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§ 1. Natural and Artificial ART 

For the most part, when one reads or hears of an ART network, the network being discussed is 

an artificial neural network machine. Indeed, the first two widely disseminated papers in which 

the term "ART network" was used were published in Computer, Vision, Graphics, and Image 

Processing [CARP2] and in Applied Optics [CARP3]. As one might expect from these titles, the 

systems there described are machines intended for specific engineering applications, and I believe 

it is not unfair to say their connection to biological signal processing is latent and lies hidden in 

the shade of some of the references cited in these works. To use the time-worn phrase favored by 

artificial neural network theorists, ART1 and ART2 are "inspired by biology." This is to say that 

unless one believes biological neural networks exist that do such things as calculate L2 norms 

(more commonly known as Euclidean distance), the artificial networks should not be held to be 

representations of natural neural networks, but at best merely approximations of neural function.  

This is in no way meant to denigrate the artificial ART networks of the engineering and 

mathematical worlds. Quite the contrary. They are powerful and useful machines for carrying out 

various engineering signal processing tasks. Nor does this imply that these artificial networks 

carry no connection with biological signal processing. The artificial ART networks of the 1980s 

and 1990s owe their foundation to the 1970s work carried out by Grossberg in modeling 

neurological and psychological phenomena. But it is to say that they are fundamentally 

algorithms and the tasks they carry out are mathematico-engineering tasks. Many practitioners of 

artificial neural network theory are fond of implying that this field of engineering and 

mathematics is a manifestation of the same sort of underlying principles that govern the function 

of the brain, and perhaps to some degree this is true. But at the present time to make such an 

implication on behalf of any artificial neural network structure is to engage in romantic 

speculation rather than natural science.  

Still, as was just noted, the design strategy for ART1, ART2, ART3, ARTMAP, etc. does 

draw from work that was aimed at understanding biological systems, and from mathematical 

consequences that appear to follow from empirical findings in psychology and neurology. Our 

pedagogical objective in this chapter is to introduce and understand what some of these 

consequences are. We shall concern ourselves with adaptive resonance theory and its structures 
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insofar as they have relevance for biological signal processing on the very large scale and for 

computational neuroscience in general. In the process of coming to this understanding, the reader 

will also acquire the background needed to appreciate the types of approximations and 

simplifications engineers make in constructing artificial ART systems, and perhaps even to 

develop an eye for spotting the points where artificial ART systems employ mathematical 

structures for which there is no presently known biological foundation.  

What is the objective of an artificial ART network design? Carpenter and Grossberg describe 

this quite succinctly:  

Adaptive resonance architectures are neural networks that self-organize stable pattern 
recognition codes in real-time in response to arbitrary sequences of input patterns. This article 
introduces ART 2, a class of adaptive resonance architectures which rapidly self-organize 
pattern recognition categories in response to arbitrary sequences of either analog or binary input 
patterns. In order to cope with arbitrary sequences of analog input patterns, ART 2 architectures 
embody solutions to a number of design principles, such as the stability-plasticity tradeoff, the 
search-direct access tradeoff, and the match-reset tradeoff. In these architectures, top-down 
learned expectation and matching mechanisms are critical in self-stabilizing the code learning 
process. A parallel search scheme updates itself adaptively as the learning process unfolds, and 
realizes a form of real-time hypothesis discovery, testing, learning, and recognition. After 
learning self-stabilizes, the search process is automatically disengaged. Thereafter input patterns 
directly access their recognition codes without any search. Thus recognition time for familiar 
inputs does not increase with the complexity of the learned code. A novel input pattern can 
directly access a category if it shares invariant properties with the set of familiar exemplars of 
that category. A parameter called the attentional vigilance parameter determines how fine the 
categories will be. If vigilance increases (decreases) due to environmental feedback, then the 
system automatically searches for and learns finer (coarser) recognition categories. Gain control 
parameters enable the architecture to suppress noise up to a prescribed level. The architecture's 
global design enables it to learn effectively despite the high degree of nonlinearity of such 
mechanisms [CARP3]. 

