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Prelude to ART  
 

§ 1. Adaptive Resonance Theory 

By most authors' accounts, the birth of adaptive resonance theory (ART) is recognized as 

being in 1976 with the appearance of [GROS6]. In an important sense this is true, but it 

diminishes the fact that ART developed over a period of years dating back into the late 1960s. 

Indeed, many of the key ideas used in [GROS6] will not make sense to the novice unless he has 

already become familiar with them from Grossberg's earlier publications. By 1976 they had 

become part of what is often called "the standard argument" used in the first sections of a 

technical journal paper. The purpose of this chapter is to present the key ideas and findings that 

are essential for the actual discussion of adaptive resonance theory in chapter 16.  

ART networks' undeserved reputation for being very complicated is due to an unfortunate 

historical accident. The foundational ideas that would lead to ART were discovered and published 

in the "dark age" of neural network research dating from 1968 until well into the 1980s. In some 

ways the history of ART can be compared to the Carolingian Renaissance that began with 

Charlemagne and flourished briefly in the ninth century before vanishing in the tumult of the 

tenth. Fortunately for ART, Grossberg – unlike Charlemagne – was still alive and active when the 

darkness lifted. (Had Charlemagne's successors been competent men, the dark ages might have 

ended 300 years sooner). ART's foundations never did disappear but, like the post-Carolingians, 

there are many younger theorists who came into the neural network field in the 1980s and 1990s, 

and who are simply too young to know about the propaedeutic work of the late 1960s and early 

1970s [GROS2], [GROS3], [GROS11-18], [ELIA], [GROS4-6].  

ART can looked at as the fusion of two major themes: recurrent on-center/off-surround 

networks and Outstars. There is, of course, more to an ART network than just these two elements, 

but they are the central elements and everything else exists to support their function. The on-

center/off-surround structure is found in abundance in the central nervous system. Its basic form 

consists of a population of neurons that is tightly coupled and self-excitatory (the on-center) 

surrounded by other populations with which it has lateral inhibitory connections (the off-

surround). Figure 15.1 illustrates the basic on-center/off-surround schema. The designation of a 

population as on-center or as off-surround is relative. Every population is an on-center to itself 

and its neighbors are its off-surround. One population is designated as on-center in figure 15.1 for 
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Figure 15.1: Basic on-center/off-surround network anatomy 

 

Figure 15.2: Minimal ART anatomy. Feedback projections are made via Outstars. Feedforward projections 
project into each V2 node using an Instar anatomy. 

purposes of discussion. Lateral inhibitory paths are only shown for the population designated as 

the on-center population. It is to be understood that the off-center populations all have this same 

connectivity when they are regarded as an on-center. When the input stimulus to the on-center 

population is greater than that to the off-surround populations, the on-center node tends to 

suppress the activities of the off-surround nodes. If the off-surround stimuli are greater, the on-

center activity tends to be suppressed. The simplest example of this is seen in the behavior of the 

MAXNET, which is an on-center/off-surround anatomy.  

The basic minimal ART anatomy is shown in figure 15.2. It consists of two on-center/off-

surround layers, V1 and V2. Each node in V1 projects to each node in V2, and the fan-in to each V2  
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Figure 15.3: Detailed diagram of each v2 node's input/output anatomy. 

node uses an Instar anatomy. Each node in V2 projects back to each node in V1, and the feedback 

from each V2 node is made by means of an Outstar. Figure 15.3 illustrates the input/output 

anatomy of a V2-layer node. In general a V1-layer node, v1i, is the same except that V1 nodes do 

not have an Outstar output. Input weights W2j and output weights Z2j are adaptable.  

Each node in figure 15.2 represents a population of B neurons and has a level of excitation x, 

with 0 ≤ x ≤ B, representing how many neurons in the population are active. The quantity B – x 

therefore represents how many neurons in the population are inactive. In the most general case, 

each node vi can represent a different population size Bi, although the most commonly 

encountered ART networks typically use the same population size B for all nodes. This network 

anatomy is termed a lumped network [GROS14]. The meaning of this term is as follows. Each 

population in each node is regarded as being made up of both excitatory and inhibitory neural 

subnetworks. If the excitatory and the inhibitory subpopulations have the same parameters and 

receive the same inputs, then the two subpopulations are indistinguishable with respect to every 

input source and with respect to their temporal dynamics. In more advanced ART networks it is 

possible to divide each node into an excitatory population and an inhibitory population, and to 

give each population differing sets of parameters. Such a network is said to be unlumped [ELIA], 

[GROS15].  

All parameters and variables in an ART system are non-negative. Although many of the 

details of the network are very similar to what we have seen in the earlier chapters of this text, 

ART systems employ two quite different features, and these make all the difference. The first is 

that ART does not use the classical Instar map model. Rather, it uses a special kind of Instar map 

developed by Grossberg. We call it the shunting node Instar or SNI. Second, the activation 

functions f(u) employed in an ART system are different from all the more classical activation 

functions we have seen so far. In one of his early works, Grossberg studied how the properties of 

the activation function affect the behavior of a network constructed from SNIs [GROS14]. He 
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found that the details of the activation function are crucial to how the network performs – much 

more crucial than is typically the case with the simpler network systems we have already studied. 

We will explore both these unique aspects of ART in turn. 

§ 2. Shunting Node Instars 

When used as a general term, the name 'shunting node Instar' refers to a general class of map 

models within which various special cases are distinguished. This usage is similar to our use of 

the generic term 'Instar' for a specific general form of map model with names to identify distinct 

species of the class such as Adaline, perceptron, and RBF Instar. In this section the defining 

equation for a general SNI will be presented along with some special notation we will find useful. 

In practice, most ART systems restrict the parameters of this equation in specific ways, and most 

published ART systems are less general than the equation we present here. We will give different 

special case SNI maps a designation of the form SNI(k) and allow the superscript k to be the 

identifier of which specific case we are talking about.  

We will find it useful to define special symbols to designate particular classes of input signals 

received by an SNI. There are four classes of inputs:  

• ξ e = the sum of all excitatory inputs from specific SNI nodes; 

• ξ i = the sum of all inhibitory inputs from specific SNI nodes;  

• ζ = a non-specific and uniformly distributed input applied to all nodes in a layer; 

• K = an excitatory input regarded as originating from an external (non-SNI) stimulus. 

We let x represent the SNI's excitation variable and define the following general parameters: 

• A > 0; a general relaxation parameter; 

• B > 0; the node's population parameter such that 0 ≤ x ≤ B; 

• C ≥ 0; a node parameter we will call the spatial contrast parameter. 

Using these definitions, the general form of the SNI dynamical equation is  

   ( ) ( ) KxCxBxA
dt
dxx ie

def
++⋅+−⋅−+⋅−== ζξξ& .         (15.1) 

Grossberg developed adaptive resonance theory entirely within the framework of differential 

equations. Thus, t in (15.1) is a continuous time parameter. For computer simulations we will 

need a discrete-time form of (15.1). We convert (15.1) to difference equation form using Euler's 

method and obtain  

 ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )tKtttCttBttxttAtttx ieie +⋅∆+⋅⋅∆−⋅⋅∆+⋅++⋅∆−=∆+ ζξξξξ1 .( )   

                           (15.2) 
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Generally speaking, in ART systems the variables ξ e and ξ i will be non-negative quantities. A 

condition sufficient on the time step ∆t to ensure the stability of (15.2) and its proper performance 

within an ART system is given by 

   ( ) ie
ie

A
tAt

maxmax
maxmax

111
ξξ

ξξ
++

≤∆⇒<++⋅∆−≤0  .       (15.3) 

The activation variables that give rise to ξ e and ξ i in an ART system are usually bounded 

within the range from 0 to 1 by sigmoid activation functions. If there are Ne excitatory inputs and 

Ni inhibitory inputs producing ξ e and ξ i at the SNI node, and assuming the adaptation dynamics 

of the system can ensure all the synaptic weights of the SNI similarly remain bounded in the 0 to 

1 range, a sufficient condition for the time step is 

   10, ≤<
++

=∆ αα

ie NNA
t .               (15.4) 

When the system has multiple SNI nodes, as will generally be the case, (15.4) is determined by 

the SNI node for which the sum in the denominator of (15.4) is the largest.  

When the external and the non-specific inputs, K and ζ, are held constant, and if the overall 

system is fixed-point stable such that ξ e and ξ i achieve constant final values, both (15.1) and 

(15.2) yield the same steady-state value for x,  

   ( ) ( ) ( )
( ) ( )∞+∞+

++∞⋅−∞⋅
=∞ ie

ie

A
KCBx

ξξ
ζξξ  .             (15.5) 

Note that this result is independent of ∆t, as it should be for a proper difference equation 

representation of (15.1). As we will see, asymptotic behavior is important in adaptive resonance 

theory.  

It is appropriate also at this time to point out that the presence of the –C term in (15.5) makes 

it mathematically possible for x(∞) to be negative. In view of Grossberg's interpretation of what 

the excitation variable x represents – namely, that it represents how many neurons in a population 

are active – this mathematical possibility is troubling from the viewpoint of a physical 

interpretation. In point of fact, some ART network subsystems do produce negative values for x. 

These negative values do not result in negative activations, f(x), because of the activation 

functions f used in ART systems. (Typically f(x < 0) = 0 in ART). Grossberg originally 

introduced the C term into (15.1) by making an analogy between it and the Nernst potential for 

potassium [GROS6], but this clearly has little plausible application in interpreting the SNI as a 
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population model. Still, C was introduced for an important functional reason and it will not do to 

banish it from (15.1). Mathematical chicanery it might be, but if so it is important chicanery 

nonetheless.  

One way to restore some plausibility to C, and to the negative values of x it is capable of 

producing, is to first note that (15.1) is a model for a lumped network. Lying deeper beneath this 

model is the unlumped model in which we have separate populations of excitatory and inhibitory 

neurons [ELIA]. If we reinterpret B as representing the number of excitatory projection neurons 

in the population, then we can plausibly interpret a negative value for x as denoting that the 

inhibitory subpopulation is active and holding the excitatory population in an overall average 

state of hyperpolarization. The activation function f then takes care of the rest of the picture.  

§ 3. The Grossberg Normalizers 

The previous section has pointed out the practical importance of normalized variables in an 

ART network. Normalization was not new to neural network theory at the time ART first 

appeared. A number of researchers, including Malsburg, Kohonen and others, had incorporated 

mathematical normalization into their network models. The WTA rule from chapter 14 is one 

well known example of this, as is the α-LMS algorithm developed by Widrow. Grossberg was the 

first important researcher to point out that, if normalized networks were to command plausibility 

as models of biological neural systems, normalization methods and normalized forms had to be 

such that a neural network model could produce normalization as an inherent part of the way the 

network functioned, rather than having normalization imposed upon it as an ad hoc bit of 

mathematical chicanery. In this section we introduce two normalization networks that meet this 

requirement and which are found – in one form or the other – in many ART systems. We will call 

these ART subsystems the Grossberg normalizers GN(1) and GN(2).  

GN(1) is the simpler of the two and appeared first. Its anatomy is called a feedforward (non-

recurrent) on-center/off-surround anatomy [GROS5]. Figure 15.4 illustrates the structure of the 

network. The network has n inputs Ii and n SNI nodes we will designate as type SNI(0). No lateral 

connections are made among the Instars. Each input Ii projects an excitatory signal to one Instar 

node vi and projects an inhibitory signal to all the other nodes. Thus, each SNI node vi has for its 

excitatory and inhibitory inputs  

   .                     (15.6) ∑
≠

=

=

ik
k

i
i
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e
i

I

I

ξ

ξ

Each node vi has an excitation variable xi which also serves as the SNI's output signal. (15.1) for 
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Figure 15.4: Anatomy of GN(1). 

the type SNI(0) map is  

   ( ) ∑
≠

⋅−⋅−+⋅−=
ik

kiiiii IxIxBxAx& .             (15.7) 

We let I denote the sum of all the Ii terms and define the normalized value θi = Ii/I. The steady 

state solution for (15.7) is  

   
IA
IB

IA
IB

I
I

IA
IBx i

ii
i +

⋅
⋅=

+
⋅

⋅=
+
⋅

= θ  .              (15.8) 

We see from (15.8) that the steady state excitation xi is bounded by 0 ≤ xi ≤ BI/(A+I). This is due 

to the on-center/off-surround distribution of the input signals. Furthermore, xi < B, which satisfies 

the constraint on excitation variables introduced earlier. We obtain the difference equation form 

of (15.7) by applying Euler's method, subject to the constraint on ∆t worked out above. The result 

is 

   ( ) ( )( ) ( ) iii IBttxIAtttx ⋅⋅∆+⋅+⋅∆−=∆+ 1            (15.9) 

which has the same steady state solution (15.8).  

