = 0.9995 and another is yj = 0.9994, did i "beat" j by "enough" to 

declare classification i is "correct" and classification j is "incorrect"? This question goes to the 

statistical issue of covariance, E{(X – E{X}) ⋅ (X – E{X})T}, if inputs X are regarded as "noisy." 

(And, of course, this leads in turn back to the question of "when is a 'feature' of X a 'significant' 

feature and when is it 'noise'?", as we saw Grossberg point out in chapter 13). One way to phrase 

this "margin of victory" question is: Should a classifier make "crisp" classifications or should it 

make "fuzzy" classifications? Should every X belong to exactly one Ξn (implying subspaces 

should not overlap) or should X have a "degree of membership" in more than one Ξn?  

As soon as we pose a network system model, we are making a de facto decision regarding all 

these issues. This is something the modeler must always understand. It is also why it is important 

to understand how different classical network systems behave in regard to these issues. With this 

prolegomenon in place, let us now get down to some actual cases.  

§ 2. The Instar-MAXNET Network 

Our first example network is illustrated in figure 14.1. It is composed of two layers: an Instar 

layer and a MAXNET competitive layer.  The input vector X is comprised of M input signals with 

 

Figure 14.1: The Instar-MAXNET Network. 
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N nodes in both the Instar and MAXNET layers. The first-layer Instars use the unipolar sigmoid 

activation function g(s) and adapt according to the Instar adaptation rule (IAR) 

   ( ) ( ) ( ) ( )( ) ( )[ ]tstWtXtWt g1W ⋅−⋅+=+ η             (14.1) 

where t is the time index and s is the Instar's excitation variable, s = XTW. The weights laterally 

connecting the Instars in the MAXNET are fixed and we will assume it uses activation function 
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where the fixed constant 0 ≤ q < 1 is called a quenching threshold and s is the excitation variable 

for the MAXNET Instars.  

The adaptation constant η for the IAR is determined by feedback from the MAXNET. There 

are two simple choices for how η is determined. We assume η = 0 during the MAXNET 

competition in both cases. At the end of the competition, the first and simplest case is to set the 

adaptation constant equal to η for any first-layer Instar for which the corresponding MAXNET 

output is not equal to zero, and to set η = 0 for all others. We will call this the Case I method. The 

second and next simplest case is to set η = η0 ⋅ yn where yn is the output of the nth node of the 

MAXNET layer and 0 < η0 ≤ 1 is a scaling factor. We will call this the Case II method.  

We will assume some X is applied at time step t and the first-layer Instar outputs are 

calculated. The MAXNET then carries out its competition. Provided at least one yn from the first 

layer exceeds the quenching threshold, the MAXNET will select the first-layer Instar with the 

highest activity (or, in the case of a tie, it will select no winner). Assuming the IAR stability 

condition (11.8) from chapter 12 is satisfied, the winner will adapt and move its W vector in the 

direction of X. This completes the processing at time step t.  

This seems at first glance to achieve the desired end result, namely the partitioning of Ξ 

according to which first-layer Instars respond with the most activity to input X. But what kind of 

partitioning of Ξ does this network actually produce? Does it, for example, assign the winner 

according to which Instar weight W is nearest in Euclidean distance to X, i.e. to the Instar for 

which ||X – W||2 is least? 

In general the answer to this question is no. To see this, let us look at the case where we have 

two input signals, XT = [x1  x2], and two Instars. It will be convenient to express the X and W 

vectors in polar coordinates so that X = [R⋅cos(θ)  R⋅sin(θ)]T and Wi = [ri⋅cos(φi)  ri⋅sin(φi)]T, i = 1 

or 2. Some simple trigonometry gives us 
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Assuming both first-layer Instars produce outputs above the quenching threshold, the ratio of 
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There are several things to note about this result. First, since the sigmoid is a monotonic 

function, whichever Instar has the greatest si will also have the greatest yi and will be declared the 

"winner." This is equivalent to saying Instar I1 will be the winner if the ratio above is greater than 

one, and vice versa if it is less than one. Note that this ratio is independent of R = ||X||. The winner 

decision is a function only of θ = arctan(x2/x1) insofar as X enters into it.  

Now suppose W1 and W2 both have the same orientation in W-space, i.e. φ1 = φ 2. In this case, 

X plays no role whatsoever in determining the winner. The winner will always be the Instar with 

the larger ||W||. Most likely, this is not what a modeler would have in mind for the behavior of this 

network. With two co-aligned Instars, one would be "dead" insofar as adaptation is concerned 

(although it would still produce output activity, which would merely be a scaled version of the 

other's output activity).  

Next suppose ||W1|| = ||W2||, i.e. r1 = r2. For this case we will assume the weight vectors are not 

aligned (since this would imply W1 = W2). Now both ||W|| and ||X|| are irrelevant to the winner 

selection, and the winning Instar will be the one for which the angular difference between W and 

X is the least. (Because all the x and w variables are non-negative, our "space" is merely a quarter-

circle in the first quadrant of coordinate system). Finally we at least have a situation where 

"closeness" (in this case, angular "closeness") determines the winner. But note that if ||X|| ≠ ||W||, 

the condition ||W1|| = ||W2|| will not be maintained after the adaptation. This is because the winning 

W will move toward X under IAR adaptation. The only way to maintain the "closeness" property 

for the network would be to renormalize the weight vector so that every weight vector always 

maintained the same value for ||W||. This, of course, reduces the number of actual dimensions in 

our "W-space" and requires a modification of the IAR.  

The general case for this example, where no special properties are assigned to the magnitudes 

or angles of X and W, is complicated to analyze. We can at least say this about it: The network 

will "learn" something, but what that "something" is lacks any easy interpretation. Furthermore, it 

is not at all clear what, if any, conditions on the system will result in a stable learned 

configuration where each Instar "stakes out" some piece of Ξ to "call its own" despite the fact that 
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the adaptation dynamics of each individual Instar are very well behaved. This is an important 

lesson: The network adaptation, not the map node adaptation, determines what will happen in a 

network system. Our first example is not a very good classifier. The situation described above is 

not improved at all if we replace the MAXNET with a Mexican Hat competitive layer, so we will 

move on to our next example.  

§ 3. The Radial Basis Function-MAXNET Network 

The reason the Instar-MAXNET network of the previous section does not work well is 

because the winner selected by the MAXNET has no necessary relationship to the distance 

between the input vector and the weight settings. If W is to be a prototype vector representing 

some subspace of Ξ, the winner of the competition should be that Instar for which 
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is the smallest. This is not guaranteed if the excitation variable is s = XTW. 

Expanding the right-hand side of (14.3), we obtain 
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We can define the quantity Θ = (XTX + WTW)/2 as a sliding threshold, an idea we encountered 

with the BCM adaptation rule. Setting s = XTW – Θ we have s = –∆2/2 and our new excitation 

variable is now directly proportional to the squared Euclidean distance between X and W.  