Most of the properties and abilities cited here for ART2 are also directly relevant for natural 

neural network systems. We will see the requirement for these functional abilities arise as a quite 

natural part of the ART dynamics presented in this chapter. We will not, however, make any 

attempt to present a general "class of adaptive resonance architectures." To present a "class" is to 

present in the abstract, and it is a psychological fact that people do not learn from the abstract to 

the particular but, rather, from the reverse. It is one thing to present in the abstract in an archival 

journal – as most papers on ART do – and something else to present the ideas of a theory in a 

textbook. Therefore, here we will develop adaptive resonance theory through examples, from 

which we will be able to discern the origin of and the need for solutions to such things as "the 

stability-plasticity tradeoff, the search-direct access tradeoff, and the match-reset tradeoff" of 

which Carpenter and Grossberg speak in the quote just given. We will see the need for such 

solutions arising as consequences of specific signal processing issues and limitations of particular 

subsystems within the ART framework. 
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Figure 16.1: The Resonator 1 subsystem. The Grossberg normalizer layer is optional but for purposes of 
discussion it will be assumed to be a GN(2) anatomy. Layers v1 and v2 are competitive layers. The shunting 
node Instars in v1 are type SNI(3). In layer v2 the nodes are comprised of pairs of SNI(3) Instars and Outstars 

as depicted in figure 14.3. STM denotes short term memory. LTM denotes long term memory. LTM is 
comprised of a set of feedforward weights W from v1 to v2 and a set of feedback weights Z from v2 to v1. The 

GN and v1 layers have n nodes, and the v2 layer has N nodes. Ii, Jij, and Kji are signals. 

§ 2. Resonator 1  
The heart of an ART network is a subsystem called the adaptive resonator. There are a 

number of versions of adaptive resonators. Figure 16.1 illustrates the prototype upon which most 

others are based, either as specializations of it or enhancements of it. We will call this anatomy 

resonator 1 or R(1) for short. We have already encountered all the pieces that go into its makeup 

in the previous chapters, especially chapter 15. It consists of three layers. Layer 0 is a Grossberg 

normalizer, which we will here assume to be GN(2). This layer is actually optional, and if the 

resonator is driven by the Instar outputs of another resonator GN can be omitted. The GN layer is 

in some ways a redundancy since the signal normalization function it performs can be handled by 

layer v1. Layer 1 (v1) is a competitive contrast enhancer, specifically the CE used in classifier 

CL(2) in chapter 15. We will hereafter refer to this as CE(2). Both GN and v1 have n nodes. Layer 2 

(v2) is also a competitive contrast enhancer with SNI nodes comprising a second CE(2) network. 

However, in addition each SNI(3) node in v2 also drives an Outstar node, which is the source of 

the feedback from v2 to v1. Layer v2 contains N nodes.  

Each SNI in v1 receives a forward-path input signal Ii from its corresponding node in the GN 

and a set of N feedback signals Kji from v2. These are summed to produce its total input signal ξi. 

Each SNI in v2 receives a set of n feedforward signals Jij from each SNI in v1, which are summed 
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to produce its total input signal ξj. In vector-matrix form we have  

   

( )
( )

( )

















⋅



















⋅+



















=



















NNnnn

N

N

nn xh

xh
xh

zzz

zzz
zzz

I

I
I

22

222

212

21

22212

12111

2

1

2

1

M

L

M

L

L

MM
γ

ξ

ξ
ξ

 or ( )2211 xZI hξ ⋅⋅+= γ .   (16.1) 

Here γ is a constant we will call the feedback gain and h2(u) is an activation function for the v2 

SNI excitation variables x2j. Z is the matrix of Outstar weights. The second term on the right-hand 

side of (16.1) defines the Kji variables. As for the Jij inputs to v2, these are given by  
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where W is the matrix of feedforward weights. For convenience we will abbreviate the columns 

of the Z matrix as Zi and the rows of the W matrix as Wj
T.  

Each Instar node in v1 and v2 is governed by the dynamical equation (14.31) for SNI(3) and 

simulated using the difference equation form (14.33). As we did in chapter 15, we will impose the 

constraint that all x1i and x2j variables must remain non-negative (i.e., we will clip them at zero if 

the equation would take them less than zero). As noted in chapter 15, this is equivalent to having 

the x1i and x2j variables in our equations represent h(xab)1 where h is the Heaviside extractor 

activation function. In order to keep our mathematical notation as simple as possible, we will let it 

be understood that this clipping action is always implied in every calculation.  