In ART systems it is generally assumed that inputs Ii change slowly compared to the dynamic 

action of the various layers of SNI maps in the system. It is therefore common to simply use 

(15.8) directly for GN(1) rather than to actually go through the computational steps of (15.9). 

Mathematically this is no different from the ad hoc computation method for other normalization 

calculations used by other network system models. What is different here is that the particular 

normalization produced by GN(1) is the steady state value obtained from a network system model. 

It is, in other words, a natural consequence of neurodynamics.  
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Figure 15.5: Anatomy of GN(2). 

GN(2) is a variation on the theme of GN(1). The structure of this normalizer is shown in figure 

(15.5). Like GN(1), GN(2) is a non-recurrent layer of Instars, but of a class we will call SNI(1). 

Unlike GN(1), the SNI nodes of GN(2) require a nonlinear activation function h(x) defined by 

   h  .                  (15.10) ( )




≥
<

=
0,
0,0

xx
x

x

In the ART literature the notation [x]+ is often used to designate this function. We will call this 

activation function the Heaviside extractor because it is equivalent to multiplying x by the 

Heaviside function of x.  

The usefulness of anatomy GN(2) comes into play when the input to the normalizer consists of 

two converging afferent tracts, {I1 ⋅ ⋅ ⋅ In} and {J1 ⋅ ⋅ ⋅ Jn}. It performs a limited amount of 

contrast enhancement, as we will explain shortly. Define Gi = Ii + Ji. We set J = Σi=1:n Ji and, 

similarly, G = Σi=1:n Gi = I + J. The excitatory and inhibitory inputs are defined by replacing Ii and 

Ik by Gi and Gk in (15.6). SNI(1) is then defined by the dynamical equation 

   ( ) ( ) ∑
≠

⋅+−⋅−+⋅−=
ik

kiiii GxCGxBxAx& .           (15.11) 

The difference between SNI(1) and SNI(0) is the presence of the spatial contrast parameter C in 

SNI(1). C is related to B by B = (n – 1) ⋅ C. Let ωi = Gi/G. The steady state solution of (15.11) is 

then 

   ( ) 





 −⋅

+
=∞

nGA
nCGx ii

1ω .                 (15.12) 
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One property of this solution we may immediately note is this. If the Gi pattern is uniform, i.e. 

if ωi = 1/n for every Gi, then xi(∞) = 0 for each node. More generally, if Gi = a + bi where a is a 

constant term and Σi=1:n bi = 0, we have G = n ⋅ a and ωi = bi/G + 1/n. (Electrical engineers refer to 

the constant term a as the "dc" component1 in the signal). In this case (15.12) reduces to  

   ( )
GA

nCbx i
i +

=∞ . 

In other words, xi(∞) for each node is specifically determined by the spatially-varying component 

of Gi and any constant "background" in the input pattern is suppressed across the output pattern of 

the normalizer. Only the spatially-varying part of the pattern {G1 ⋅ ⋅ ⋅ Gn} is presented at the 

outputs of the SNI(1) nodes. (The "dc" component a appears only in the gain term G). We may 

further note that since some of the bi are negative, xi(∞) < 0 for those terms, and this is why the 

Heaviside extractor is needed in this normalizer.  

In the special case where one of the afferents, say {J1 ⋅ ⋅ ⋅ Jn}, is uniform, that afferent tract 

will be suppressed. For example, let Ji/J = 1/n and let Ii = θi ⋅ I. Then (15.12) reduces to  

   ( ) 





 −

++
=∞

nJIA
nCIx ii

1θ  

and the steady-state outputs depend only on the Ii except for the reduction in total excitation due 

to J. A final special case of interest is the one for which the Ji are each proportional to their 

corresponding Ii, i.e. Ji = θi ⋅ J and Ii = θi ⋅ I. In this case, (15.12) becomes 

   ( ) ( )






 −

++
+⋅

=∞
nJIA

JInCx ii
1θ  

which differs from the previous expression only by an amplification due to J.  

We obtain the difference equation form of (15.11) as usual by applying Euler's method. The 

result is  

   ( ) ( )( ) ( ) 













 −⋅⋅∆+⋅+⋅∆−=∆+

n
nCGttxGAtttx iii

11 ω        (15.13) 

where we have used B = (n – 1) ⋅ C to obtain this expression. The steady state solution of (15.13) 

is given again by (15.12), as it must be. Similarly to GN(1), it is common practice to simply use 

(15.12) in computing the response of GN(2).  

                                                 
1 "dc" stands for "direct current." It is old electrical engineer jargon dating from the days of Thomas Edison 
and the development of electric power generators. Today it refers to any signal that does not vary. 
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Figure 15.6: Anatomy of contrast enhancer 1. 

§ 4. Contrast Enhancer 1  

The heart of all ART systems is the contrast enhancer function carried out by recurrent on-

center/off-surround networks. The simplest and most basic of these networks is depicted in figure 

15.6. We will call this network contrast enhancer 1 or CE(1) for short.  

CE(1) was just called the "simplest" of Grossberg's contrast enhancers. In a way this is a bit 

misleading because no nonlinear recurrent neural network is "simple" in comparison to, say, 

linear/time-invariant networks. But simplicity is relative, and CE(1) is the simplest representative 

of its class and has been given the most complete mathematical treatment [GROS14].  

CE(1) uses a different species of Instar, SNI(2), than do the Grossberg normalizers. Its general 

variable definitions for the i-th node are  

•  = f(xe
iξ i) + Ii, where f is the activation function; 

• ; ( )∑
≠

=
ik

k
i
i xfξ

• Ki = 0; ζ = 0; 

• C = 0. 

The dynamical equation for SNI(2) is 

   ( ) ( )( ) ( ) .,,1, nixfxIxfxBxAx
ik

kiiiiii L& =⋅−+⋅−+⋅−= ∑
≠

     (15.14) 

Each node receives an excitatory input from itself and inhibitory inputs from all the other 

nodes in its layer. In some ways the behavior of an SNI(2) layer resembles that of the MAXNET; 

however, it also differs in a number of important ways due to the shunting action in (15.14). The 
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layer carries out a normalization of its total activity 

                        (15.15) ∑
=

=
n

k
k

def
xx

1

and is capable of performing contrast enhancement in a variety of ways that is determined by the 

specific activation function f employed in SNI(2). It also stores an equilibrium output pattern, 

which consists of the n excitations {x1, ⋅ ⋅ ⋅, xn}, after the input excitations Ii cease. This is referred 

to in the literature as "short term memory" or STM. Unlike the MAXNET, the inputs Ii need not 

be turned off, although for purpose of analysis we will initially pretend the inputs are applied over 

the time interval from –T to 0 and then turned off at t = 0. The initial conditions xi(0) established 

by this are the initial conditions for the reverberation dynamics we will analyze. Later we will 

remove this restriction and see what happens in the case where the inputs are persistent during the 

reverberations of CE(1). What we will find is that CE(1) uses negative feedback to stabilize itself 

and prevent persistent inputs from saturating its nodes, unlike what happens in the MAXNET.  

Although CE(1) is capable of winner-take-all operation, it is also capable of other operations 

including ties, with some subset of the xi variables taking on non-zero and equal final values 

(called a locally uniform output distribution), and contrast enhancement (multiple non-zero final 

values with unequal final xi results; this is called a fair output distribution of the non-zero 

survivors of the tournament competition). What result is obtained is a complicated function of 

both the activation function used and the intensity of the initial total excitation x(0). It is worth 

noting at this point that these features of CE(1), although desirable in many competitive layer 

functions, are generally incompatible with ART network performance (figure 15.2). It is for this 

reason that we will meet other types of CE systems in chapter 16. Still, the theory of CE(1) is the 

starting point for the development of adaptive resonance systems and so an understanding of this 

contrast enhancer is a crucial prerequisite for understanding the systems to come later.  

Understanding the dynamics of CE(1) is a two-part operation. First, one must understand the 

general dynamics of (15.14). Second, one must understand how the activation function f affects 

the outcomes of these dynamics. Thus, our treatment in this section will come in two parts. 

§4.1 The Dynamical Characteristics of CE(1)   
Three general considerations drove the development of the nonlinear system of n coupled first 

order equations (15.14). First, Grossberg was and is fundamentally dedicated to producing a 

theory remaining faithful to both biological and psychology reality. The concept of the shunting 

node Instar, in all its various forms, evolved from an examination of mathematical forms 

belonging to classes of equations to which other model equations, such as the Hodgkin-Huxley 
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membrane equation, also belong. This is not because an SNI is or was ever intended to be a 

neuron model; it is not and Grossberg has always been very clear in stating it is not (although he 

often points out that his mathematical expressions might also have useful interpretations at the 

membrane level). But, as the previous chapters of this text have pointed out, a crystalline neural 

network model is built out of the concept of "average" neurons, tightly coupled netlet populations 

of such average neurons, and larger-scale proxy population models of neural networks that, at 

each step in our ascent of the model order reduction hierarchy, maintain the accurate 

representation of the main signal processing effects found at each level. In a unified framework 

such as this, it is a natural and eminently plausible hypothesis that the reduced model structures 

should remain tied to the class of mathematical functions to which the lower-level models also 

belong. This thinking comes through quite evidently in all of Grossberg's early papers, and one 

who has chosen computational neuroscience for his research field will find the prehistory of ART 

archived in these papers quite interesting. They paint a backdrop bringing a bit of intellectual 

relief to counteract the tone of Platonism that often saturates  today's overly formal, overly brief, 

and unnecessarily abstract presentations of ART systems.  

Getting down to detail, the second consideration is that the collective behavior of recurrent on-

center/off-surround networks is determined by normalized variables, Xi = xi ⋅ x –1. [GROS14] lays 

out a number of important propositions and theorems for the nonlinear system defined by 

equations (15.14), and these are for the most part theorems expressed in terms of Xi variables and 

functions of Xi variables. The system of equations (15.14) is a nonlinear system with no known 

closed form general solutions. Therefore, these property and existence theorems provide our main 

tools for understanding how the system works.  

Third, it is the distribution {X1(0), X2(0), ⋅ ⋅ ⋅ Xn(0)} rather than the individual xi(0) that 

determines the time evolution of CE(1). Quenching effects, final output distributions, etc. are 

understood in terms of the normalized distribution and cannot be reliably pegged to individual 

inputs Ii. Recurrent SNI layers are in a sense distributed systems despite the spatial quantization 

brought about by lumped model elements.  

We begin the analysis by assuming at t = 0 a set of initial excitations {x1(0), x2(0), ⋅ ⋅ ⋅ xn(0)} 

has been established by the Ii and that these inputs have now been turned off. We rewrite (15.14) 

as 

   .             (15.16) ( ) ( ii

n

k
ki xfBxxfAx ⋅+⋅








+−= ∑

=1

& )

Summing equations (15.16) over i from 1 to n gives us the dynamical equation for the total 
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excitation x,  

   .             (15.17) ( ) (∑∑
==

⋅+⋅







+−=

n

i
i

n

k
k xfBxxfAx

11

& )

)

)

}

(15.16) and (15.17) are the two base equations from which the system dynamics are derived. It 

will prove convenient to introduce the following short-hand notations:  

• ; ( )∑
=

=
n

k
kxfF

1

• , where u is the argument of the activation function. We will call g the 
activation shape function. 