Any activation function g(s) having the property g(s) = 1 if ∆ = 0 and g(s) → 0 as |∆| → ∞ is 

called a radial basis function (RBF). For s = XTW – Θ, Θ = (XTX + WTW)/2, let us set 

   ( ) ( ) ( )2expexp 2∆⋅−=⋅= αα ssg               (14.4) 

where α is any positive constant. If the first-layer Instars of figure 14.1 are modified to use these 

definitions for sn and gn we will call the resulting network a radial basis function-MAXNET or 

RBF-MAXNET. Since yn = gn(sn), the MAXNET competition between two RBF Instars gives us 
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and the winner will be the RBF Instar for which |∆| is the least.  

The coverage of input vectors X by RBF Instars in Ξ is illustrated for a two-dimensional case 

in figure 14.2.  The output activation of an RBF Instar decreases as the distance between X and W  
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Figure 14.2: RBF-defined coverage regions in Ξ. 

increases as a Gaussian function and has circular symmetry2 about W. The rate of decrease is 

controlled by the α parameter in the activation function. As α is increased, the region around W 

for which the activation is significant rapidly decreases.  

There is an interaction between α and the quenching threshold q of the MAXNET in the 

dynamics of the adaptation since any yn below q will fail to excite its corresponding MAXNET 

Instar. There can thereby develop "gaps" in the spatial coverage of the RBF Instars. Note, 

however, that as the W "centers" move due to the IAR adaptation, a point X that formerly was in a 

"gap" can come to be covered later if one of the W vectors moves in such a way as to bring that 

region into its cover. However, with fixed α and q, the motion of a W point covering a gap may 

well also uncover a new "gap" in the region it leaves behind. Specifically, an RBF Instar 

participates in the MAXNET competition only if 

   ( ) ( ) αα qqy nnn 1ln22exp 2 ⋅<∆⇒>∆⋅−=  

or ( ) αqWX n 1ln2 ⋅<− . This expression bounds the coverage region of the RBF Instar.  

§3.1 Attentional Functions 
There are two mechanisms by which the MAXNET competition can fail to produce a winner. 

The first is when all RBF Instars in the first layer produce activations falling below the quenching 

threshold of the MAXNET. This case corresponds to the situation where X falls into a gap in the 

RBF coverage of Ξ. How should the network system respond to this situation? The answer to this 

question depends, or should be made to depend, on what interpretation is given to the biological 

                                                 
2 In three dimensions this would be spherical symmetry. In higher than three dimensions, it is called hyper-
spherical symmetry. 
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function of the network. This is in contrast to how one might decide the issue as merely an 

exercise in mathematics or in artificial neural network engineering. First we may note that when 

the quenching threshold q = 0, there are no gaps in coverage so far as adaptation is concerned. 

(The RBF Instars always produce some activation response regardless of the value of q). We may 

further note that IAR adaptation can be regarded in some sense as a form of Hebbian "learning" 

inasmuch as a small average value of input x produces a correspondingly small value of weight w 

under IAR and a large one produces a correspondingly large weight.3 This is because W → E{X} 

in the statistical adaptation process implemented by an IAR. To the extent that we regard the 

adaptation process as Hebbian or Hebb-like, a small output activation for the Instar implies 

NMDA-mediated synaptic plasticity should not take place in the neurons said to be represented 

within the RBF Instar map. Thus, from the perspective of the data path from X to Y, there appears 

to be little obvious biological justification for doing anything other than allowing a quenched 

competitor to stay quenched and preventing adaptation from taking place. This data path 

argument, admittedly dialectic, favors learning stability in the network system model.  

However, a strict and narrow interpretation of this argument loses sight of the fact that every 

network system is part of the larger central nervous system as a whole. Data paths are not the 

only pathways in the CNS. There are also modulatory control pathways of many kinds, such as 

those implemented by the metabotropic signaling projections from various brain stem nuclei. The 

data path argument favoring stability tends to also favor the network counterpart of Piagetian 

cycle rupture in adaptation (chapter 13) when, for fixed q in the MAXNET layer, an input X 

cannot be "assimilated" by one of the RBF Instars. In chapter 13 we spoke of the central process 

of equilibration and defined adaptation as the equilibrium between assimilation and 

accommodation. What about accommodation at the level of the total system?  

This consideration leads us into the psychologically murky waters where hypotheses dealing 

with the psychological phenomena of attention and consciousness are found. While it is true 

enough that universally accepted theories of attention and consciousness have not yet been 

achieved, there is general agreement that both are psychological factors for which the underlying 

brain activity is wide-scale and involves many, many different brain regions. Damasio presents 

one interesting picture of this in [DAMA5]. Some, e.g. Damasio, describe attention as "a spot 

lighting mechanism." William James provided a bit more lengthy description: 

Millions of items of the outward order are present to my senses which never properly enter into 
my experience. Why? Because they have no interest for me. My experience is what I agree to 

                                                 
3 This Hebbian interpretation is a bit more cloudy for RBF Instars located in a region of Ξ where all the x 
values in an X are relatively large. 
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attend to. Only those items which I notice shape my mind – without selective interest, 
experience is an utter chaos. Interest alone gives accent and emphasis, light and shade, 
background and foreground – intelligible properties, in a word. It varies in every creature, but 
without it the consciousness of every creature would be a gray chaotic indiscriminateness, 
impossible for us to even conceive. 

 Every one knows what attention is. It is the taking possession by the mind, in clear and vivid 
form, of one out of what seem several simultaneously possible objects or trains of thought. 
Focalization, concentration, of consciousness are of its essence [JAME: 402-404]. 

ART networks contain a subsystem Grossberg dubs the "attentional subsystem," the function 

of which is to make the network system respond to "significant novelties." This is a most 

important part of an ART network insofar as resolving the stability-plasticity dilemma is 

concerned. But if the "essence" of attention is "focalization and concentration of consciousness," 

this raises the hardly-any-less-difficult issue of what "consciousness" is. There is no shortage of 

interesting speculations regarding this issue, all of which are colored – either explicitly or, more 

often, implicitly – by one or another brand of metaphysical outlook. But a proper perspective of 

science, a proper approach to this issue, should be one that focuses on the practical and 

observable consequences of the otherwise-hidden-from-observation-by-other-people object called 

"consciousness." Noting poorly correlated brain activities that appear to accompany presentations 

of behaviors we say are indicative of consciousness is not the same thing as observing 

"consciousness itself." If we seek a working and practical definition of the term, we can hardly 

improve upon the definition given by Kant: consciousness is the representation that another 

representation is in me.  