We can compactly write the mathematical description for R(1) in vector-matrix notation as 

  
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) (( )222222222222

111111111111

fFξfxξFAxx
fFξfxξFAxx
−⋅−+⋅+⊗++−⋅∆+=∆+ )

−⋅−+⋅+⊗++−⋅∆+=∆+
DBtttt
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 . (16.3) 

Here it is understood that everything on the right-hand side is evaluated at time t. A1 and A2 are 

constant column vectors (n×1 and N×1, respectively) with elements A1 and A2. F1 and F2 are 

column vectors with elements Fk = ∑ fk(xk,m), k = 1 or 2, m = i or j, with the sum taken on m over 

all the excitation variables in that layer according to the definition of F introduced in chapter 15. 

f1 and f2 are the activation functions for v1 and v2, respectively. We will assume f1 and f2 are the 

same general function but with layer-specific parameters gmax, u(1), u(2) as per figure 14.7B. 

Without loss of generality, we will use (14.23) for the activation function in all examples.  
                                                 
1 a = 1 or 2, b = i or j. 
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f1 and f2 denote column vectors with entries f1(x1i) and f2(x2j), respectively. The symbol ⊗ 

denotes term-by-term multiplication with vectors x1 or x2. The remaining scalar terms are as 

previously defined in chapter 15. The iteration step size ∆t is constrained by (d14.19) for 

whichever layer gives the smallest bound. Equations (16.1) through (16.3) define the dynamical 

system for R(1) except, of course, for its adaptation dynamics.  

The first thing we must note about (16.3) is that these two matrix difference equations are 

coupled to one another through (16.1) and (16.2). The overall system of equations is therefore 

different than the system of equations for CL(1) in chapter 15. The coupling is what makes R(1) a 

resonator. There has been no widely disseminated paper comparable to [GROS14] published, 

which means we do not possess a set of theorems, analogous to those in chapter 15, that set down 

the mathematical properties of R(1). It is true that we can expect this system to behave in many 

ways like the one we studied in chapter 15. For example, the layers of R(1) each have a quenching 

threshold, QT1 and QT2. However, it should come as no surprise that this system also has 

different behaviors not in evidence in CE(1). We will encounter some of these later on in the 

examples presented here. The reason most of the theorems presented in chapter 15 cannot be 

assumed for R(1) is that the equation for R(1) is not the same as the equation for CE(1). Therefore 

we are not in possession of proofs of these theorems for the case of R(1). For this we would need a 

"new GROS14" – a formidable undertaking. Nonetheless, in a great many cases we will be able 

to use our knowledge of the Grossberg theorems to understand a number of important behaviors 

this system exhibits.  

The general theme describing R(1) behavior is this. A vector of input signals is applied to v1 

and causes excitation of the x1i variables. This is called an activity pattern – essentially just x1 – 

and constitutes the "short term memory" STM1 of v1. STM signals are projected to v2 via W and 

set up an activity pattern x2. Feedback from the v2 activity pattern to v1 alters x1, which causes an 

alteration in x2, etc. A resonance is said to occur when both x1 and x2 settle into steady state fixed 

point solutions in response to the original applied inputs { Ii }. When this input changes the 

system undergoes another transient leading to another fixed point resonance. Our main task in 

this chapter is to gain an understanding of this resonance process.  

The desired state of affairs for the resonances of R(1) has two main features. First, it is desired 

that STM1 be a representation – typically with some amount of contrast enhancement – of the 

input vector to v1. The STM1 vector, x1 = Θ, is the basis for the adaptation of W and Z. Second, 

the activity pattern STM2 = x2 is desired to represent an encoding of the original input signal 

vector. The row vectors Wj
T constitute the classifying vectors for R(1). The column vectors Zi 

constitute a set of expectation vectors. These vectors are said to "learn the patterns" Θ. To the 
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extent that the Θ vectors represent the inputs { Ii }, v2 is said to have categorized the inputs.  

This explains what occurs. How does this work in R(1)? The qualitative explanation is as 

follows. Let I1 and I2 be two external input patterns to v1. Let us further suppose that both signals 

have previously been successfully coded by v2 such that I1 is encoded by a 0-1 distribution in v2 

in which node x21 is the only active node. Similarly let I2 be encoded by a 0-1 distribution in 

which x22 is the active node. When I1 is presented to v1, v1 responds by generating an activity 

pattern STM1 that excites v2. By our assumptions, this will produce an excitation only in node x21. 