( ) ( )ufuug ⋅= −1

The variables in all these functions are variables in continuous time. We will also require an 

expression for the time derivative of the normalized variables Xi. Grossberg develops this in his 

proposition 1 of [GROS14]. The result is  

   .             (15.18) ( ) ( )(∑
=

−⋅⋅⋅=
n

k
kikii xgxgXXBX

1

&

The reader is referred to [GROS14] for a proof of (15.18). (15.16)-(15.18) are the central 

equations needed for our analysis of the dynamics of CE(1).  

Now, derivatives are not difference equations and we must confront the fact that computer 

implementation requires the conversion of (15.16)-(15.18) into difference equation form. The key 

concern in this conversion is making sure the dynamics of our discrete-time difference-equation-

based system conform to the continuous time results for (15.16)-(15.18). In particular, we must be 

concerned with how the sampling interval ∆t will affect our results. In keeping with the 

pedagogical level of this text, Euler's method will be used to perform this discretization. In actual 

practice, more powerful numerical integration methods are usually employed, but their 

employment requires more background in the mathematics of numerical integration than is given 

in this book. Applying Euler's method, we obtain for (15.16) and (15.17)  

        (d15.16) ( ) ( ) ( )( ) ( )( ) ( ) ( )({ }txfBtxtFAttxtxttx iii

def

ii ⋅+⋅+−⋅∆=∆=−∆+

   .      (d15.17) ( ) ( ) ( )( ) ( )( ) ( ) ( ){ tFBtxtFAttxtxttx
def

⋅+⋅+−⋅∆=∆=−∆+

Derivation of the discrete time counterpart to (15.18) is a bit more involved but at root 

involves nothing more complicated than a bit of appropriate algebraic manipulation. The 

derivation closely follows that of (15.18) in [GROS14]. We define the variable 
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   ( )
( )tx

tFBP ⋅
=  

and use this to obtain the discrete-time counterpart of (15.18) as 

 ( ) ( ) ( )( ) ( )( )[ ] ( ) ( ) ( )( ) ( )( )( )txgtxgtXtXB
tFAPt

ttXtXttX ki

n

k
kii

def

ii −⋅⋅⋅⋅
+−⋅∆+

∆
=∆=−∆+ ∑

=11
 

                           (d15.18) 

Note that (d15.18) is the same as (15.18) except for the appearance of the leading multiplicative 

factor involving P. Now, what is crucial for the limiting behaviors of the system is the algebraic 

sign of (15.18). Therefore, the crucial factor in converting the system over into difference 

equation form is that (d15.18) always maintains the same sign as (15.18). It is not difficult to 

deduce that if f(xi) ≤ B and xi ≤ B, a bound for ∆t given by  

   ( )1
1

−⋅+
<∆

nBA
t  

is a sufficient condition to ensure this. In most cases this is a generally sufficient bound. There 

are, however, other conditions presented in [GROS14] we would want the discrete time system to 

meet. In some cases it is possible these may be more stringent than merely our need to maintain 

the proper sign in (d15.18). Through some limiting arguments that are rather too involved to go 

into here, a more general sufficient bounding condition for ∆t can be set down, namely,  

   ( ) ( )( )







⋅+⋅+−⋅+
<∆

BfBABAnBA
t 1,

1
1min .         (d15.19) 

With ∆t appropriately chosen, we can now safely use the continuous-time propositions and 

principles derived by Grossberg to analyze the system. Lacking exact closed-form general 

solutions for (15.16)-(15.18), we must content ourselves with asymptotic and steady-state 

characteristics of the system. It has been proved [GROS14, proposition 1] that the following 

properties hold for this system: 

   ,             (15.19) ( ) ( )(∑
=

−⋅⋅⋅=
n

k
kikii xgxgXXBX

1

& )

   
( ) ( ) ( )

( )∑

∑

=

=

⋅=









−
−⋅−⋅≡








−
−⋅⋅−⋅=

n

k kk

n

k kk

xgXG

xB
AGxBx

xB
AxgXxBxx

1

1
,&

   (15.20) 

These two equations are key to deriving many of the other properties of the system and to 
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understanding the effect the choice of activation function will have.  

One of the first things we learn from (15.19) is that the nodes in CE(1) exert reciprocal effects 

on each other. Suppose for nodes i and j we find  

   ( ) ( ) 0>− ji xgxg . 

This term in (15.19) then contributes to causing  to tend toward a positive value, thus implying 

that x

iX&

i = Xi ⋅ x will increase over time. But by the same token, in the expression for  there will 

be a sign reversal in the difference between the two g function, thus contributing to a tendency for 

x

jX&

j to decrease over time. In this way the activation function f = xi ⋅ g(xi) enters into the process of 

normalization carried out by the network.  

In ART and ART-related systems, the activation shape function g is always a continuous 

function. This leads to an important order preserving property [GROS14, proposition 2] found in 

these systems. Because we can label the SNI nodes in any way we wish, let us adopt the 

Grossberg enumeration schema and number them so that X1(0) ≤ X2(0) ≤ ⋅ ⋅ ⋅ ≤ Xn(0). (15.19) 

then leads to the following important result: 

Theorem 1: If X1(0) ≤ X2(0) ≤ ⋅ ⋅ ⋅ ≤ Xn(0) then X1(t) ≤ X2(t) ≤ ⋅ ⋅ ⋅ ≤ Xn(t) for all t  > 0. 

This theorem does not hold in general for arbitrary network anatomies but it does hold for CE(1) 

and other types of ART structures. For instance, we saw earlier in this text an example where the 

classic Mexican Hat competitive network violates theorem 1. The order-preserving property is 

one of the key useful features of CE(1).  

Next we turn to the limiting properties of x(t) given x(0). These properties depend on the shape 

of the activation function f(u) = u ⋅ g(u), or equivalently on the activation shape function, and on 

where along g(u) the initial distribution {x1(0), x2(0), ⋅ ⋅ ⋅ xn(0)} falls. For practical activation 

functions, g(u) = 0 for u < 0. We will further restrict our examination to non-decreasing activation 

functions, i.e. f(u2) ≥ f(u1) for u2 > u1.2 There are many possible activation shape functions. Two 

generic practical forms are illustrated in figure 15.7. These are two examples of activation shape 

functions that produce generalized sigmoid activation functions. Functions such as those 

depicted in this illustration are described in terms of three activation function regions: (1) f(u) is 

linear; (2) f(u) is faster-than-linear; and (3) f(u) is constant (flat). Grossberg also analyzed slower-

than-linear activation functions in [GROS14] and found they result in undesirable performance. 

Of the two generic forms in figure 15.7, figure 15.7B has the superior performance.  

                                                 
2 Radial basis functions are not used in ART systems. 
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Figure 15.7: Two representative activation shape functions. (A) g(0) non-zero. (B) g(0) = 0. There are three 
regions for f(u) for these g(u) functions. Region 1: f(u) is linear; Region 2: f(u) is faster-than-linear; Region 3: 

f(u) is constant. Both activation shape functions depicted here produce generalized sigmoid activations. 

We will look here at some general properties of the asymptotic values attained by x(t). In the 

next subsection we will look at how the design of the activation function affects these results. Our 

starting point is (15.20) in the form  

   ( ) 







−
−⋅−⋅=

xB
AGxBxx& . 

In [GROS14], Grossberg shows that convex activation functions, such as sigmoids, have the 

property that limiting values always exist for the xi variables and for x.  = 0 defines the steady 

state condition for the system. Applying this to (15.20) above, we find two possible solutions: 

x&

• x = 0. This is the trivial solution and corresponds to the case where the reverberations set 
up in the SNI layer are transient, i.e. all xi eventually decay to zero. 

• x = B – A/G. Because G is a function of the Xk distribution and the activation shape 
function, this solution must typically be analyzed numerically. As it turns out, this 
solution is the one we desire for the system. It is easily shown that for sigmoid activation 
functions for which g(u) has a flat region where g = gmax, the upper value for G is 
bounded by G ≤ gmax. Therefore we obtain for an upper bound x ≤ B – A/gmax for these 
systems. Because x must always be non-zero, this bound is possible only if gmax > A/B. 
Otherwise the x = 0 solution results. We can also apply this result to the g = g0 region of 
figure 15.7A. In this case, if the initial Xk distribution is such that all the xk(0) values fall 
into this region, a g0 ≤ A/B will result in the x = 0 final solution.  

• Because x = 0 is a possible solution, implying all the xi are zero, it is natural to ask (given 
what has just been said above) what happens if G(t = 0) is also zero. This is clearly a 
possibility if g(0) = 0 as in figure 15.7B. For this consideration, let us assume all xi(0) = 0 
and inputs Ii are applied at t = 0. In this case, (15.14) gives us ( ) ii IBx ⋅=0& > 0. This tells 

468 



Chapter 15: Prelude to ART 

us the not-surprising fact that a stimulus will always nudge CE(1) out of an initially 
relaxed state. The solution x we have discussed above applies only after some time has 
elapsed, not for all times t. It is what happens after this nudge has been applied that 
concerns us, and for this we must come to grips with the effects of the activation function 
on the reverberation dynamics.  

§4.2 The Effects of the Activation Function on CE(1)  
We give an abbreviated treatment of the effects of the activation function in this section. 

Specifically, the discussion here is restricted to cases of g(u) of the general shape illustrated in 

figure 15.7B. A more general presentation is given in [GROS14]. The reason for this restriction is 

to simplify the presentation and to focus on properties pertaining to practical ART and ART-like 

systems. Thus, we consider the generalized sigmoid activation functions here and no others. We 

will use figure 15.7B to provide specific illustrations of what the mathematics is telling us as we 

go through the discussions which follow.  

The basis for this analysis is (15.19). We will use Grossberg's enumeration so that Xn is greater 

than or equal to all other Xi and X1 is less than or equal to all other Xi. Given initial values Xi(0) 

for all nodes, let us first examine what happens to Xn(t). Here we have 

   . ( ) ( )( )∑
=

−⋅⋅⋅=
n

k
knknn xgxgXXBX

1

&

The first thing we can note is that node n does not self-contribute to its own derivative for Xn. 

In other words, within the sum the k = n term is zero. Because xn is the largest term among all the 

xk, we have g(xn) ≥ g(xk) for all k ≠ n. If there is any xk for which g(xk) < g(xn), > 0 and xnX& n will 

tend to be pushed to a relatively larger value compared to the rest of the distribution. Now, if any 

xk meets this condition then x1 meets the condition because, under Grossberg's enumeration, x1 is 

the smallest excitation variable. For this variable we have 

     ( ) ( )( )∑
=

−⋅⋅⋅=
n

k
kk xgxgXXBX

1
111

&

and by the reciprocity effect between node n and node 1, we are guaranteed < 0. Thus, x1X& 1 will 

be pushed to a relatively smaller value. In a sense, we can say xn and x1 "repel" one another.  

Now, the overall situation is made more complicated by the fact that x, the total excitation, can 

change (and most of the time will change) when any of the xi change. Recall that (15.19) is 

expressed in terms of the normalized variables, Xi, rather than in terms of the individual xi, and 

that Xi = xi/x. Thus, there can be many subtleties involved in figuring out what the overall limiting 

response of the system will be. Fortunately, Grossberg was able to prove a number of useful facts 
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about the system, which he summarized in a series of theorems [GROS14]. Here we summarize 

these key results. The reader is referred to Grossberg's paper for the proofs. 

To get a grasp on the overall dynamic, we begin with a simple special case. Suppose both x1 

and xn lie in a region 1 of figure 15.7. If this is so, then all other xk also lie in this region because 

their values are contained between x1 and xn. But if all the xi lie in a region 1, then all g(xi) are 

equal and therefore all = 0. This is a condition of equilibrium so far as the normalized 

variables are concerned. Is it also a condition of equilibrium for all the x

iX&

i? To see this, consider 

that there are only two ways to get = 0: (1) x = ∞ or (2) = XiX& ix& i x& . (15.20) forbids the first. The 

second says the condition of equilibrium for Xi is not necessarily an equilibrium for xi.  