Now this definition gives us something to grasp in looking at the non-adaptation issue arising 

from failure of any RBF Instars to participate in the MAXNET competition. Even if all yn fall 

below quenching threshold q, there are still representations (signals) present in the network 

system, namely X and Y. The issue at hand is merely that the MAXNET does not "see" X and is 

not responding to Y. Three distinct types of representations – X, Y, and the MAXNET output – are 

present in the network; all it lacks is a function for "representing that a representation is in me" 

and a function for either acting or not acting in response to this second-order control signal 

representation. We will call this function an attentional subsystem. It has two tasks. First, it must 

provide a signal indicating that other signals are present in the data pathway system. Second, it 

must provide an appropriate response action to this signal. For the case of the non-adaptation 

issue with the RBF-MAXNET network, this response action is to enforce plasticity in the 

adaptation response. The easiest means for doing so is to lower the quenching threshold q, noting 

that if q = 0 a competition will ensue because now every RBF Instar covers all of the input space 

Ξ so far as adaptation response is concerned. 
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Figure 14.3 illustrates these modifications to the RBF-MAXNET network system. We will 

call the control line leading back from the attentional subsystem to the MAXNET the vigilance 

control.4 The vigilance control determines the level of the quenching threshold q for the 

MAXNET Instars, and thereby controls the span of coverage of the input space Ξ. For sake of 

completeness, we will assume it will also be possible and desirable to interconnect the attentional 

subsystem with other subsystems in the overall neural system, but for the time being we will not 

be concerned with this aspect of the RBF-MAXNET network system.  

Let Z be the vector of outputs from the MAXNET. If ||Z|| = 0, ||X|| ≠ 0, and if every yn < q in Y, 

this condition means a competition could have taken place but did not because no RBF Instar had 

a close enough match to X represented in its weights Wn. Should a competition have occurred? 

That is, should X have stimulated a more vigorous reaction Y from the RBF layer? Or was X 

merely "normal background noise" in the overall system for which a non-response by the RBF 

layer is appropriate? Here we encounter face-on the signal-vs.-noise issue discussed in chapter 

13. In PET and fMRI studies, the scan data is typically evaluated in terms of activity being 

"significantly above normal background" levels, "significantly below normal background" levels, 

and "normal background" levels. Activities significantly above and significantly below 

background levels are generally regarded as important for correlating brain activity with whatever 

 

Figure 14.3: RBF-MAXNET with attentional subsystem. Bold lines represent signal vectors X (input signal 
vector), Y (RBF layer vector), and Z (MAXNET signal vector). The diagram simplifies the representation of 

the adaptation rate feedback pathway by representing all the individual rate controls as contained in a single 
functional block in the diagram. 

                                                 
4 The terminology here differs from the use Carpenter and Grossberg make of the terms vigilance and 
attentional subsystem in ARTMAPS. 
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Figure 14.4: Improved actor-critic model when individual attentional subsystems of the various network 
system models in the overall agent model are regarded as belonging to the agent's overall affectivity-

representing system. In this model, environmental effects are not the only source of information for the critic 
function. Internal conditions, such as those imputed by the attentional subsystem of figure 14.3, should also 

play a role in coordinating the overall functioning of the system. 

psycho-physical object is being studied. "Normal background" levels are assumed to be activity 

levels that would being taking place as a mere part of the brain's normal commerce in maintaining 

life. Activity significantly below normal background is regarded as important because the 

implication is that some other brain function depending on a level of activity from the region 

showing below-normal activity is being altered by this lack of activity. All this is, of course, 

presupposition on the part of neuroscientists, but it seems to be a very reasonable presupposition 

and we presently have no compelling evidence to say it is wrong.  

If "normal background" activity level is in some sense a "neutral gear" representative of stable 

overall system function in a state of equilibrium, and if higher-than-normal and lower-than-

normal activity levels indicate some process of equilibration is in progress, this suggests two 

things. Viewed on the large scale, the fact that brain function (as represented by activity levels) is 

highly distributed suggests that what we are calling the attentional subsystem in figure 14.3 is part 

of a larger organization of affective control and synchronization of the brain's various specialized 

systems. This, in turn, suggests that the actor-critic model of chapter 13 – which, we recall, was 

developed in the context of artificial neural networks – should be modified, perhaps as depicted in 

figure 14.4 above, to reflect the probable role internal states in the agent play in determining the 

overall functioning of the system. 

The second thing this suggests is that below-normal-background activity should not evoke 
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responses from the network system modules to which it projects. This is tantamount to declaring 

that some region of the Ξ-space illustrated in figure 14.2 should be treated as a region where the 

proper response of the network system is to make little or no response to X, and where the 

network system should not adapt in response to a stimulus. The simplest guess for how to model 

such a region is to suppose it is described by the quarter-circle defined by ||X|| < Ω, where Ω is 

some threshold, possibly set or controlled by some other function within the larger overall 

system. 

Assuming this, then ||X|| < Ω, max(yn ∈ Y) < q, and ||Z|| = 0 indicates the system of figure 14.3 

has responded properly, but ||X|| > Ω indicates the system response is improper. In the latter case, 

the attentional subsystem should respond by means of its "vigilance control" and lower threshold 

q to evoke a competition.  

§3.2 Active Ties and Narrow Margins 

The second way in which an all-zero output Z is produced by the MAXNET occurs when two 

or more of the RBF Instars produce the same output activity y > q. This, too, is a detectable 

condition defined by ||X|| > Ω, max(yn ∈ Y) > q, and ||Z|| = 0. What should the network system of 

figure 14.3 do in this case?  

Two RBF Instars, m and n, will tie at any point X for which ||X – Wm|| = ||X – Wn||. The locus of 

points {X} for which this condition holds can be regarded as a decision boundary between Instars 

m and n. If the system were modeled as having unlimited arithmetic precision (and if it were 

possible for a computer to represent quantities with unlimited precision), this case might be 

regarded as a merely formal difficulty since the probability of an X precisely meeting this 

condition would be zero (presuming X is regarded as a random variable following some 

continuous probability distribution function) unless Wm = Wn. (This condition of identical weights 

is usually regarded as disastrous for the functioning of the RBF-MAXNET system, although in 

some circumstances a useful interpretation for "coincident Instars" might be possible). However, 

real neural systems do not have unlimited precision (and real computers round and/or truncate 

their calculations to some finite precision) and so the issue is worth discussing. Let us say that an 

active tie exists between Instars m and n at some X if 

   ε<−−− nm WXWX                  (14.5) 

where ε is some small non-negative constant. What should the network system do? Although it 

might not be immediately apparent, this question takes us back to an issue we briefly touched 

upon earlier in this text, namely the issue of so-called grandmother cell encoding.  
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Figure 14.5: RBF coverage regions with active tie decision boundaries. The two dark lines are equally 
distant from the centers of the regions for which they form an adaptation decision boundary. The width of the 

active tie region is determined by ε. 

If we say that every point X in Ξ must "belong" to exactly one Instar then one or the other (but 

not both) Instars involved in an active tie should adapt in response to X. This is a generalization 

of the original, simpler idea of the grandmother cell that arose from feedforward neural network 

theory for Adalines and perceptrons. In our present case, we would say X should enter in to 

determining the expected value of X in the region Ξm ⊂ Ξ "covered" by Instar m (if this is the 

Instar chosen to adapt in response to X). There would then be a need to "break the tie."  