This, in turn, generates a feedback vector K1 = γ ⋅ Z1 ⋅ h2(x21). In the ideal case K1 will equal I1 

except for a multiplicative factor determined by γ. v1 now has a new input that is exactly the same 

as I1 except for a multiplicative factor. Thus, v2 continues to receive an input signal that is the 

same, except for the multiplicative factor, that it received when I1 was first applied. This 

maintains the STM2 pattern, the feedback to v1, and thereby the system settles into a steady-state 

fixed point of operation. (This steady-state condition is what allowed W1 and Z1 to adapt to, 

ideally, a contrast-enhanced prototype of I1).  

Now suppose the input changes from I1 to I2. The total input to v1 is now I2 + K1, which, again 

ideally, will equal I2 + cI1, where c is the aforementioned scaling factor. This changes the activity 

pattern of STM1 and the two inputs will compete, with I2 attempting to establish its unique 

activity pattern and K1 attempting to maintain the pattern associated with I1. If I1 and I2 are 

sufficiently different and if K1 is a sufficiently weaker signal than I2, the STM1 activity pattern 

will change. In the extreme case, if I2 + K1 produces a uniform net input signal vector, then STM1 

will be abolished altogether. This is because the D1 term in the SNI(3) equation produces an effect 

similar to the C term in GN(2). We recall that GN(2) suppresses uniform input patterns and 

produces a zero-vector output. The v1 layer does the same. Thus, if I2 + K1 is uniform, STM1 

vanishes and, lacking an input excitation, v2 also resets to the zero condition. But this removes the 

feedback signal K1 and so now v1 "sees" only I2 and responds by producing the STM1 pattern 

associated with I2. This reactivates v2, this time producing the x22 0-1 distribution. v2 then feeds 

back K2 – which again is ideally just a scaled version of I2 – and the system "locks into" its new 

steady-state.  

What happens if I1 and I2 are sufficiently different – which means they contain different 

features R(1) is using for its classification coding – but I2 + K1 does not produce a uniform input 

pattern? In this case, and again assuming K1 is a weaker signal than I2, the change in STM1 will 

cause x21 to decrease (it is no longer seeing as strong an input signal) and cause x22 to increase (it 

is now "seeing" a stronger input because STM1 contains the influence of I2). v2 will begin to 

reverberate and if its quenching threshold is sufficiently high its activity pattern will be erased 
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and replaced by the activity pattern for I2, much as we saw for CL(2) in chapter 15. Reverberation 

in v2 at first weakens and then quenches K1 and replaces it with K2, the feedback vector for x21.  

This is the basic idea behind the operation of R(1). To achieve it: (1) the feedback signals must 

be weaker than the external input signals from GN(2); (2) v1 must have a sufficiently high QT that 

new patterns erase and overwrite old STM1 patterns; and (3) v2 must likewise have a sufficiently 

high QT so that its STM does not persist when the input that caused it is removed. Whether or not 

I1 and I2 are "sufficiently different" depends on these vectors containing different distinguishing 

features that have been encoded into W1 and W2 (and into Z1 and Z2 which, ideally, are equal to 

W1 and W2, respectively, except perhaps for a constant scale factor). These are the Grossberg 

conditions for successful encoding and classification in R(1).  

It will not have escaped your attention that the word "ideally" appears several times in the 

description just given. In practice, things are rarely ideal and this is the case for R(1). We have just 

ignored the details of the temporal dynamics that lead to all these changes in STM, and we have 

further invoked the still-vague notion I1 and I2 are "sufficiently different." We must meet and 

confront the nasty realities that lurk within the practical system and see how these nasty realities 

affect the ideal case we have just described. We will do this in the next section through the 

vehicle of a specific example system.  