Can this case actually happen? For this we must look at the steady-state value for x. Suppose 

that for region 1 the activation shape function is g(xi) = g1. Then  

   G . 11
1

1
1

1 1 ggXggX
n

k
k

n

k
k =⋅=⋅=⋅= ∑∑

==

Therefore, the steady state value of x is x = B – A/g1 > 0 (if the case is possible). This means we 

must have g1 > A/B. If this condition is satisfied, the case is possible; otherwise it is not. Thus, for 

example, in figure 15.7A it is possible to select g0 and gmax so that this case cannot occur for g0 

but can occur for gmax. This result is stated more succinctly and with more precision in the form of 

a theorem. For this and the following theorems, refer to figure 15.7B. 

Theorem 2: If ( ) ( ){ } ( )1
max1 ,0min0 ugABxX ≥−⋅  and ( ) ( ){ } ( )  

then  for i = 1, . . ., n and x(t) approaches B – A/g

2
max,0max0 ugABxX n ≤−⋅

( ) ( )0lim iit
XtX =

∞→
max. 

The limiting distribution for this case is called a fair distribution because Xi(∞) = Xi(0) for all i.  

For the remaining theorems we need a few definitions. Using Grossberg's enumeration and 

recalling the order-preserving property of this system, the response is said to be contour 

enhancing if  ≥ 0 and  ≤ 0 for all t ≥ 0 and neither is identically zero. The network's 

reverberation is said to be persistent if x(t) > 0 for all t ≥ 0. The reverberation is said to be 

transient if x(t) goes to zero. Let u

( )tX n
& ( )tX1

&

(*) be defined as the value u < B at which g(u) = g(B). Then if 

u(*) + u(2) ≥ max{x(0), B – A/gmax}, we say condition α holds. With these definitions in hand, we 

are ready to summarize Grossberg's main theorems. 

Theorem 3: If condition α holds then: (i) ( )tX it ∞→
lim  exists for all i from 1 to n; (ii) ( )tX n

&  ≥ 

 for all i from 1 to n – 1; (iii) ( )tX i
& ( )tX1

&  ≤ 0.  

This theorem tells us that if our activation shape function and initial total signal activity x 
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conforms to condition α then the dynamics of the system will not produce a final distribution in 

which all the Xi take on a single uniform value. "Uniformization" is a very undesirable result for a 

contrast enhancer (because it produces an output with no contrast at all), and theorem 3 tells us 

this cannot occur if the condition of the theorem is met.  

Theorem 4: Define the index K < n by the condition XK(0) < XK+1(0) = Xn(0). Let xn(0) < u(2). 
Then the limits Qi = Xi(∞) and E = x(∞) exist, ( )tX n

&  ≥ 0, ( )tX n
&  ≥ , i < n, and 

 ≤ 0. If x
( )tX i

&

( )tX1
& 1(t) ≥ u(1) then all ( )tX i

&  = 0. Furthermore, if there is some index L < n such 
that 

( ) ( )
( )

( )1

max0
,0min0 u

gX

ABxX n

Li i

L ≥












⋅
−⋅

∑ =

 

and the network's reverberation is persistent, ( )tX i
&  ≥ 0 and d(Xi/Xj)/dt = 0 for i, j ≥ L.  

This is a contour enhancement theorem. Contour enhancement brings out changes occurring 

across the input pattern and suppresses uniform backgrounds. It is one of the primary functions of 

on-center/off-surround networks, and theorem 4 tells us under what conditions it is guaranteed to 

occur. We will say the distribution with d(Xi/Xj)/dt = 0 for i, j ≥ L is contrast-enhanced fair.  

Theorem 5: If ( ) ( ){ } ( )1
max1 ,0min0 ugABxX ≥−⋅ then ( ) ( )0lim iit

XtX =
∞→

 for i = 1, . . ., n.  

Otherwise, if ( ) ( ){ } ( )1
max,0min ugABxtX i <−⋅  for some sufficiently large t then 

. ( ) 0lim =
∞→

tX it

This theorem gives us another condition under which a fair distribution results. But more 

importantly, it defines the quenching threshold QT = u(1)/(B – A/gmax). If Xi < QT for all t > 0 

then Xi is treated as noise and is quenched.  

Theorem 6: If the reverberation is persistent, B – A/gmax < N⋅u(1) for N such that 1 < N < n, 
and Xn-N+1(0) < Xn(0) then Xj(t) asymptotically goes to zero for all j from 1 to n – N + 1. 

Theorem 6 tells us which xi will be quenched by the network. Note that the condition requiring 

the reverberation be persistent means we must have B – A/gmax > 0. It also means the initial vector 

{xi} must have sufficient intensity that at least one member of it exceeds QT.  

Theorem 7: If condition α holds, the reverberation is persistent, X1(0) < Xn(0) and we have 
( ) ( ) (*

max1 0 ugABX ≤−⋅ )  then X1(t) asymptotically goes to zero. 

This theorem tells us how the quenching of the smallest term depends on the shape of the rising 

portion of the activation shape function in figure 15.7B.  

Theorem 8: If condition α holds, the reverberation is persistent, and Xi(ti) < Xn(ti) for some 
large value of ti then Xi(t) asymptotically goes to zero. Furthermore, if Xn(0) > Xn-1(0) then 
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the only non-zero excitation in the limiting distribution is Xn. Otherwise the final 
distribution is locally uniform. 

This is the extreme case where the network "chooses a winner" in the manner of a MAXNET. 

Grossberg calls this result a 0-1 distribution. The term "locally uniform" means the final 

distribution has two or more non-zero "ties" in the final values. Note, too, that unlike the classic 

MAXNET, the initially largest xi (which is xn when we use Grossberg's enumeration) survives (is 

asymptotically nonzero) regardless of whether or not there is a tie. 

Theorem 9: If ( ) ( ) ( )*
max1 0 ugABX ≤−⋅  then ( )tX1

&  ≤ 0 for all t ≥ 0. Moreover, if the 
reverberation is persistent and X1(0) < Xn(0) then X1(0) asymptotically goes to zero. 

This theorem tells us condition α is not necessary for X1(0) to be quenched.  

Theorem 10: If ( ) ( ) ( )*
max ugABtX ii ≤−⋅ , i < n, for some sufficiently large ti then 

for all t > t0≤iX& i. Furthermore, if the reverberation is persistent and Xi(ti) < Xn(ti) then 
Xi asymptotically goes to zero. 

This theorem tells us that even if Xi initially grows in the early stages of the network's dynamical 

response, this is no guarantee that this Xi will not be eventually quenched. One way to understand 

this is to consider what happens when X1 goes to zero. Once this has happened, we can regard the 

system as being comprised of n – 1 nodes with a new "initial condition" at the time ti when X1 

reaches zero. X2 then becomes "the new X1" & etc.  

Theorem 11: If ( ) ( ) ( ) ( ){ }max
2* ,0max1 gABxuun −>+⋅−  then ( )tX1

&  ≤ 0 for all t ≥ 0. 
Moreover, if the reverberation is persistent and X1(ti) < Xn(ti) then X1 asymptotically goes 
to zero. 

This theorem gives us yet another way for X1 to go to zero. Note again that once this has 

happened we have a "new" system with n – 1 nodes. Replacing n – 1 by n – 2 in the theorem in 

principle then tells us the fate of X2 and so on. Of course, if x(0) > B – A/gmax this is more than a 

bit tricky because we are likely not to know the "new" x(0) (which is why I said "in principle" just 

now). But if the reverse is true, as it often may well be, the process is straightforward.  

These theorems tell us quite a bit about the dynamics of this system, and they provide 

quantitative means for designing the activation shape function.  

§4.3 The Effect of Persistent Inputs on CE(1)   

Grossberg's 1973 paper treated only the homogeneous form of (15.14). Comparatively little is 

known about the mathematical properties of the non-homogeneous equation. In this section we 

will examine some sufficient conditions under which a stable, persistent steady state solution 

exists for the non-homogeneous equation. First, we recall that 
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   . ( ) ( ) ( ) GxxgXxxgxxfF
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k ⋅=⋅⋅=⋅== ∑∑∑

=== 111

We will also find it convenient to define I = Σi=1:n Ii and Γ = Σi=1:n(Xi ⋅ Ii).  

Using these substitutions, (15.14) is re-written as 

   ( ) ( )( )iiiii IxfBxIFAx +⋅+⋅++−=& . 

Summing this expression over i and rearranging terms produces 

   ( ) ( IFBxFAx )+⋅+⋅+Γ+−=& . 

For a stable, persistent steady state solution we must simultaneously satisfy  = 0 and  = 0. 

We begin with the  = 0 condition. Define µ = (1 – (A + Γ)/(BG))

x& ix&

x&  –2. After some minor algebraic 

manipulation we arrive at 

   







⋅++⋅






 Γ+

−=
BG

I
G

ABx 411
2
1 µ .             (15.21) 

Because both G and Γ are functions of the xi terms, this is a nonlinear equation and must be 

evaluated numerically. It is worth noting that for 1 – (A + Γ)/(BG) = 0 it reduces to 

   
G

BIx ⋅
=  

and so remains finite. For this to be a valid solution we must also require x ≥ 0, from which we 

obtain as a condition Γ ≤ BG – A.  

Next we turn to the  = 0 condition. For this we obtain ix&

   
( )( )

i

ii
i IFA

IxfBx
++

+⋅
= .                  (15.22) 

It is important to note that if Ii ≠ 0 then xi = 0 cannot be a steady-state solution. Equally, xi cannot 

be negative, and so we have the important result that the non-homogeneous SNI equation must 

produce a non-zero forced response in the steady state for every node receiving a non-zero input 

stimulus. 

These results prove a fixed point solution exists, but they do not prove it is a stable fixed point 

solution. Empirically, however, we find that the system does indeed settle into a stable final state, 

i.e. it renormalizes the activities of the xi variables to meet the required conditions. We can 
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conceptually understand this from the equation ( ) ( )( )iiiii IxfBxIFAx +⋅+⋅++−=& . The term 

multiplying xi is a negative feedback terms and acts as a kind of decay rate for transients in the 

system. As Ii, and therefore F, increases, this decay rate factor grows larger and tends to put a cap 

on how high the second term in the expression can drive the excitation variables xi. Figure 15.8 

illustrates a typical charge-up and discharge response for x(t). A fixed excitation pattern was 

applied at t = 0 and the network (initially relaxed) was allowed to charge for 400 iteration steps 

using ∆t = 0.5/(A + n – 1), which was ∆t ≅ 0.02 for this example. The network was effectively 

fully charged after around 200 iterations (t ≅ 4). After 400 iterations the input was set to zero and 

the network allowed to discharge. The discharge was effectively complete after 400 more 

iterations. Note the slowing of the discharge rate as x(t) decreases to its steady-state level.  

§4.4 An Example of CE(1) Performance 

This section presents a performance example of CE(1). The input pattern is a 5 × 5 grid of 

signals (a "retina") in which a T-shaped pattern is presented in the presence of noise (figure 15.9). 

The caption of figure 15.9 provides the numerical data on the input signal. The signal was pre-

scaled by a 25-node GN(1) stage before being presented for 500 iteration time steps to the CE(1) 

layer, which consists of 25 SNI(2)-type nodes. (The presence of the GN(1) layer actually made no 

significant difference to the final result; it merely had a minor effect on the final charge-up values 

 

 

Figure 15.8: Typical charging and discharging x(t) response for CE(1). A steady input pattern is applied at t = 
0 and maintained for 400 iteration steps. The input is then set to zero and the network is allowed to 

discharge for an additional 400 iteration steps. For this example ∆t = 0.5/(A + n – 1), B = 1, A = 0.5, gmax = 1, 
and QT = 0.1. The input pattern was prescaled by a GN(1) network with the same B and A values. n = 25. 
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Figure 15.9: Input pattern for CE(1) example. The input was a 5 × 5 grid of "pixels" in which a "T" character 
was presented in the presence of noise. The pixel noise consisted of random values from a uniform 

distribution over the range from 0.0 to 0.2. The elements of the "T" had pixel values of 1, and the other pixel 
elements in the grid were 0 prior to the addition of the noise. Noisy pixel amplitudes are color-coded. 

of the xi after 500 iteration steps). ∆t = 0.5/(A + n – 1) ≅ 0.02 was used for the simulation. The 

GN(1) and CE(1) layers both used B = 1.0 and A = 0.5 for their parameter values. 