However, let us recall that all the RBF Instars in the network will be producing outputs 

regardless of whether or not adaptation takes place. The output vector Y is a valid representation 

insofar as "coding" the response to X is concerned. Figure 14.5 repeats our earlier illustration of 

the coverage of Ξ but with the addition of sub-regions in which we define active ties. Suppose we 

regard an X falling within an active tie region as belonging to both Instars for which the active tie 

region forms an adaptation decision boundary. We must then decide if the appropriate action is to 

adapt both Instars or neither.  

Our mathematical purpose – to learn an encoding for X – is already served if we do nothing. 

We therefore ask if there is any biological requirement for us to adapt either or both Instars. It is 

sometimes argued that, because signals X have enough activity to stimulate responses above the 

threshold q, this implies under Hebb's principle that both Instars should be adapted. This 

argument would carry some significant force if the synaptic weights of the Instar maps were 

direct correspondents of NMDA synapses. However, let us remember that a map model is a 

model of the collective actions of thousands of individual neurons. For this reason, a synapse-

level argument of this kind cannot be applied with validity. For one thing, the map model "hides" 

the majority of biological synapses from our view. X is only an input tract and we do not know 
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the details of what internal interconnections may exist within the neuron system represented by a 

map model. We must therefore conclude that we have no biological justification requiring the 

adaptation of either RBF Instar.  

There is a functional reason why it may be inadvisable to adapt either Instar. If both are made 

to adapt in the active tie reason, the "centers" represented by Wm and Wn will move towards each 

other. This is because IAR adaptation moves W in the direction of X. Now, there are a number of 

practical and functional reasons why we wish to avoid the possibility that two Instars could ever 

move to the same point W in Ξ. If our adaptation model calls for us to do nothing in cases of 

active ties, then occurrences of active ties cannot become a potential mechanism for causing two 

RBF Instars to become coincident. There may be (and there are) other mechanisms by which 

some form of undesirable coincidence of Instars could develop, but active ties will not be one of 

them. Inasmuch as we would have to add special modifications to the system of figure 14.3 to 

force adaptation in the case of an active tie, and because we do have a functional reason not to 

adapt active ties, the best adaptation policy for this case appears to be: do nothing; do not adapt 

active ties.  

How can active tie zones be defined in the network system of figure 14.3? Here we recall that 

output levels from a MAXNET are generally low-valued when two or more MAXNET inputs are 

close to each other in numerical value. That will be the case in the event of active ties. Therefore 

an active tie zone can be defined by adding an adaptation threshold κ to the η function 

generators of figure 14.3, i.e. 

   case I: ;               (14.6a) 


 ≥

=
otherwise,0

,0 κη
η
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   case II:               (14.6b) 
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where κ is some small positive constant. The relationship between κ and ε in (14.5) will be a 

function of the inhibitory weight settings in the MAXNET, with more rapid competitions tending 

to produce smaller winner outputs z. As pointed out earlier, having a finite active tie zone is more 

biologically realistic because of the limited precision of neuronal parameters.  

§3.3 Stability and Plasticity in the RBF-MAXNET 

Like other simple adaptive competitive networks that have been developed over the years, the 

RBF-MAXNET has stability vs. plasticity issues. Stability in a "learning" network generally 

refers to the ability of the network to retain past successful classifications in the face of later 
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adaptations. Plasticity generally refers to the ability of the network to quickly learn new 

classifications. The extreme example of this is the psychological phenomenon usually called one-

time-event learning. Like most people, you have most likely had at least one experience in life 

where something happened just one time that you never forgot. Often such events are 

accompanied by some kind of strong affective reaction. Perhaps it was the first time you met your 

future wife or husband; perhaps it was something a teacher said to you; perhaps it was an 

unpleasant first encounter with a wasp. There are many, many different examples of one-time 

events that seem to "stamp themselves" indelibly into a person's experience.  

Generally speaking, the ability for a network system to exhibit one-time-event "learning" calls 

for an ability to make rapid adaptations. However, rapid adaptations also tend to work against the 

network's ability to retain old "lessons" – i.e. rapid adaptation tends to oppose stability in network 

systems. Let us examine how the RBF-MAXNET behaves in regard to stability-vs.-plasticity 

performance. Without loss of generality, we will consider a simple example of two Instars and 

consider X values that fall on a straight line connecting the Instar weight locations as shown in 

figure 14.6 below.  

Let us assume for the sake of discussion that inputs X are uniformly distributed over the x-axis 

scale range in figure 14.6 from 0 to 1. Given initial weight locations for the Instars (0.2 and 0.8) it 
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Figure 14.6: An example of network system adaptation dynamics between two RBF Instars. For both Instars 
the α parameter in the activation function is 10. Instar 1 is assumed to be initially located at w1 = 0.2, and 
Instar 2 is assumed to be initially located at w2 = 0.8. The dashed green line depicts the absolute value of 

the difference between the two Instar activations as a function of x. The dash-dotted magenta line 
represents the active tie threshold; points where the green dashed line fall below it are in the active tie 

region. The brown dash-dotted line represents a possible new center for Instar 1 following an adaptation. 
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would not be unreasonable to suppose at first glance that the adaptation process would result in 

the two Instars dividing up their respective Ξ regions along either side of the center of the initial 

active tie region at x = 0.5; if this was what in fact would happen, it would imply Instar 1 would 

center itself at w1 = 0.25 and Instar 2 would center itself at w2 = 0.75.  

However, this is not what will generally happen. Given the initial situation depicted in the 

figure, suppose the next input happens to fall at, say, x = 0.4; this is in the "winning sphere" of 

Instar 1, and it falls outside the active tie region, so Instar 1 will adapt. Let us further suppose that 

Instar 1 ends up with a new weight center w1 = 0.3 after adaptation (either because adaptation is 

fast or because x happens to dwell for a long time at its x = 0.4 value5). Its activity vs. x curve is 

then depicted by the dash-dotted brown curve in figure 14.6. We can see that the center of the 

active tie region has now also shifted to about x = 0.55. This points out the first important 

qualitative character of adaptation in the RBF-MAXNET system: the space-partitioning decision 

boundaries set by active tie bands move as the weights of the Instars adapt. For this reason, our 

reasonable initial intuition stated above is wrong; we cannot tell a priori where the Instar 

locations will end up merely from a knowledge of their initial positions and knowledge of the 

probability distribution function of inputs {X}. By that line of reasoning, after the first adaptation 

we would then have to say we would expect Instar 1 to end up centered at w1 = 0.275 and Instar 2 

to end up at w2 = 0.775, and this, too, will generally be wrong.  

With inputs x obeying a uniform probability distribution, if we assume the next x is 

statistically independent of the previous x (an assumption likely to be false for biological signals), 

there is a 50% chance the next x input will also fall in between the two Instar locations. If it does, 

and if it does not fall within the active tie band (which, you should notice, has gotten smaller in 

width after the first adaptation), the Instars will move still closer to one another. If it does not, 

they will move apart again. If the adaptation rate is very slow, then it is more likely than not that 

the statistical properties of the time sequence of x will be able to "balance out" the movements of 

the two Instar centers and lead to the development of a reasonably stable average location for 

each. (In which case our initial intuitive guess might turn out to be true after all). Such a system 

could exhibit stability, but it would come at the price of not being able to respond to one-time-

event learning situations.  