§ 3. Resonator 1 Dynamics with Binary-valued Input Patterns 

It will suffice without loss of generality to study the dynamics of R(1) for a specific case. In 

this section we will study an R(1) network with n = 25 nodes in GN(2) and v1, and N = 3 nodes in 

v2. The parameters of the system will initially be set at: 

• GN(2): B0 = 1; A0 = 0.5; C0 = B0/(n – 1) 
• v1: B1 = 1; A1 = 0.5; D1 = 1.5; gmax1 = 1; u1

(1) = 0.85; u1
(2) = 0.98 

• v2: B2 = 1; A2 = 0.5; D2 = 1.0; gmax2 = 1; u2
(1) = 0.95; u2

(2) = 0.98 

The feedback gain γ will be set to 0.05. These parameters were chosen empirically to yield an R(1) 

network with good performance and reasonable robustness in the simulation cases studied. For 

the sake of simplicity, we will consider the LTM weights in W and Z to be fixed. Thus the 

simulations are considered to take place after the system's adaptation process has established the 

classifying vectors. Adaptation will be considered in chapter 17.  

Although all input signals are column vectors, as an aid to visualization we will present them 

as if they were arranged in a 5 × 5 square grid (a "retina") as we did in chapter 15. Figure 16.2 

illustrates four representative input patterns, which we shall call T, J, X, and O, respectively. The 

weight vectors W1 and Z1 equal the T pattern except for scaling so that |W1| = |Z1| = 1. Similarly, 

W2 and Z2 are set to the J pattern, and W3 and Z3 are set to the X pattern.  
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A               B 

  
C               D 

Figure 16.2: Representative input patterns for the example R(1) system. (A) pattern T. (B) pattern J. (C) 
pattern X. (D) pattern O. The LTM weights of the system are set equal in direction to the T, J, and X patterns 

and the weight vectors are scaled to unit length. 

Where two retina patterns share common "pixels" the patterns are said to have common 

features. If we compare the T and J patterns, we see that these two patterns do not intersect at any 

pixel. T and J are said to be "well separated" or "completely distinct" from one another. The X 

and O patterns, on the other hand, each have non-empty intersects with the other three patterns, 

i.e. they both share common features with the other three patterns.  

Finally, we must define the h2 activation function in (16.1). For this we will begin with a 

rather poor choice, the popular Heaviside step function, i.e. h2(x) = 1 if x > 0 and h2(x) = 0 

otherwise. We will soon see the compelling reason for changing this choice to the Heaviside 

extractor. This completes our parameter definition of the example R(1) system for now.  

We will find it useful to have a way to measure and assess how closely the activity pattern x1 

matches the input pattern I presented to v1 by GN(2). In mathematics such a measuring function is 

called a metric function and the measure itself is called a distance.  Mathematicians have defined 
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Figure 16.3: A biologically plausible Instar neural network system capable of implementing the absolute 

value metric function. The Instars in this network are conventional Instars, not SNIs. 

many different kinds of distance metrics, the most familiar of which is the Euclidean distance 

metric. Our purposes here – namely the study of biological signal processing – are best served if 

our distance metric function is one that a neural network system can produce. In general, a 

function ρ is a metric function if it has the following three properties: 

• For any pair x and y, ρ(x, y) = 0 implies x = y; 
• ρ(x, y) ≥ 0 for any pair x and y; 
• For any x, y, and z, ρ(x, y) + ρ(y, z) ≥ ρ(x, z). 

If I and x are vectors with n elements, the absolute value metric 

   ρ(I, x) = |I1 – x1| + |I2 – x2| + . . . + |In – xn| = |I – x| 

is a valid metric function. It is easily verified that the simple Instar network of figure 16.3 

generates this metric function, and so we will use the absolute value metric as our biologically 

plausible measure of the "distance" between I and x1.  

Under the simplest form of adaptation – the IAR managed locally by R(1) – success depends on 

v2 developing a 0-1 distribution at its outputs. Although we are not yet considering adaptation 

dynamics, the parameters of the system have been chosen to produce this type of coding. With N 

nodes in v2, R(1) can classify at most N distinct categories. We will begin our examination by 

seeing how R(1) performs this task given weight settings that are exact copies of the T, J, and X 

patterns, and how it responds to the unclassified pattern O. As we will be applying patterns in a 

sequence of T → J → X → O, our first simulation series will be called the TJXO series.  