The activation shape function for CE(1) was generally of the form of figure 15.7B and was 

explicitly defined by  
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with g(u) = 0 for u < 0. This results in f(u) = u ⋅ g(u) being a sigmoid function with a saturation 

value fmax = gmax ⋅ u(2). The parameter values were gmax = 1, u(1) = 0.05, and u(2) = 0.8. This results 

in a quenching threshold QT = u(1)/(B – A/gmax) = 0.10.  

Figure 15.10 shows the results of the simulation at the end of the charge-up period and at the 

end of the discharge period for both xi and Xi. The value attained by x(t) at the end of the charge-

up period was x = 1.1993, which agrees exactly with (15.21).  

A close comparison of figure 15.10A with figure 15.9 shows that some amount of signal 

strength redistribution already takes place during the charge-up period, although the noise is not 

entirely quenched during this period. (This is qualitatively evident, upon close inspection, from 

the color shades in these plots; note however that pre-scaling and the "automatic gain control" 
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character of CE(1) does produce a significant decrease in absolute signal amplitudes. To see this 

one must refer to the numerical values on the accompanying color bars). One way to 

quantitatively assess this is to define a pattern-to-background ratio as follows.  

We categorize the individual signals into those that below to the T pattern, set p, and those that 

belong to the non-T background pixels, set b. For each category we sum the squares of the signals 

belonging to that category. The pattern-to-background ratio, p/b, is merely the ratio of these two 

sums-of-squares.  

As a practical matter, information theorists usually prefer to measure such ratios in units of 

decibels, i.e. (p/b)dB = 10 ⋅ log10(p/b). (This permits easier performance comparison with other 

well known systems such as communication systems). For this example simulation, the initial 

pattern-to-background ratio was (p/b)dB = 15.1 dB; after charge-up the p/b ratio of the xi signals 

was (p/b)dB = 20.6 dB, a 5.5 dB improvement. This would be regarded as excellent improvement. 

 
A              B 

 
C               D 

Figure 15.10: Simulation results for the CE(1) network at the end of the charge-up period and at the end of 
the discharge period. (A) xi values at end of charge-up. (B) Xi values at end of charge-up. (C) xi values after 

discharge. (D) Xi values after discharge.  

476 



Chapter 15: Prelude to ART 

 
A               B 

Figure 15.11: CE(1) response to a "J" pattern input overwriting the previous "T" pattern in STM. (A) Initial xi 
variables at start of simulation. (B) Final xi variables after application and removal of a noisy "J" pattern. 

Figures 15.10C and 15.10D show the xi and Xi results after the discharge period. The 

background noise is completely quenched, i.e. the signals belonging to set b are zero. Nothing 

remains except the T-pattern itself, although as can be clearly seen in the figures there is some 

residual noise remaining in the T-pattern signals.  

Inspection of figure 15.10C reveals a possible cause of concern. There is some very noticeable 

attenuation in the absolute levels of the xi signals. The CE(1) network would typically be a sub-

system within a much larger network system model, and so attenuation of this sort could 

potentially be a problem for the overall system. For example, in an extreme case the {xi} pattern 

might altogether fall below the quenching threshold of some downstream network. This potential 

problem can, fortunately, be easily dealt with. What one does is use parameter B to control the 

absolute signal levels, and then scale the other system parameters relative to B. Proper scaling 

will ensure the performance of the CE(1) network will be altered in no way other than the absolute 

levels of the xi signals. For the case of the CE(1) system described here, the scaling rules are as 

follows. Let B = 1 be the reference (unscaled) system with parameters A, etc. The scaling 

transformations 

1  ⇒ B 
A  ⇒ B ⋅ A 
gmax ⇒ B ⋅ gmax                    (15.24) 
u(2)  ⇒ B ⋅ u(2) 
u(1)  ⇒ u(1) ⋅ (B – A/gmax)/(1 – A/gmax) 

will preserve the performance of the CE(1) network in its entirety except for the signal amplitudes. 

Note that the scaling rule for u(1) leaves the quenching threshold QT unchanged.  

Finally, persistent reverberation in CE(1) after the input pattern is removed means the network 
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will not spontaneously decay back to a relaxed state. However, the arrival of a new input pattern 

of sufficient intensity (strong enough to overcome the QT) will overwrite the old xi pattern in 

short term 'memory' (STM). Figure 15.11 illustrates this. Figure 15.11A is the STM pattern 

resulting from an initial "T" input retina (applied for 400 iteration steps followed by a 400 step 

discharge after the "T" was removed). Figure 15.11B shows the final xi resulting from the 

application of a noisy "J" input retina (applied for 400 iteration steps, followed by a 400 step 

discharge after removal of the input). The figures clearly show that the stored "T" is erased and 

replaced by the new STM "J" pattern. CE(1) does not require a reset, as the MAXNET and 

Mexican Hat networks do, to operate on new input data provided that data is large enough to 

overcome the quenching threshold. If it is not, CE(1) will retain its original STM after the second 

pattern is removed, i.e. it ignores subsequent weak subthreshold input patterns. Thus it preserves 

the strongest recent input pattern, provided that pattern exceeded the QT.  

§ 5. The Grossberg Classifiers CL(1) and CL(2)   

The Grossberg classifier is the ultimate level of on-center/off-surround SNI network prior to 

moving up to full-blown ART networks. Indeed, it was the analysis of "learning" stability – or, 

more accurately, "learning" instability – for this network in [GROS5] that set the stage for the 

theory of ART networks in [GROS6]. Figure 15.12 illustrates the simplest of these classifiers, 

which we will call CL(1). Almost everything we need to understand in order to appreciate how an 

ART network must function we can learn from the characteristics of the Grossberg classifiers.  

 

Figure 15.12: Basic Grossberg classifier CL(1). Red-colored connections are inhibitory, black are excitatory. 
STM is 'short term memory.' LTM is 'long term memory.' ζ is a non-specific inhibition applied to v2. 
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The basic classifier is composed of two layers, v1 and v2. Layer v1 is a Grossberg normalizer, 

either GN(1) or GN(2). Figure 15.12 uses GN(1). This layer has n SNI(0) maps, one for each input 

tract Ii. Its output pattern is a vector Θ = [θ1  θ2 ⋅ ⋅ ⋅ θn]T where  
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for the case where v1 is the GN(1) network. An expression of the form (15.12) results for GN(2).  

The v2 layer is a contrast enhancer with N SNI(2) nodes, CE(1) in the simplest case. However, 

its main job in CL(1) is to categorize input signal vectors {Ii}. For this purpose, typically N < n, 

and the total number of non-overlapping categories3 that can be represented by v2 is N. Note from 

figure 15.12 how each SNI(2) receives projections from each SNI(0). These projections are 

weighted so that the contribution Iij from the i-th node in v1 to the j-th node in v2 is given by Iij = 

wij ⋅ θi. Letting Wj = [w1j  w2j ⋅ ⋅ ⋅ wnj]T, the total input to the j-th node in v2, corresponding to one 

of the Ij inputs in figure 15.6, is given by I(2)j = [θ1  θ2 ⋅ ⋅ ⋅ θn]T ⋅ Wj or, in vector form, I(2)j = ΘT ⋅ 

Wj. The overall N-element vector input I(2) presented to v2 is written  
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The matrix of weights W is called the long term memory or LTM of the network.  

Layer v2 is also modified to include a non-specific inhibitory input signal ζ. Its dynamical 

equation is thereby modified and is given by 

   ( ) ( ) ( )( ) ( ) ζ−⋅−+⋅−+⋅−= ∑
≠ jk

kjjjjjj xfxIxfxBxAx 2222222& .     (15.27) 

This inhibitory input is applied to all the nodes in v2 and is used to clear the STM storage of the 

node.  

When ζ = 0, v2 responds to the I(2) input vector in precisely the same way as CE(1) responded 

to its input vector in section 4. The functional difference between v2 and CE(1) lies with how we 

interpret this new I(2) vector. CL(1) is often called a feature detector, and to understand this it is 

important we first understand the idea of a feature. In psychology a feature is an attribute of 

something (usually an object or event) that is critical to distinguishing that thing from other 

                                                 
3 In ART terminology, categories are said to be non-overlapping when exactly one v2 SNI represents the 
category, with the other SNI nodes having their xj = 0. It is a form of "grandmother cell" encoding. 
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things. (For this reason it is also called a distinctive feature). For example, the "distinctive 

feature" of a triangle is that it has three sides.  

Now, this is a nice, intuitively-agreeable, and vague description. As it stands, this dictionary 

"definition" of "feature" cannot be reduced to mathematics – which is another way of saying it is 

vague since mathematics can be regarded as a language for saying things in a very, very precise 

way. What we need to be able to grasp is, so to speak, "what is the feature that distinguishes what 

a 'feature' is?" Phrased this way, one can easily be alert to the potential we have here for ending 

up with a circular definition. To avoid this and to attain to a specific meaning for this word, the 

approach one needs to take is to define 'feature' in terms of something we hold to be a 

consequence to which a 'feature' must lead. This is a practical definition, i.e. a definition that can 

be put into practice. Making the translation from equivocal language to mathematical language in 

this instance was handsomely accomplished in Grossberg's early work on embedding fields.  

 When a standard English speaking adult hears a word spoken or speaks a word himself, the 
word seems to occur at a single instant of time. That is, we can say either that the word has, or 
has not, been said at a given time in a perfectly definite way. Moreover, no more than a finite 
number of words are spoken in a lifetime. Thus, both "spatially" (the number of verbal units) and 
"temporally" (the number of time instants at which verbal units occur), language seems to have 
many properties of a finite, or discrete, phenomenon. 
 One of the most vital uses of language is to report our sensory experiences, such as variations 
in tactile pressure, light intensity, loudness, taste, etc. Many of these sensory impressions seem 
to vary in a continuous way both in space and in time. A basic characteristic of much sensory 
experience is that it seems to be spatio-temporally continuous. . . The representation by language 
of sensations requires that the two kind of phenomena interact, and so, mathematically speaking, 
we must envisage the interaction of spatio-temporally discrete and continuous processes of such 
a kind that the relatively discrete process provides an adequate representation of the relatively 
continuous process. Moreover, although each sensory modality seems to provide us with 
essentially different varieties of experience, the very same language tools are adequate for 
describing at least the rudiments of all of these various modalities. Thus, the discrete 
representation of continuous processes must be a universal representation of some kind 
[GROS2]. 

This is the first crucial consideration for the practical meaning of a feature, namely that it is 

produced as a discrete representation of a continuous process. But this, by itself, is not sufficient. 

 Since different behavioral sequences in different stages of learning can often coexist, all 
intermediaries between continuity and discreteness can in principle coexist at any time. . . 
Properties of discreteness and continuity coexist at every stage of learning. The continuous 
background is never wholly eliminated. We must study how certain processes superimposed on 
this background become increasingly discrete relative to an initially prescribed standard of 
continuity, and will have at our disposal at least two different levels of dynamical graining such 
that the degree of continuity of one level takes on meaning only relative to the degree of 
continuity of the other [GROS2].  