But, on the other hand, if the adaptation rate is fast, or if the input sequence is time-correlated 

in such a way that the next x is likely to be near the previous value, the Instar locations could 

                                                 
5 It is a common experimental observance that large-scale activity patterns do tend to build up and dwell for 
long time periods, oftentimes on the order of 100 ms or longer, when the subject is given an external 
sensory stimulus. For an example, see [BRUN].  
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approach each other very closely. Since we are not allowing both Instars to adapt at the same 

time, by limiting η0 to values η0 < 1 no Instar can move, in one step, a distance greater than the 

difference between its present w and x; therefore, the Instars cannot "pass" each other in their 

travels along the x axis in the figure, nor can they "land on top" of one another. This, at least, is a 

good thing because were it not true the system would be terribly unstable.  

However, the Instar weights would tend to move around quite a bit as the system developed 

over time (owing to the greater plasticity attending a rapid adaptation rate). This, in turn, would 

lead to significant variance in the Y output values, and it would also mean that a particular X input 

would sometimes lead to a winning MAXNET activity first for one of the Instars, and then for the 

other. The variance in the W vectors is commonly called weight noise, and this weight noise leads 

to the variance (noise) in the output vectors Y. What this means is that even if the statistics of X 

were stationary (not changing over time), the statistics of the "coded" output vectors Y will be 

time dependent, owing to the significant time variation of the W vectors and the nonlinear 

function relating X to Y. If the statistics of X are also non-stationary (as they are likely to be if X is 

the output of another adaptive network system), the situation becomes even more complicated. 

This is one of the things Grossberg was getting at in his remarks we quoted earlier on the 

general instability of simple competitive networks. In more Piagetian-like terminology, the 

accommodations of the system (adaptations) do not preserve the system's previous assimilation 

characteristics when the adaptation rate is rapid or when the input statistics are significantly non-

stationary over time. If, as was argued in chapter 13, a psychologically realistic model must be 

one in which accommodation preserves prior assimilations, the RBF-MAXNET cannot 

accomplish this unless the adaptation rate is slow (and, often, not even then). This, by the way, 

also tends to argue in favor of the case II method for determining η since this method tends to 

enforce slower adaptation dynamics than does case I.  

§3.4 Is the RBF Activation Function 'Biological'? 

There is one more question we should deal with before ending our discussion of the RBF-

MAXNET network system. Is our use of the radial basis function for the activation function mere 

mathematical chicanery, or is it a biologically reasonable description?  

It would clearly be biologically unrealistic if an Instar was supposed to represent a neuron 

rather than a neuronal map modeling the collective input-output responses of many thousands or 

tens of thousands or hundreds of thousands of neurons. There is absolutely nothing in a biological 

neuron that says the neuron's response is in any way more active merely because all its synaptic 

inputs in some way "match" its synaptic strengths (the EPSPs and IPSPs produced in response to 
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synaptic excitation).  

If we recognize a map model for what it is and ask the same question, the honest answer is "no 

one really knows." Maybe it is; maybe it isn't; maybe sometimes it is and sometimes it isn't. This 

applies not only to RBF Instar models but to all map models. Most neuroscience papers that 

employ map models maintain a gentlemanly silence in regard not only to arguments why the 

model is biologically realistic but oftentimes even in regard to what map model is being used to 

produce the outcomes that make up the paper's topic. Personally, your author does not approve of 

this because it tends to make it at the least inconvenient, and at the most difficult or impossible, to 

replicate the authors' work and check their claims. As Claude Bernard famously pointed out, a 

scientist should never be ashamed to say, "I don't know." Indeed, healthy science demands no less 

than this of us.  

Still, applied mathematics in science serves us as a very, very, very precise language and so it 

is always a good idea to listen to one's equations to hear what they are saying to us. What does the 

mathematical representation of the RBF Instar say? Let us start with X. At the map model level, 

each element x in X represents a tract of signals and the information it conveys is merely an 

abstract measure of the "level of activity" at the source. As we discussed earlier, at the psycho-

physical level of experimental science our main tools (PET, fMRI, etc.) convey measures of 

phenomena we know (or think we know) to be directly related to the amount of neuron firing 

taking place in a specific region. The abstract variables x tell us nothing directly about firing 

rates, temporal sequencing of action potential patterns, nor even the extent to which the overall 

activity is merely local (does not project to other regions). It is reasonable to say these 

measurements are related to the size of the neuron population that is active within the region, but 

this does not necessarily mean it is proportional to projected output activities from the region. 

PET or fMRI data might result from merely a higher metabolic rate brought on by some sort of 

local metabotropic signaling making direct contribution only to local signaling activity levels, 

whether this signaling activity is projected from the region or not.  

For any given numerical value of x in a map model, this value might correspond to a large 

number of slowly-firing projection neurons, or it might correspond to a smaller number of 

rapidly-firing projection neurons. Or the same number x might sometimes correspond to the first 

case, and other times might correspond to the second case. Unless one has detailed anatomical 

and physiological data to say otherwise, there is simply no way to be sure. One can hope the 

metaphors one uses in thinking about the research problem are accurate, but to paraphrase the 

English philosopher John Locke, "Hope is like desire, and desire causes pain." It is better and 

more desirable to know when you don't know than to think you know something that isn't true. 
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What do we actually know about x? We know it represents some abstract measure of source 

activity and we make the hypothesis that this measure is functionally related to what happens in 

the maps to which it is projected.  

Now, everything just said about x and X applies equally and in just the same way to y at the 

output of a map model and to the vector Y at the output of a network system made up of map 

models. The mathematical input-to-output transformation, T(X) = y, produced by a mathematical 

map model says to us nothing more and nothing less than "the output activity level of the map is 

related to the input activity level patterns in this functional way." T(X) says nothing about 

biological mechanisms.  

In the case of the RBF Instar, this output activity is maximal when X matches W and falls off 

in a Gaussian fashion as the mismatch between X and W increases. What, then, does W represent? 

It almost certainly does not represent the strength of the synaptic efficacy of neurons in the 

population. The map is not a neuron. As part of the transformation function T(X) of the map, what 

W represents is an abstract tuning function. Whatever might be the fine detail of firing rates, 

temporal patterns, correlations among action potential patterns within the tracts, or whatever else 

affects neuronal response within the population, W merely says to us, "whatever it is that is going 

on the signaling X represents, this cell population will be most excited when this vector activity 

measure has the vector numerical value W." This is what W says to us, no more and no less.  

The RBF sliding threshold, 0.5⋅(XTX + WTW), says nothing at all to us about biology. This part 

of the RBF Instar map is indeed mathematical chicanery; its purpose is to force a correspondence 

between y and X so that our hypothesis about output activity being related to input activity in the 

functional manner described above is satisfied in the mathematical description of the Instar. The 

sliding threshold is part of the functional implementation of our hypothesis. Inasmuch as the 

hypothesis is biologically reasonable, the sliding threshold is functionally reasonable, no more 

and no less.  