TJXO1. Let the TJXO pattern sequence be corrupted by uniformly distributed random noise 

over a range (0, 0.02) relative to unit pixel amplitudes in the pattern. The noisy signal passes 

through GN(2) and the normalized input is applied to v1.  Figure 16. 4 shows the excitation, v2, and 
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Figure 16.4: Response of R(1) to the TJXO sequence with upper noise bound of 0.02. The patterns were 

applied at the iteration steps indicated by the T, J, X, and O arrows in the mismatch metric trace. The total 
input pattern, including noise, was held constant through the duration of its application period. 

the absolute value mismatch metric. The first thing we note is T and J were correctly classified 

quickly, and the low mismatch value attained indicates the pattern in v1 was well matched to the 

input patterns I in both cases. Some degree of mismatch is to be expected because v1 will quench 

the low-valued noise pixels and transfer their excitations into the pattern pixels. We may also note 

that the transition from T to J input is quite obvious from the spike in the mismatch at time index 

500. We may also note from the top traces of the total excitations x(t) that v1 rather quickly 

settled into a stable distribution, but that v2's response is considerably slower and had not leveled 

off by the time the transitions from T to J and from J to X took place.  

Next we note that although X was eventually classified correctly with a low amount of x1 

mismatch, it took much longer for R(1) to reach its decision. x22 ("J") and x23 ("X") competed for 

about 1000 iteration steps before x23 finally won out. It took over three times as long to settle this 

competition as it did for the system to switch from T to J. Not until time step 2000 did x23 take 

over definitive classification of the X pattern. Recall that X shares two common features (pixels) 

with the predecessor pattern J. The classifier had difficulty in "deciding" if it was "seeing" pattern 
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Figure 16.5: Replication of the first TJXO simulation with different noise patterns. Only the specific noise 

patterns varied in this run. R(1) fails to correctly classify the X pattern. 

J or pattern X. One might suspect that this "longer, harder" competition is a symptom of lack of 

robustness to extraneous noise, and as we will see in a moment, this suspicion is justified. Finally, 

we note that R(1) could not decide on pattern O with both x22 and x23 active. In this case, layer v1 

locked into a 0-1 final distribution with the "surviving" v1 pixel being a common feature of both J 

and X.  

Figure 16.5 shows the results of repeating the first simulation with new random noise values. 

The previous suspicion about lack of robustness is confirmed in this run. R(1) fails to classify the 

X pattern in this run. The cause of the failure was run-away quenching of the X pattern by v1 over 

the course of the competition. What survived in the v1 pattern was again a pixel common to both J 

and X. This is our first look at a performance property of R(1) that will assume some significant 

importance, namely the effect of contrast enhancing and quenching v1 will perform on its input 

pattern. Figure 16.6 illustrates the v1 STM at iteration indices 2000 (when category "J" begins to 

overtake category "X") and 2999 (just before O is applied). Figure 16.6A clearly shows the 

severe amount of contrast enhancement that has taken place at step 2000. The X pattern is still 

faintly visible, but the two dominant pixels are features in common with J. The near erasure of the 
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A               B 

Figure 16.6: v1 STM pattern at iteration steps 2000 and 2999 for TJXO series number 2. 

majority of the X features at time step 2000 (A) – which is what is meant here by the phrase "run-

away quenching," – will become a total erasure by time step 2999 (B) except for the lone 

remaining dominant pixel. 

Why did category J win out over category X in this simulation despite the X-pattern silhouette 

in 16.6(A) and the x23 > x22 state at step 2000? There are two things to consider here. First, our 

use of the Heaviside step function for h2 negates any amplitude advantage one x2j node might 

have over another. With the Heaviside step function activation, activation is all-or-nothing. So far 

as the feedback to v1 is concerned, K is as much determined by x23 as it is by x22. The second 

thing to consider is what was said earlier about uniform or uniform-like inputs to v1 reducing its 

STM. With the Heaviside step function h2, the total feedback-plus-input is "more uniform-like" 

than either X or J alone would be. We can observe from the top trace of figure 16.5 that x(t) for v1 

is constantly on the decline all during the x22-x23 competition. Now recall also the theorems from 

chapter 15. As the lesser pixels decline in their Xi normalized amplitudes, the largest pixel will 

increase in its Xi amplitude. This appears to be the basic mechanism behind the excessive contrast 

enhancement dynamic in figures 16.5 and 16.6. The Heaviside step function is a poor choice for 

h2 and leaves the system open to undue influence by very small amounts of pattern noise. 