The eventual logical endpoint of this requirement of "increasingly discrete processes super-

imposed on a continuous background" is the idea of context. That is to say, a "feature" is a feature 
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only with respect to some sort of more continuous context. A year earlier (1968) Grossberg 

already had in hand an approach for saying this mathematically:  

 The psychological postulates that lead to the equations which describe our learning machines 
M are quite simple. The following discussion heuristically describes these postulates in the case 
of learning a list of "simple" letters or events, such as the alphabet ABC...Z. 
 (a) The letter A is never decomposed into two or more parts in daily speech and listening. It is 
a "simple" behavioral unit. Thus we assign to every simple behavioral unit ri a single abstract 
point vi in M . . .  
 (b) M must react to presentation of behavioral units at specified times. Hence a real-valued 
function of time xi(t) is assigned to each point vi. The value of xi(t) at any time describes how 
recently ri has been presented to M. 
 (c) Consider M's response to presentation of A, then B, and then C at a speed ω. If ω is small 
(say ω  ≅ 2 sec), then the influence of A and B to M's response to C is substantial. As ω increases 
the influence of A and B on M's response gradually changes and ultimately becomes negligible. 
Since the effects of prior presentations of events wear off gradually, each xi(t) is continuous. . . 

 (f) Before M has learned the list AB, other responses than B to A must exist, or else B would 
already be the only response to A. Thus a function wAB(t) exists which can distinguish the 
presentation or non-presentation of AB and lets only B occur in response to A after AB has been 
learned. Since wAB(t) grows only if A and then B are presented to M, wAB(t) correlates 
(prescribed) past values of xA with xB(t). wAB(t) therefore occurs at the only position at which past 
xA and present xB values exist, namely, at the end of the pathway leading from vA to vB 
[GROS18]. 

It would seem to be no coincidence that the notations used by Grossberg in 1968 and those he 

used to introduce ART in 1976 were in all essentials the same. Cutting to the bottom line here, we 

will say the signal representations from layer v1 contain representations of features and the 

relative intensity θi measures the relative importance of the feature coded by vi in any given input 

pattern [GROS17]. The signal inputs I(2)j to each node in v2 are therefore measures of how much 

each of these features are correlated with the discrete "unit" represented by the j-th node of v2.  

In the language of feature-detector theory, each Wj is called a classifying vector. Layer v2 is 

said to recode the n feature representations presented by v1, which in the language of the early 

papers quoted above, amounts to "making a signaling process increasingly discrete." To grasp the 

system function of a Grossberg classifier amounts to understanding three aspects of it: (1) How 

does the recoding work? (2) how is it controlled and (3) how stable is this coding? We will take 

on these questions one by one in the following sections.  

§5.1 Feature Detector Coding   

The length of any vector V of any number of dimensions is |V| = (VTV)1/2. The direction of a 

vector is defined to be the unit vector V/|V|. It is a fundamental property of vectors that for any 

two vectors V and U of equal dimension, VTU ≤ |V| ⋅ |U| with equality if and only if either (1) one 

of the vectors has zero length or (2) both vectors have the same direction, i.e. V/|V| = U/|U|. It 

follows from this that one can always define an angle ϕV,U such that cos(ϕV,U) = VTU /(|V| ⋅ |U|). 
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Applying these properties to the I(2)j terms defined above, ΘT ⋅ Wj = |Θ| ⋅ | Wj| ⋅ cos(ϕΘ,W)j. Thus 

if all weight vectors Wj have the same length but different directions, for all input patterns Θk of 

the same length, the maximum I(2)j will be the one for which |ϕΘ,W | is the least. Put another way, 

an input pattern belong to a set {Θk such that |Θk| = |Θ|} will represent a total set of features "most 

like" that classifying vector Wj for which the magnitude of ϕΘ,W is least (under the condition that 

all Wj have the same length).  

For the time being let us assume that the condition | Wj| = constant for all j = 1, . . ., N is 

ensured by some mechanism of the network system. (We will later come back to look at this 

assumption and determine if and how well it can be realized). The issue then becomes: How much 

"like" the classifying vector must a Θ vector be in order for v2 to classify Θ as belonging to the 

input space partition defined by the classifying vector?  

Here it is helpful to contrast CL(1) against the Instar-MAXNET classifier of chapter 14. The 

conditions just stated above are the same as those which we said were necessary for the Instar-

MAXNET to function as a useful classifier. In the case of that network, we recall that the 

competition of the MAXNET layer is winner-take-all. Regardless of how "close" two of the 

MAXNET inputs may be, the competition will produce a single winner (unless there is a tie, in 

which case it produces no winner). Thus, the classification choice is entirely based on the relative 

intensities of the MAXNET inputs.  

The CE(1) competition is of a very different sort. As we saw in section 4, every v2 node that 

receives a sufficiently strong input to overcome the quenching threshold will set up a persistent 

reverberation in v2 and be stored in STM after Θ is removed. A sufficient condition for this is 

   ( ) ( ){ } ( )1
max1 ,0min0 ugABxX ≥−⋅ .  

Let us again use Grossberg's enumeration and suppose that only X2N satisfies the conditions of 

theorem 4 and no other X2j violates the condition of theorem 8. In this case, only x2N is stored in 

STM, all other x2j decay to zero, and the resulting final distribution after removal of I(2) is called a 

0-1 distribution. This is the Grossberg classifier's version of a winner-take-all result. 

Furthermore, we have x2N = x = B – A/gmax.  

There is also another condition, expressed in another Grossberg theorem in the 1973 paper, for 

the occurrence of a 0-1 distribution:  

Theorem 12: Let g(u) be continuous, non-negative and strictly monotone increasing, and let 
the Xi be enumerated according to Grossberg's enumeration. If Xn(0) = X1(0) = 1/n then 
Xn(t) = X1(t) for all t > 0. Otherwise Xn(t) is monotone increasing faster than any other 
function Xi < Xn and X1 is monotone decreasing. Furthermore, if the reverberation is 
persistent then the limiting distribution is either 0-1 or locally uniform. 
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Neither distribution in figure 15.7 meets the condition of g(u) being strictly monotone increasing. 

However, if the input pattern is not uniform, xN > xi<N, and no xi(t) ever grows large enough to 

reach u(2), the situation is effectively the same as that of theorem 12 and a 0-1 distribution will 

result, provided the input is strong enough to evoke STM, even if the maximum Xi(0) is not large 

enough to reach the quenching threshold. Figure 15.13 illustrates x(t) for an example of this.  

One of the interesting features of this x(t) is the minima that occurs at approximately the 450-

th time step in the iteration. Here x(t) has momentarily dipped below the steady-state value for 

persistent reverberation and is now beginning to climb again. This is a consequence of the largest 

Xj(t) beginning to grow as the lower-valued nodes in the network continue to decrease. In other 

words, the dip in the curve illustrates the energy-redistributing property of the CE(1) network. If 

the input signal been sufficiently less intense, the reverberation would have been transient.  

Because the outputs of v1 are normalized and we are assuming all the Wj have different 

directions, the occurrence of a 0-1 distribution in STM for sufficiently large inputs can be 

guaranteed by setting up a large QT through the selection of parameter u(1). Because the input 

signals can be written as I2j = |Θ| ⋅ | Wj| ⋅ cos(ϕΘ,W)j, the setting of QT determines the maximum 

angle ϕΘ,W by which Θ can differ from Wj in order for the feature set represented in Θ to be 

classified by Wj. However, because of the weak form of theorem 15.12 it is not easy to state what 

the minimum level of |Θ| must be to sustain persistent reverberation, and therefore not a simple 

matter to state the quenching level or ϕΘ,W in terms of I(1). Further complicating the situation is the 

 

Figure 15.13: x(t) vs. t for a 0-1 distribution case under the weak form of theorem 15.12. 
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fact that x(0) is a function of how long the stimuli I2j are applied in charging up v2, and therefore 

whether or not STM is evoked has the duration of the stimulus as another of its factors.  

The re-coding of the CL(1) input by means of a 0-1 distribution is called a compressed code. In 

contrast to the classifiers of chapter 14, CL(1) does not attempt to partition the entire input signal 

space into contiguous decision regions. Rather, each Wj classifies a convex cone [GROS5] 

   ( ){ }jkWWP k
T

j
T

j ≠Θ>ΘΘ= ,,maxthatsuch ε  

where ε is the minimum value of I2j required to exceed the quenching threshold. Inputs for which 

no I2j exceeds the quenching threshold do not produce STM (the reverberation is transient) and 

are left unclassified (uncoded) by CL(1).  

It is also possible to arrange the set of Wj vectors in such a way that more than one v2 node 

might exceed the QT in response to one or more Θ vectors. This results in partial contrast in the 

STM output (more than one x2j being non-zero). In this case, v2 is said to have a tuning curve, i.e. 

a maximal response to certain input patterns and sub-maximal responses to others [GROS5]. 

Although this is the more general case, in the sense that a 0-1 distribution can be regarded as just 

a special case of it, in practice tuning curves were not used by the earliest practical versions of 

ART networks, ART1 and ART2 [CARP4].  

§5.2 Weight Adaptation and the Issues with CL(1)   

Grossberg classifiers use the Instar adaptation rule (IAR) to adapt the weights. Indeed, the 

IAR was developed by Grossberg in his work that led up to adaptive resonance theory. In the 

notation for CL(1), 

   ( ) jjj xW 2⋅−Θ⋅= η&W                   (15.28) 

where η is the learning rate parameter, 0 < η < 1. In difference equation form this becomes 

   ( ) ( ) ( ) ( )( ) ( )txtWtttWtt jjjj 2W ⋅−Θ⋅⋅∆+=∆+ η .          (15.29) 

Generally speaking, η should be small enough so that weight changes are dominated by stable 

STM patterns. (This requirement for small η is consistent with the biology of postsynaptic 

LTP/LTD phenomena, which likewise take place slowly through the metabotropic signaling 

mechanisms we discussed in chapter 12). Otherwise the changes in all the Wj that would take 

place while v2 is charging and discharging would interact with these dynamics, leading to 

unpredictable outcomes and almost surely guaranteeing that no stable encoding of the features in 

Θ would result. This is because changing Wj changes I(2)j, which in turn affects the x2j. In the ART 
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literature it is often presumed that (15.28) is applied after the STM pattern at v2 stabilizes.  

Signal x2j acts as a "gating mechanism" for adaptation in (15.28-15.29). Suppose the final 

STM pattern distribution in v2 is the 0-1 distribution. Then all the x2j except one are zero. The 

non-zero x2j then "gates on" the adaptation for the Wj in its Instar, while change in the Wk of the 

other Instars is prevented. This is effectively the same type of partitioning control we saw in 

chapter 14 for other types of competitive networks. Furthermore, we note that due to persistence 

in the STM, the adaptation of Wj continues all the while the STM persists.  

As we saw in our earlier discussions of the IAR, Wj will adapt in such a way as to converge 

asymptotically to the input vector Θ. If the STM distribution is 0-1, only the "chosen" SNI will 

encode Θ in its weights. If the distribution is not 0-1 (that is, if there is partial contrasting rather 

than "choice" in the v2 output pattern), then all the non-zero output SNI nodes will adapt in the 

"direction" of setting their weights equal to Θ. This is not necessarily a bad thing, but it is full of 

potential for producing bad results, e.g. the convergence of two or more SNI weight vectors to the 

same value. The more advanced case of partial contrast ("partially compressed") codes is 

discussed by Carpenter and Grossberg in [CARP4].  

Assuming the STM is a 0-1 distribution, let {Θ1, Θ2, ⋅ ⋅ ⋅ ΘJ}j be the set of input pattern vectors 

that result in x2j ≠ 0, x2k = 0 (k ≠ j). Let every other SNI node have its own characteristic set {Θ1, 

Θ2, ⋅ ⋅ ⋅ ΘK}k of input vectors to which it responds. We will say a stable encoding of the input 

patterns exists if the intersect {Θ1, Θ2, ⋅ ⋅ ⋅ ΘJ}j ∩ {Θ1, Θ2, ⋅ ⋅ ⋅ ΘK}k is the empty set for every pair 

j, k with k ≠ j.4 Throughout this and the next section we will assume a stable encoding exists and 

we will examine the validity of this assumption in section 5.4.  