Our particular radial basis function has a free parameter, α. What does α say to us? It says the 

map has some particular degree of selectivity for activity patterns being projected to it. Small 

values of α say the map is not very selective in its response to specific incoming activity patterns; 

large values say the map is somehow or other highly "tuned" to respond to whatever specific 

signal details are hiding in W.  

We could go on and discuss what the mathematics of the adaptation method implemented by 

the RBF-MAXNET network are saying to us. As this discussion is the corollary, it is left to you 

to think about. The key hint is this: the adaptation method aims at supporting the hypothesis. We 

have already discussed the issue that exists between (1) the stability-plasticity dilemma as it 
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shows up in this network system and (2) the incompatibility between fast adaptation and the 

psychological requirement that accommodation preserve prior assimilation capacities. We have 

seen that fast adaptation by this network system is not compatible with (2), while slow adaptation 

is not compatible with single-event "learning" phenomena. If you suspect the adaptation 

algorithm is chicanery in functional service of the basic hypothesis – well, good for you!  

§4. The Functions of Competitive Networks 

§4.1 Heteroassociation 

We have just finished looking in some detail at two types of simple competitive networks. In 

both cases the aim of the network was to classify input vectors X by forming prototype vectors W. 

We saw that our first example, the Instar-MAXNET network, does this very poorly unless certain 

special steps are taken. Specifically, the input vectors had to be normalized so that ||X||2 = XTX 

had some constant value (say, for convenience, XTX = 1) for every input vector; likewise, the 

weight vectors also have to be normalized to this same value. Normalization allows this network 

to function as a prototype vector classifier because, for XTX = WTW = 1, we have  

   ( ) ( ) WXWXWWXXWXWXWX TTTTT 22222 −=−+=−−=−=∆ . 

In this case, then, s = XTW provides a means for measuring the distance between X and W, and the 

Instar with the largest activation (assuming g is a monotonic function of s) is the one for which 

the distance between X and W is least. Weight normalization requires a change be made to the 

weight adaptation algorithm, e.g., 

   ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )tWtXtW

tWtXtWtt
−⋅+

W −⋅+
=∆+

η
η  .             (14.7) 

Adaptation rule (14.7) is commonly called the WTA or winner take all rule. In addition, the 

network system must also have some sort of pre-processing on X to ensure its normalization. 

The RBF-MAXNET network is also a prototype vector classifier, but one that does not require 

the normalization pre- and post-processing of the weights and inputs. While the Instar-MAXNET 

network is restricted to work on the "hyper-surface" of the hyper-sphere defined by XTX = 1, the 

RBF-MAXNET will work over the "hyper-volume" Ξ.  

Both networks can be regarded as nonlinear mapping functions, i.e. ℕ: X → Y, where X and Y 

can be regarded in the abstract as members of an input space, Ξ, and an output space, Ч. The 

network function is said to "associate" an input X with an output Y, and so such networks are 

often called heteroassociative networks. The vectors W are frequently referred to as "categories" 
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or "concepts," although this is mere romance in the language used by neural network theorists.  

In principle at least, a network of heteroassociative network systems could be regarded as a 

kind of instrument for computing. The problem, of course, is that "association" is the only 

function they actually provide if network "learning" is unsupervised using the IAR method. This 

is no trite matter; association is one of the fundamental constitutive psychological functions in 

Piaget's theory. But if the overall mathematical function of the system is to go beyond mere 

association in an unsupervised adaptive system, something else has to intervene.  

Again in principle, this something else would fall to an evaluating or "critic" type of 

functional subsystem. But it is difficult to see how any overall system comprised of nothing but 

heteroassociations could provide a means for "universal" or "general purpose" functions to 

emerge. Indeed, because Piaget et al. found they needed four constitutive functions to describe 

observable behaviors (the association, repetition, identifier, and permutator functions), we should 

suspect that simple heteroassociative networks do not provide a complete basis for biological 

signal processing.  

§4.2 Autoassociation and Outstar Nodes 

One desirable assimilation function is autoassociation. Suppose we have a network system for 

which the mapping function is ℕ: X → X. Now let ∆X be some small perturbation on X. A 

network is said to be an autoassociative network if ℕ: (X + ∆X) → c ⋅ X where c is some constant. 

Such a network is said to "filter out the noise ∆X in the signal" or "recognize" X when X has 

"missing pieces" or "noise" in its representation. In general, a network system of parallel and non-

interacting Instars, such as those of our earlier examples, cannot implement auto-association 

using unsupervised adaptation methods. Something new must be introduced into the network to 

make unsupervised autoassociation possible.  

Several different types of recurrent networks for doing autoassociation have been developed 

over the years. Probably the most famous of these is the Grossberg-Hopfield network6. However, 

one of the major drawbacks to these networks is the fact that they require training, i.e. their 

adaptation is supervised rather than unsupervised. A second drawback is that their capacity to 

"store" autoassociation patterns by means of their W vectors is rather limited. For these reasons 

and because they are primarily of interest to artificial neural network engineering, we will spend 

no time on them.  

                                                 
6 This network is more commonly known as the Hopfield network because it was through the work of John 
Hopfield in 1982 that it became well known. However, Grossberg and his colleagues had carried out much 
important analysis work on this network prior to its "rediscovery" in the early 1980s.  
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Figure 14.7: The classical Outstar node. Node vi and the weight connections wij constitute the Outstar. 

A simple extension of the RBF-MAXNET network will allow us to turn this network into an 

autoassociative network. The method involves another kind of map model network node called an 

Outstar. Like the Instar, there are various kinds of Outstars; they are distinguished by the form 

their adaptation law takes. The classical Outstar is illustrated in figure 14.7 [CARP6]. Other 

variants include Grossberg's Γ-Outstar [GROS11] and the facilitated or F-Outstar introduced 

below.  

Again like the Instar, the Outstar node, vi in figure 14.7, represents a large population of 

neurons rather than a single neuron. For Instar adaptation using the IAR method, the weight 

adaptation is probably best thought of as modeling the function of postsynaptic long term 

potentiation and long term depression. This is to say, the long-lasting change in the weights of the 

connections W is conveniently regarded as "belonging to" the Instar population rather than to the 

signaling source population. As the RBF-MAXNET network illustrates, control of this adaptation 

process is carried out "locally" in the competitive network without calling upon any special 

properties of whatever network is the source of the input signals X. 