Replacing the Heaviside step function for h2 with the Heaviside extractor, which you will 

recall preserves amplitude information for x > 0, makes a difference that may seem utterly out of 

proportion. Figure 5.7 illustrates a repeat of sequence TJXO under the same conditions except for 

the activation function h2. Pattern X is easily and quickly classified by R(1). The decision 

dynamics are robust and x22 (category "J") is driven to zero by the stronger "X" feedback signal. 

Figure 16.8 illustrates the STM patterns in v1 at the end of the J-pattern application period and in 

the middle of the X-pattern application period. No excessive contrast enhancement occurs.  
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Figure 16.7: Replication of sequence TJXO using the Heaviside extractor function for h2, noise = (0, 0.02). 

  
A               B 

Figure 16.8: v1 STM patterns just prior to pattern X application and at iteration step 2000.  

As for pattern O, it is eventually classified as a "J" pattern. Interestingly, though, the residual 

STM in v1 is a diminished O pattern roughly two-thirds the amplitude of 16.8B's pattern and 

about half as much as 16.8A. This is why the mismatch metric at time index 5000 in figure 16.7 is 

so small. O shares more common features with J than with either other classifying vector, and this 

is why v2 classifies it as a J.  
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Figure 16.9: Noise-induced contrast enhancement (NICE) in a TJXO sequence. 

There is another nonlinear noise effect present in R(1). The previous examples have all been 

run at relatively modest noise levels, uniformly distributed in the range (0, 0.02). At higher noise 

levels it is readily observed that pattern noise exerts an effect on the formation of STM in v1. This 

effect is called noise-induced contrast enhancement or NICE. Despite the acronym, it is not a 

"nice" effect. We recall that IAR processing in its simplest form is fundamentally aimed at 

driving the classifying vectors to equal their prototype pattern models. When excessive amounts 

of contrast enhancement occur in v1, this contrast enhancement will lead to a distortion of the 

classifying vectors.  

The effect is exhibited modestly in figure 16.9 and more graphically in figure 16.10. The noise 

level for this simulation was set to the range (0, 0.20), a factor of 10 increase in the range of the 

pattern noise. Indications of NICE are seen in figure 16.9 in the droop in x(t) for v1 in the first 

1000 iteration steps, and even more clearly in the rise of the mismatch metric in this same 

interval. The effect is shown explicitly in the STM1 plots of figures 16.10.  

Because NICE is a nonlinear noise effect, there is a great deal of variability in the extent of the 

effect when the system operates in a NICE region. Figures 16.11 and 16.12 illustrate the effect at 
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Figure 16.10: STM1 showing extent of contrast enhancement for each pattern. (A) T-pattern at step 999. (B) 
J-pattern at step 1999. (C) X-pattern at step 2999. (D) O-pattern at step 4000. 

 
Figure 16.11: NICE effect in a TXJO pattern sequence. Note the sharp rise in mismatch metrics for the T 

and J patterns as well as the corresponding droops in x(t) for v1.  
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Figure 16.12: NICE STM patterns corresponding to figure 16.11. (A) J-pattern. (B) X-pattern. (C) J-pattern. 
(D) O-pattern. These STMs are sample just prior to the next pattern application except for the O-pattern. 

the same noise levels for a TXJO pattern. Note especially in figure 16.11 how NICE during the T 

pattern interferes with the subsequent processing of the X pattern, and how pronounced the NICE 

curve becomes for the J pattern. The corresponding STM plots for each pattern are shown in 

figures 16.12. These may be compared with their pattern-counterparts in figures 16.10. 

For noise uniformly distributed from 0 to r the expected value of the noise in each pixel is r/2 

and the mean-squared value per pixel is r2/3. Thus, the average pattern noise power is nr2/3. The 

signal power is the sum of the squares of the pixel amplitudes, which is 6 for the T and J patterns 

and 9 for the X pattern. For r = 0.20, this corresponds to a signal to noise ratio (SNR) arriving at 

the input of GN(2) of 12.55 dB for T and J, and 14.3 dB for X. In contrast, for r = 0.02 the signal 

to noise ratios are 22.6 dB and 24.2 dB, respectively. Lower SNR implicates a greater spread in 

the Xi values being processed in v1. We recall from Grossberg's theorems in chapter 15 that 

whether the response of a contrast enhancer will result in a fair distribution or a contrast 

enhancing distribution depends on the initial spread of Xi values and the quenching threshold 

factor QT1 = u1
(1)/(B1 – A1/gmax1). Raising QT1 therefore will combat the onset of NICE.  
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Figure 16.13: Effect of raising QT1 on NICE effect for TJXO pattern sequence. 
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Figure 16.14: STM patterns corresponding to figure 16.13 achieved by increasing QT1. 