Under these conditions, if the underlying statistics of the input signals are stationary and the 

successive presentations of inputs Θ(t) are statistically independent, then each Wj will converge to 

the expected value E[{Θ1, Θ2, ⋅ ⋅ ⋅ ΘJ}j] of its partition of the Θ input space. We saw the proof of 

this earlier in the text.  

This adaptation dynamic is similar in many ways to that of the RBF-MAXNET network of 

chapter 14. For the RBF-MAXNET, if the input vector is changed without the MAXNET layer 

being reset for a new tournament, the selected RBF-Instar will start to learn the new input vector, 

to the detriment of its learning of the input vector that "won" the competition. Thus, the resetting 

of the MAXNET layer must be coordinated with changes in the input signal and adaptation must 

be disabled after every change in input until a new tournament is run. Of course, if the new input 

                                                 
4 In our notation, the Θ1 in the {...}j set is not equal to the Θ1 in the {...}k set, etc. The notation is an 
abbreviation that saves us from having to write Θ1(j) vs. Θ1(k) etc. 
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to the RBF-MAXNET is significantly different, such that the radial basis function activation of 

the RBF-Instar falls to a low level, undesired learning will be hampered by the low value of 

activation that follows the input change. But if, as in the examples presented in chapter 14, the 

coverage region of the radial basis function significantly overlaps nearby partitions of the input 

space, then the activation function will often enough not be small and the selected RBF-Instar 

will infringe upon the encoding that should belong to one of its neighbors, leading to unstable 

encoding. To prevent this requires the intervention of the attentional subsystem in figure 13.3.  

Now let us consider the application of the IAR to CL(1). Here we find that some special 

considerations must be applied. First, recall from the earlier discussion of CE(1) that the non-

homogeneous equation produces nonzero values of x2j whenever the node's input I(2)j is non-zero. 

Thus the CE(1) layer cannot produce a 0-1 distribution until after Θ is removed. While the 

stimulus is being applied, all the x2j values are nonzero for which the I(2)j are nonzero. We will 

look at two situations: (1) quenching threshold set low enough that a 0-1 distribution develops in 

STM after Θ is removed; (2) quenching threshold set high enough that no STM is maintained 

after Θ is removed. 

Figures 15.14 illustrate the first case. The parameters of the system are B = 1, A = 0.5, gmax = 1 

and u(1) = 0.5 (giving a quenching threshold of QT = 1). The input pattern is applied for 400 time 

steps and then set to zero thereafter. As figure 15.14B illustrates, the CE(1) layer produces a post-

stimulus STM in response to the signal. As we shall soon see, this is an undesirable behavior for 

adaptation of a Grossberg classifier and will necessitate the use of the reset signal ζ if the 

classifier weights are adapted.  

The values of the x2j nodes at the 400-th iteration step are shown in figure 15.14C. As we can 

see, all the non-zero inputs produce non-zero responses in their respective x2j values. By 

comparing figures 15.14A and C, we can also see that significant contrast enhancement has taken 

place, and that the x2j node that received the largest input stimulus is significantly larger than the 

other x2k nodes. It is this node that survives in the 0-1 distribution that follows the removal of the 

input stimulus, figure 15.14D. 

This contrast enhancement in figure 15.14C obviously suggests a simple modification to the 

IAR if we wish to have the adaptation performed with a 0-1 distribution. The idea is to introduce 

an adaptation threshold into the IAR, i.e. 

   ( ) ( ) ( ) ( )( ) ( )( )Ω−⋅−⋅⋅∆+=∆+ txhtwtttwttw jijjijij 2θη         (15.30) 

where Ω is the adaptation threshold and h(u) is the Heaviside extractor function (15.10). 
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A               B 

  
C               D 

Figure 15.14: CL(1) layer v2 input pattern, x(t) curve, and x2j values while Θ ≠ 0 (C) and Θ = 0 (D). 

After the stimulus is removed the Θ in the IAR expression (15.30) is zero. However, because 

of the persistence of the STM, if the adaptation of (15.30) is allowed to continue then Wj will 

begin to "learn" the all-zeros input pattern. This is clearly undesirable, and so the reset signal ζ 

must be asserted to abolish the STM before the encoding of Wj becomes compromised. In 

network systems like those of chapter 14, this would be the function of the attentional subsystem 

we saw was necessary for those networks. In the ART literature, Grossberg and his colleagues 

generally refer to this function as an arousal mechanism (he reserves the term "attentional 

subsystem" to mean a specific anatomy in a full-blown ART system, which CL(1) is not). 

[GROS5] discusses arousal mechanisms in terms of inputs insufficient to evoke STM. The 

function of such a mechanism as discussed there is aimed at triggering a "search" for a suitable 

classification of the input. But, as we can see here, there is a dual side to this, which we might 

term an "anti-arousal" mechanism. Alternatively, arousal might be used to enable adaptation.  

Because this issue arises because of the post-stimulus STM persistence, an obvious question is 
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Figure 15.15: CL(1) layer v2 response with QT raised high enough to suppress post-stimulus STM. 

"Why allow post-stimulus STM to occur at all?" The reason it occurs in this example is because 

the QT is set low enough to allow persistent reverberation in v2. This persistence can be abolished 

by raising the QT, which is easily accomplished by increasing u(1). What happens when we do 

this?  

Figure 15.15 illustrates this second case. Here all system parameters, including the input 

pattern to v2, are the same except for u(1), which is raised to u(1) = 0.90. The x(t) plot, figure 

15.15A, illustrates that post-stimulus STM is indeed suppressed. The price that is paid for this is 

seen by comparing the x2j values at time step 400, figure 15.15B, with their counterparts in figure 

15.14C. It is clear that much less contrast enhancement is present in 15.15B, and therefore it 

becomes significantly more difficult to find a reliable adaptation threshold Ω to achieve the effect 

of adaptation under a 0-1 distribution. The same dynamics that abolished post-stimulus STM also 

place the stimulated response in the region of operation where a fair distribution is generated.  

In general this is a much more severe and difficult problem than is the problem of setting up 

an attentional ("arousal/anti-arousal") subsystem for the first case. This is not to say the 

attentional subsystem problem for the persistently reverberating version of CL(1) is trivial. To say 

so is to underestimate the complexity issues that can arise when Θ(t) merely changes to a 

different but non-zero input value, especially when that value does not have sufficient strength to 

abolish the STM and replace it with its own. (Θ = 0 is merely the extreme case of this). In the 

next section we will look at a far easier solution to these problems, namely the system CL(2).  

To illustrate this, let us look at another interesting aspect in the dynamics of CL(1). In the 

discussion above we assumed Θ(t) was applied long enough to establish a non-homogeneous 

steady-state response by v2. As it turns out, this is not a necessary condition for establishing an 

STM. Let us suppose a Θ(t) is applied briefly and for a time not long enough for v2 to come to the 

488 



Chapter 15: Prelude to ART 

 

Figure 15.16: Stimulation of persistent reverberation (STM) by a brief pulse of input stimulus. 

plateau pictured in figure 15.14B. If the magnitude of Θ(t) is sufficiently large, it is possible for 

the redistribution of energies in v2 to produce an STM anyway. An example of this is shown in 

figure 15.16. The input vector was applied to an initially relaxed v2 for 38 iteration steps and then 

returned to an all-zeros level. The reverberations set up in v2 by this brief stimulus nonetheless 

succeed in establishing a 0-1 final distribution even in the absence of continued stimulus-driven 

excitation.  

These considerations – the lag between Θ application and removal, the variety of different 

charge-up and discharge times that pass before a 0-1 distribution is established, and general 

control of the adaptation process – must lead us to consider control structures for an adaptive 

CL(1) feature detector. The situation here is not unlike the one we encountered with the RBF-

MAXNET classifier earlier. The principal difference is that for CL(1) the situation is much harder 

to analyze. These issues that face CL(1) are brought about by the nature of the dynamics of 

contrast enhancer CE(1). While CE(1) is a very good network in its own proper sphere of 

application, namely non-adaptive contrast enhancement, it is not so well suited to serve the 

feature learning function of a Grossberg classifier. And this brings us to our next level of 

refinement – one that will lead us directly into ART networks in the next chapter.   

§5.3 SNI(3) and Grossberg Classifier CL(2)  with Large Surround Inhibition 

The solution to the problems encountered in the previous section involves so tiny a change it 

is understandable if one feels stunned that so substantial a change in network behavior can come 

from such a seemingly small difference. We will make a small modification to the SNI. 
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Figure 15.17: Grossberg Classifier CL(2). 

The fundamental cause of the problems we have just seen all stem from one source: the 

inability of CE(1) to produce a 0-1 distribution when the stimulus is non-zero. In turn, this 

inability stems from the nature of the dynamics of shunting node Instar SNI(2). Let us consider an 

alternate form of SNI, which we will call SNI(3). The dynamical equation for SNI(3) is  

   ( ) ( ) ( )( ) ( ) ( )∑
≠

⋅+−+⋅−+⋅−=
jk

kjjjjjj xfDxIxfxBxAx 2222222& .     (15.31) 

This equation is identical to that of SNI(2) except for the addition of the constant D in the right-

most term, D ≥ 0. Grossberg is fond of likening D to the Nernst potential for potassium in 

neurons, but this is mere romance. D increases inhibition from the off-surround nodes in v2. 

When we replace the nodes in v2 with SNI(3) we obtain classifier CL(2) as depicted in figure 15.17. 

First we will examine a large-D case (D = 49 ⋅ B); then we will look at small D effects.  

The effect of the D term is most clearly seen in the steady state response. Setting the 

derivative in (15.31) to zero, we obtain  
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where F is defined as before. The steady state solution x2j is now capable of equaling zero in the 

presence of stimulus input I(2)j and therefore CL(2) is capable of producing a 0-1 distribution in 

response to non-zero stimulation. Moreover, the steady state solution for x2j is now formally 

capable of being negative. 
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Figure 15.18: Response of CL(2) to the previous input signal example. The parameter settings for this 
simulation were D = 49 and u(1) = 0.95 with all other parameters the same as in the previous examples. 

The possibility of negative values for x2j presents the same interpretational difficulties as we 

previously encountered for GN(2), including the strange consequence that x(t) can now be 

negative. Grossberg et al. commonly allow negative node values to occur in their networks. 

Negative-valued x2j terms do not affect the dynamics of positive x2j nodes because the activation 

function is zero for x2j < 0. But there is no performance advantage in allowing negative node 

values and some analysis and interpretation advantages in preventing them. Therefore we will 

introduce clipping to ensure x2j ≥ 0 by writing the difference equation as 

 ( ) ( ) ( )( ) ( ) ( )( ) ( )( )[ ]{ }jjjjjjj xfFDIxfBxIFAttxttx 2222222 ,0max −⋅−+⋅+⋅++−⋅∆+=∆+  

                           (15.33) 

This is equivalent to replacing the v2 node variables by an activation variable h(x2j) where h is the 

Heaviside extractor.  

Figure 15.18 illustrates the response of this system to the example input pattern used for the 

examples in the previous section. Figure 15.18B gives the values of the x2j terms, using (15.33), at 

the 400-th time step in the simulation. We can easily see that a 0-1 distribution has been 

produced. Figure 15.18A shows the time course of x(t), and we see from this that post-stimulation 

STM has been abolished. Thus, with one small change to the SNI the principal problems we saw 

in the previous section have been removed.  

We must still consider what the effect on the adaptation will be during the relatively long time 

course of the decay of x(t) after the 400-th time step in figure 15.18A. Let us assume we use an 

unmodified IAR (that is, we do not employ the artifice of an adaptation threshold). With Θ = 0, 

the adaptation difference equation becomes 
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and the length of the weight vector becomes 

   ( ) ( )( ) ( )tWtxtttW jjj ⋅⋅⋅∆−=∆+ 21 η . 