In the case of the Outstar, it is convenient to conceptualize the adaptation process as modeling 

the function of presynaptic LTP and LTD. As we discussed in chapter 12, LTP and LTD is found 

to occur via both postsynaptic and presynaptic mechanisms. The classical Outstar adaptation rule, 

which we will call the c-OAR, in discrete-time form is 

   ( ) ( ) ( ) ( )( iytWtYtWtt )W ⋅−⋅+=∆+ λ              (14.8) 

where Y = [y1  y2 ⋅ ⋅ ⋅ yM ]T from figure 14.7 and yi is the activation output of Outstar vi. λ is the 

adaptation rate constant and W is the vector of weights connecting vi to the destination nodes v1 to 

vM.  For the classical Outstar, it is assumed the destination nodes are excited into activity by other 
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Figure 14.8: The facilitated or F-Outstar. In this variant of the Outstar the weight adaptation is controlled by 
a model of metabotropic presynaptic LTP/LTD due to metabotropic axoaxonal synapses made by a third 

facilitating population of interneurons with output activities X. The facilitating population acts as an 
adaptation control source. 

stimulus sources such that their ym output activations are not dominated by the wim ⋅ yi terms, the 

Outstar signals coming into nodes vm. If the Outstar signal were to significantly contribute to 

determining the activity vector Y of the destination nodes, (14.8) will lead to adaptation instability 

because of the positive feedback inherent in the c-OAR. For this reason, the classical Outstar is 

almost always found embedded within a recurrent network structure where no "run-away" of Y 

can be induced due to vi. The most widely known example of this is found in ART networks. 

A variation of the Outstar is shown in figure 14.8, which we will call the F-Outstar (facilitated 

Outstar). For the F-Outstar adaptation is controlled by a third facilitating input vector, X, sourced 

by another set of population nodes. This population is presumed to make axoaxonal connections 

with the Outstar axon population at the presynaptic terminals of these axons. Furthermore, this 

axoaxonal connection is regarded as being metabotropic and, therefore, no part of signals X are 

transmitted to the destination nodes v1 to vM. The F-Outstar's adaptation rule (f-OAR) therefore 

does not suffer from any positive feedback effects such as those with which we must concern 

ourselves in the case of the c-OAR. The f-OAR is 

   ( ) ( ) ( ) ( )( iytWtXtWtt )W ⋅−⋅+=∆+ λ .             (14.9) 

Biological support for the F-Outstar is provided by experimental findings showing that 

LTP/LTD can be induced by presynaptic connections involving neurotransmitters such as 

serotonin (5-HT). The textbook example of this is provided by studies of the gill-withdrawal 

reflex in Aplysia [KAND3], the theory of which contributed significantly to Kandel's winning of 

the Nobel Prize in medicine. Like the IAR, the f-OAR adapts the weights W to match the 

expected value of the control inputs X provided the Outstar activation yi is non-zero.  
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Figure 14.9: Autoassociative network formed by combining an RBF-MAXNET with F-Outstar nodes. Each 
node in the MAXNET projects its post-competition activation zi to an F-Outstar with output yi. Each Outstar in 
turn projects to a bank of map nodes (typically Instars) v1 through vM. There is one destination node for each 

input signal xm, and each vm receives an input from each F-Outstar. For each F-Outstar its m-th "axon" is 
facilitated by the corresponding input signal xm. After competition there will be at most one MAXNET node 

for which zi ≠ 0, and this defines which F-Outstar will undergo facilitated adaptation according to the f-OAR. 

To examine the stability conditions for the f-OAR we proceed as before and assume X to be 

constant and W = X + ∆W. Inserting these into (14.9) and re-arranging terms gives us 

   ( ) ( )( ) ( )tWtyttW i ∆⋅⋅−=∆+∆ λ1  

which, as before, is guaranteed to converge to zero if |1– λ ⋅ yi| < 1. Also as previously shown for 

the IAR, if X(t) follows a stationary random process the f-OAR weights will settle into a steady 

state defined by E{X ⋅ yi} = E{W ⋅ yi}, leading to E{W} ≅ E{X} by invoking the independence 

assumption on yi.  

Figure 14.9 illustrates how the F-Outstar can be used to convert the RBF-MAXNET of figure 

14.3 into an autoassociative network. Each node in the MAXNET projects its post-competition 

activation zi to an F-Outstar with output yi. Each Outstar in turn projects to a bank of map nodes 

(typically Instars) v1 through vM. There is one destination node for each input signal xm, and each 

vm receives an input from each F-Outstar. For each F-Outstar its m-th "axon" is facilitated by the 

corresponding input signal xm. After competition there will be at most one MAXNET node for 

which zi ≠ 0, and this defines which F-Outstar will undergo facilitated adaptation according to the 

f-OAR. After adaptation of the RBF-MAXNET and the F-Outstars have reached statistical steady 

state, the winning RBF Instar, acting through the MAXNET, projects an activation to its Outstar, 

which in turn projects a weighted signal yi ⋅ Wi = yi ⋅ E{Xi } to nodes v1 through vm. Here E{ Xi } 

is the weight vector that has been "learned" by the RBF Instar. In the simplest case the Outstar 

activation yi is linearly proportional to zi, which would reflect in the intensity of the Outstar 

activation how "close" the competition between Instars was. Alternatively, we could have yi = 

H(zi – γ) where H is the Heaviside function and γ is a quenching threshold for the Outstar. The 
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destination nodes v1 through vm can receive other inputs from other signal tracts X(2) without 

upsetting the autoassociative learning from the signal tracts X.  

§5. General Discussion 
The competitive networks presented in this chapter work very well in a statistically stationary 

input environment, but they are not without their drawbacks. The first and easiest to note is the 

limited number of partitions in Ξ, the input space, imposed a priori by the number of MAXNET 

nodes in the network. If we have N Instars and N MAXNET nodes, then we have at most N 

partitions in Ξ. This is a constraint caused by the basic structure of the network itself, and if more 

partitions are needed, the size of the network must grow linearly with the number of partitions.  

There is, of course, reason to think that specific biological neural networks in the central 

nervous system do have limited capacity. Furthermore, the growth and development process in 

brain maturation clearly imposes a numerical constraint on network size. However, what is not 

constrained by this basic factor is the number of synaptic connections, i.e. the number of tracts in 

the input vector X and their distribution of connections (called the network system's receptive 

field). The Instars can "prune" the number of input connections if some particular subset of x 

input signals is chronically zero or near zero; the network responds to this by driving the 

corresponding connection weights w to zero. Similarly, if some (but not all!) the connection 

weights are initially set to zero, the adaptation process can drive them to non-zero settings if the 

corresponding x inputs are non-zero on the average. Nonetheless, the maximum number of such 

connections is fixed a priori by the structure and cannot change.  

There is an a priori constraint that must be applied in the initial setting of the weight vectors 

Wn of the Instars. Specifically, every Instar must have a unique initial weight vector setting. If 

two Instars should come to have functionally identical weight vectors, Wn = Wk, n ≠ k, the result 

for the network system is disastrous because these two Instars will then forever produce output 

signals that will tie. This issue is more complicated than it may appear at first glance because 

functional identity between weight vectors involves the characteristics of the input vector X. To 

illustrate this, suppose Wn = [ w1 w2 ⋅ ⋅ ⋅ wa ]T and Wk = [ w1 w2 ⋅ ⋅ ⋅ wb ]T, wa ≠ wb. Now suppose 

that all input vectors are of the form X = [ x1 x2 ⋅ ⋅ ⋅ 0 ]T, i.e. the xM signal turns out to be inactive. 

Mathematically speaking, this means the dimension of input space Ξ is less than what was 

initially supposed. Instars n and k will forever produce tied outputs and neither will ever adapt. 

Note that there is no way to distinguish this situation from that of a normal active tie with the 

structure of the system as presented earlier, i.e. the case where X ≠ Wn ≠ Wk but yn = yk.  

There is a more serious issue attending these networks, however, and it involves the stability-
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plasticity dilemma. Assuming we do not get into the difficulty of coincident weights just 

discussed, let us revisit the steady-state solutions we used in the theory presentations above. We 

said that the Instar weight will approach a steady-state solution E{W} ≅ E{X} where E denotes 

statistical expectation. Now, in deriving this result we had to invoke the assumption that the 

statistics of X do not change over time. In more formal language, the pairing of a signal space Ξ 

and a probability distribution function p(Ξ), written [Ξ, p(Ξ)], is called a probability space. If the 

probability distribution p is not a function of time, written p(Ξ, t) = p(Ξ), the probability space is 

said to be stationary. In deriving the E{W} ≅ E{X} result, one of the steps in this derivation was 

the assertion that in the steady-state E{W(t + ∆t} = E{W(t)} after some sufficiently large t. The 

ability to make this assertion completely depends on the assumption p(Ξ, t) = p(Ξ).  

One way to say "stationary probability space" mathematically is to say ∂p(Ξ, t)/∂t = 0. Now, in 

general ∂p(Ξ, t)/∂t ≠ 0, i.e., probability spaces are usually not stationary. Suppose you were to 

measuring the average number of cars passing by some particular spot on the main street of your 

hometown at different hours of the day. Most likely you will find the average number of passing 

cars at 5:00 PM to be very different from the average number at 3:00 AM, and you will find the 

average number of cars at 1:00 PM on Monday to be very different from the average at 1:00 PM 

on Sunday. If Wall Street stock prices were statistically stationary, the Dow Jones averages would 

be very boring indeed because they would never change by any significant amount.  

So it is with brain activity. Every bit of experimental evidence we have says ∂p(Ξ, t)/∂t ≠ 0 for 

brain activity. Nonstationary analysis of adaptation dynamics in general is very, very difficult. It 

is possible to reach useful conclusions for certain special cases. For example, important and 

useful results in the case of the LMS algorithm have been presented by Widrow et al. [WIDR5]. 

Some of these apply to the IAR and f-OAR as well. We will consider two limiting cases.  

First, suppose ∂p(Ξ, t)/∂t is small compared to the adaptation rate. In this case, E{W} will tend 

to track E{X}, usually with a small lag δt, over time t. One way to say this formally is to write 

E{W, t} ≅ E{X, t – δt} for some small δt. The consequence of this is that over time the weight 

vectors Wn in the system will tend to drift. That is, the network system will "forget" what it 

"learned" in the past in favor of what it has been "seeing" lately. In the neural network literature 

this is commonly called a learning instability. It is probably true that for at least some neuronal 

structures in the central nervous system this behavior is characteristic and perhaps even serves a 

useful purpose. (Think about looking up a telephone number and dialing it; do you remember 

what that number was five minutes later?) But it is also certainly true that some neuronal 

structures do not behave this way; learning instability is an accommodation that does not preserve 
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assimilation, and we know this situation to be contrary to many observable behaviors during child 

development.  

Next let us suppose ∂p(Ξ, t)/∂t is large compared to the adaptation rate but that our probability 

space has the special character that p(Ξ, t + T) = p(Ξ, t) for some T. The probability space in this 

case is generally said to cyclostationary and, for small T, is said to be "rapidly" cyclostationary. 

What we mean specifically by this is that 1/T is large compared to the rate at which the weight 

vectors change. In this case, the changes in the W vectors will fail to follow the time variations in 

p(Ξ, t) and will instead tend to "sit" at a value in the near vicinity of the time-average "location" 

of X,  

   ( )dttX
T

X
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t∫
+

=
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The rapid fluctuations in p(Ξ, t) are "seen" by the network system as a kind of "high frequency 

interference" that the system tends to filter out. If, on the other hand, p(Ξ, t) is cyclostationary but 

1/T is small with respect to the adaptation rate, the network system will tend to "track" the 

changes and the W vectors will be "cyclostationary" too. In this case the network system tends to 

act like a sort of "low pass filter" and 1/T is said to be "in the passband" of this "filter." It would 

not be an abuse of language to say our competitive networks are temporal filters of probability 

distribution functions.  

Although this discussion has focused on the Instars, the same conclusions also apply to the 

feedforward f-OAR adaptation by the F-Outstar node. In slightly different form they also apply to 

the classical Outstar node if this adaptation does not encounter instabilities resulting from the 

positive feedback issue that can arise if the Outstar makes a significant contribution to the activity 

of the nodes v to which it connects. (If this instability occurs, that is another and worse matter).  

Finally, the classic competitive networks discussed in this chapter lack the mathematical 

properties of shift- or rotational-invariance. An Instar is said to be shift-invariant if, for example, 

the set of inputs [x1 x2 x3 0 0 0]T, [0 x1 x2 x3 0 0]T, [0 0 x1 x2 x3 0]T and [0 0 0 x1 x2 x3]T all produce 

the same output y. An Instar has rotational-invariance if [x1 x2 ⋅ ⋅ ⋅ xM]T, [xM x1 ⋅ ⋅ ⋅ xM-1]T, etc. all 

produce the same y. To possess shift- or rotational-invariance requires some sort of corresponding 

characteristic for the Instar's W vector and, generally, the IAR does not produce this kind of 

symmetry or invariance property. If the Instars in a competitive network lack these properties, 

then so will the network as a whole.  

Shift-invariance and/or rotational-invariance are often very desirable properties for artificial 

neural networks in applications such as character recognition or image processing. But do 

451 



Chapter 14: Simple Adaptive Competitive Networks 

biological networks possessing these properties actually exist in nature? The answer to this 

probably depends on the scale of structure we are looking at. There is evidence that relatively 

large network systems – that is, systems comprised of a collection of many interconnected two-

layer competitive networks – do exist that exhibit these properties. The evidence implicating this 

generally comes from psychological rather than psychophysical testing. But there is little 

evidence to support the hypothesis that these properties exist on the fine scale, and some evidence 

has been found suggesting that shift- and rotational-variance occurs locally at the sub-millimeter 

scale [BOSK]. This variance on the local scale is accompanied by strong coupling with nearby 

regions, which could imply that the appearance of shift- or rotational-invariance in psychological 

testing might be the consequence of much larger-scale system interactions than is modeled by a 

simple two-layer competitive network. The simple networks discussed in this chapter are not 

laterally cross-coupled with other competitive networks, and so the modeling of invariance 

properties belongs to a higher scale modeling problem of networks of network systems.  

Some of these issues have been addressed by adaptive resonance theory. In chapter 15 we turn 

to the examination of the fundamental concepts of ART.  
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