The direction of the updated weight vector is therefore 
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In other words, although the length of the weight vector relaxes during the decay of x(t), but does 

not reach zero owing to the decay of x2j(t), the direction of the weight vector is unaltered. Here it 

is important for us to remember that the Grossberg classifier is based on the encoding of features 

in the direction of the input signal Θ. Thus, the relaxation of the weight vector in response to 

zero stimulus does not alter the encoding of the patterns by CL(2).  

We can obtain a ballpark estimate of how bad the decay in Wj may be from examining the 

difference equation 

   ( ) ( ) ( )kurak k ⋅⋅−=+ 11 .u  

Here a corresponds to ∆t ⋅ η and the geometric ratio factor r is chosen so that this difference 

equation is any reasonable approximation of the x(t) decay curve in figure 15.18A. What is 

important to note is that for slow adaptation a ⋅ rk << 1. Solving the difference equation by 

recursion and manipulating this solution gives us 
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from which we obtain ufinal ≅ exp(–a/(1– r)) ⋅ u(0). For slow adaptation the argument of the 

exponential will have a magnitude of order unity or less, and so the decay of the weights is 

controllable even if CL(2) is exposed to a prolonged period of no stimulation. Even this decay can 

be reduced by employing an attentional subsystem as we did in chapter 14 for RBF-MAXNET.  

In a sense, this process corresponds to a kind of gain control for the Wj vectors. During the 

adaptation process the Wj will move to, on the average, increasing values of |Wj| and then "sag" 

when the stimulus is removed. It is also instructional to look at the dynamics when Θ(t) is not 

removed but rather changes to a different non-zero value. In this case, CL(2) will always respond 

to the second pattern because it lacks the ability for persistent STM. Figure 15.19 is an illustration 
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Figure 15.19: Dynamical response of CL(2) when the I2j inputs switch from one non-zero value to another. 
(A) first input pattern; (B) second input pattern; (C) x2j values at step 400; (D) x2j values at step 1000. 

 

Figure 15.20: x(t) for the example of figure 15.19. The pattern switches from input 1 to input 2 at 400 time 
steps into the simulation. Both patterns achieve their steady state values within 0.5% within the simulation. 

of two successive {I2j} input patterns and the 0-1 responses to each. Figure 15.20 illustrates x(t) 

for the simulation. The first pattern (15.19A) is applied until time step 400. The second pattern 
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(15.19B) is applied at time step 401 and maintained through the rest of the simulation. The 

reverberation responses to both patterns stabilize to within 0.5% of steady state within the time 

spans of the pattern applications. Both result in 0-1 distributions. 

The simulation illustrates that CL(2) requires a transition time to switch between pattern sets. 

Pattern 2, applied at time step 401, does not begin to take over the CL(2) activation patterns until 

approximately time step 650. This is indicated by the local minimum in x(t) at that time step. The 

end of the reverberation and establishment of the second 0-1 distribution occurs at the second 

minimum around time step 770. The simulation reveals the importance of dwell time for the input 

patterns for successful weight adaptation. For the application times shown in the example, it is 

clear that input patterns must be applied for a time period significantly longer than the transient 

interval revealed in figure 15.20 if slow adaptation is to be dominated by the 0-1 distributions. 

This property of the network system is consistent with LTP/LTD phenomena observed at the 

synaptic level.  

Finally, let us look at the noise characteristics of CL(2). The mere addition of the term D to the 

SNI dynamic, and the fact that this term permits some x2j to be zero in the face of non-zero inputs 

to SNI(3), does not mean the quenching threshold is a squelching threshold for noise. In general 

some of the x2j nodes will be non-zero in the presence of even low-level input signals. 

Figures 15.21 illustrate the effect for four different test cases. In all cases the system 

parameters are the same as those of the previous examples. The first input pattern is identical to 

that of figure 15.19A. The second input pattern consists of 25 random input signals. For figures 

15.21A and 15.21C, the input noise is uniformly distributed in the range from 0 to 0.2. For 

figures 15.21B and 15.21D the input noise is uniformly distributed in the range from 0 to 0.02. 

The other difference introduced in this example is the normalizer. In all the previous example 

cases shown above, the input normalizer was GN(1) with parameters B1 = 1, A1 = 0.5. This 

normalizer is also used for the test cases in figures 15.21A and 15.21B. For figures 15.21C and 

15.21D the normalizer is GN(2) with the same B1 and A1 parameter values and parameter C set to 

B1/24.  

Both test cases with the larger noise values (15.21A and 15.21C) underwent reverberation 

dynamics that resulted in a 0-1 distribution for the second (noise) pattern. In most cases the 

largest noise term survives the competition and is "chosen" by v2. However, if it should happen 

that the noise signal corresponding to the 0-1 choice from the first pattern is among the larger 

noise values (not necessarily the largest), then occasionally it will be selected over the globally 

largest noise signal (and thus it interferes with the learning of pattern 1). In any event, the noise 

response will alter the weight vector associated with the chosen v2 node. 
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Figure 15.21: Four test cases where the first input pattern is followed by a pattern of small random values. 
(A) noise in second pattern uniformly distributed over (0, 0.2) with GN(1) normalizer; (B) noise in second 
pattern uniformly distributed over (0, 0.02) with GN(1) normalizer; (C) noise in second pattern uniformly 

distributed over (0, 0.2) with GN(2) normalizer; (D) noise in second pattern uniformly distributed over (0, 0.02) 
with GN(2) normalizer. 

The main difference between figures 15.21A and C is the significantly lower level of noise-

driven STM. In all cases, GN(2) provides superior performance over GN(1). This same advantage 

is also found for the cases of figures 15.21B and D. In these two cases, the level of noisy pattern 2 

was low enough that a 0-1 distribution did not result. The distribution was a contrast-enhanced 

fair distribution in which the lowest noise terms were squelched (driven to zero), but the higher 

noise signals were pattern-enhanced.  

The principal conclusions to be drawn from this example are these: Even with CL(2) there is an 

advantage to employing an attentional subsystem similar to that used with the RBF-MAXNET in 

chapter 14. The advantage is that this helps to suppress noise-driven corruption of the classifying 

vectors Wj. Unlike the case for CL(1), an attention threshold is relatively easy to pick and robust in 

the face of differences in the input pattern sequences when D is large. Thus large-D CL(2) is 
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superior in performance to CL(1). The second principal conclusion is GN(2) provides overall better 

performance through its ability to eliminate the spatial average background value of the incoming 

patterns. 

§5.4 The Effect of Small D on CL(2) Dynamics  

The lateral inhibition parameter D has the effect of promoting the production of 0-1 final 

distributions in layer v2. The value used in the previous section, D = 49B, was chosen so that the 

level of lateral inhibition was on the order of 100× larger than the shunting contribution of x2j in 

the most active nodes of v2. At the other extreme end, D = 0, SNI(3) reduces to SNI(2) and CL(2) 

reduces to CL(1). Clearly, then, there is a continuum of performance changes that takes place as D 

is increased from 0 to large values. Figure 15.22 illustrates typical responses for D values of B, 

2B, 5B, and 10B, respectively. Two trends in particular are noteworthy in these examples. The 

first is that D affects when a 0-1 pattern first begins to establish in pattern 1. Larger D values tend 
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Figure 15.22: Effect of increasing D on the performance of CL(2). Four example cases are illustrated where 
the second pattern consists of random pixel values in the range from (0, 0.2) as in case 15.21C in the 

previous section. (A) D = B; (B) D = 2B; (C) D = 5B; (D) D = 10B. 
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to produce the first occurrence of a 0-1 distribution earlier in the charge-up phase of pattern 1. 

There is, as the figures illustrate, a diminishing returns effect with this and after D = 10B there is 

not much additional speed-up in establishing the first 0-1 distribution pattern.  

The second noteworthy feature is the size of D required to produce a 0-1 distribution in the 

second pattern. The examples of figure 15.22 correspond to the noisy second pattern in the range 

from (0, 0.2) using GN(2) of figure 15.21C of the previous section. For D < ≈ 10B the noisy 

second pattern results in a contrast-enhanced fair distribution of final values. For D ≈ 10B we see 

a 0-1 distribution forming for the second pattern. We also see that larger values of D tend to delay 

the onset of the STM for the second pattern, although this is not a particularly strong effect. For a 

random second pattern there is a noticeable degree of variability in time required to form a 0-1 

distribution for the second pattern. This is illustrated in figure 15.23. Figure 15.23A is one 

extreme case where the 0-1 distribution captured for the second pattern results in the same 

surviving x2j node as in pattern 1. Figure 15.23B shows a case where a different x2j survivor 

remains in the 0-1 distribution. There is considerable pattern-dependent variance in the settling 

dynamics for the second pattern.  

§5.5 The Stability-Plasticity Dilemma in CL(2)   

In a number of ways, the behavior of CL(2) is similar to the Instar-MAXNET competitive 

network of chapter 14, and in some ways it is inferior. In order to selectively target classification 

vectors Wj it is desirable to operate v2 in the 0-1 distribution mode, which effectively abolishes 

persistent STM when the inputs I(2)j = 0. This also happens at the Instar outputs of the Instar-

MAXNET network of chapter 14 but happens much more swiftly because the first layer Instars in 
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Figure 15.23: Two more example cases for D = 10B with a (0, 0.2) random second pattern. Compare 
especially figure 15.23B against figure 15.22D and note the times for the onset of the 0-1 distributions. 
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that network do not interact. We saw that if the Wj vectors were unequal in length in this network 

then it was possible for those with larger values of |Wj| to dominate the Instars with smaller 

weight vector lengths even if these were closer in direction to the input vector. Only if the 

weights were constrained by some type of normalization is it possible for the Instar-MAXNET to 

respond only to cos(ϕΘ,W)j. It was for this reason the RBF-MAXNET was preferred in chapter 14. 

CL(2) faces the same issue. Even if all the classifying vectors Wj start off initially with the 

same lengths, over time the adaptation process will produce unequal lengths. If all the input 

vectors Θ were of equal length, maintenance of equality of classifying vector lengths cannot be 

guaranteed because the IAR takes ∆Wj along a straight line path toward Θ. Putting this another 

way, were we to trace "the tip of the Wj vector" as it moves in an N-dimensional vector space, we 

would find its trajectory to lie on a chord rather than an arc. If the direction cosines among all the 

classifying vectors are small (i.e., the classifying vectors point in maximally different directions) 

and if an attentional subsystem control for the IAR adaptation is employed, the undesirable 

effects of changes in vector lengths could in principle be avoided if all the Θ are of equal length. 

But, of course, they are not, and this hints that some form of gain control might be needed. In the 

next chapter we will see that a gain control mechanism is made part of an ART network.  

However, even all input vectors – or at least all selected input vectors – are of equal length, it 

is possible that an unfortunate sequence of successive Θ vectors could under certain conditions 

lead to the non-existence of a stable coding. Grossberg has shown [GROS5] that only if the 

number of patterns Θ is small and properly partitioned relative to the number of classifying 

vectors is a stable encoding possible with CL(2). It is naive to think that biological systems in vivo 

will meet up with the mathematical conditions required for stable coding. In other words, CL(2) 

does not escape the stability-plasticity dilemma, and this is the observation that led Grossberg to 

go on to develop ART networks.  

Lest the reader feel that somehow the efforts he has had to exert to follow the theory in this 

chapter has been wasted, let me assure you: It has not been in vain. The material that has been 

presented here is propaedeutic to being able to understand adaptive resonance theory. The 

systems we have examined here are not ART networks, but they are the foundations for ART 

networks. It is possible that many practitioners of neural network theory and technique have 

decided ART is extremely complicated – some think too complicated – merely because not a 

sufficient amount of education has been provided (or obtained through self-study) of the non-

ART systems discussed here. (After all, this theory in its entirety was developed during the 'dark 

age' when neural network funding in the U.S. was almost nil and U.S. based research had almost 

died out). It is true that the theory itself is extremely elegant; it is not true that ART networks are 
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unduly complex. In chapter 16 we will take the next step and examine ART networks proper. 
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