Figures 16.13 and 16.14 illustrate the effect of raising QT1 by increasing A1 from our base 

value of 0.5 to a new value of 0.8. u1
(1) remains at 0.85. The effect is a dramatic decrease in NICE 
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for the noise distribution range (0, 0.20). Compare these results against figures 16.9 and 16.10.  

To summarize where we are so far, we have seen that the choice of feedback activation 

function h2 exerts an important effect on the dynamics of the system. We have compared the 

Heaviside step function against the Heaviside extractor and found the latter to be preferable in 

R(1). We have seen that the competition between v2 nodes in establishing a resonance benefits 

from allowing the amplitude information in v2 to act as a selection mechanism. We have 

examined the performance of R(1) as a classifier at high SNR levels and seen that it performs this 

task quite well. Finally, we have examined the nonlinear phenomenon of noise-induced contrast 

enhancement, found this to be a serious impairment at low SNR levels, and seen that the effect is 

combated by increasing QT1. In our specific example, this was done by raising A1 to 0.8B1 from 

our starting value of 0.5B1. We henceforth adopt these changes in our example system.  

Feedback Gain. Up to this point, we have said nothing about the feedback gain factor γ. This 

parameter plays an important role in determining the dynamics of the system. For instance, in all 

our previous examples we have observed v2 to produce 0-1 distributions for patterns 

corresponding to its classification vectors. However, the value for D2 is D2 = B2, a level which in 

chapter 15 produced only a contrast-enhanced fair distribution and not a 0-1 distribution in CL(2) 

(see figure 14.22A). This difference between R(1) and CL(2) is caused by the feedback.  

The feedback gain must be large enough so that, in conjunction with the magnitude of the 

weight settings zji, it supports persistence in STM1 in the presence of an unchanging input pattern 

I1 but, at the same time, promotes decay in STM1 when a new input I2 arrives that "belongs" to a 

different classifying vector Wj. If γ is too small, it will fail to promote resonance in R(1). But if it is 

too large, it will prevent R(1) from properly responding to new inputs and instead push it into a 

"lockup" condition with the two STM patterns "stuck" on whatever initial input produced them. 

The effect is illustrated in figure 16.15 for a TJXO pattern with γ = 0.50, a tenfold increase over 

the example system's base value of 0.05. Observe that the system had difficulty in switching from 

the T-pattern input to the J-pattern input (two well-separated patterns), and that the system failed 

completely to switch from the J to the X when that pattern arrived. Observe how the X-weight 

node x23 never responded at all to the X input.  

Fortunately, the range of values for γ is rather broad and its precise setting does not seem to be 

particularly critical for proper system operation. In the example system the pattern weights are of 

unit length, meaning, for example, that the non-zero zji weights for the T-vector are 1/(6)½ = 

0.408. Typical x2j values appearing in the signal traces are about 0.4 peak, and so γ = 0.05 yields a 

per-pixel feedback signal amplitude of about 0.008. This compares to I1 per-pixel values on the 

order of about 0.04 after the pattern has passed through GN(2), a 5:1 ratio of input to feedback.  
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Figure 16.15: Effect of too-large feedback gain on R(1). Note the difficulty with which the system switched 

from the T to the J pattern, and its inability to recognize the X pattern. The O pattern was entirely overridden 
by the J-weight feedback, producing a J-pattern in STM in place of the O-pattern input. 

§ 4. Resonator 1 Dynamics with Continuous-valued Input Patterns 

Operating as a pattern categorizer with fixed weights and in the absence of noise, R(1) is 

remarkably robust to flat changes in pattern amplitudes, i.e. equal scaling of each pixel value. 

Figure 16.16 illustrates the example of a T-X-T-X pattern sequence in which the pattern 

amplitude of the T pattern is 1 and the pattern amplitudes of the two X patterns are 0.5 and 0.01, 

respectively. Both X patterns are successfully reproduced in v1 STM (figures B and C) with a 

mere 4:1 amplitude difference (despite the fact that the X inputs going into GN(2) had a 50:1 

difference). The first X pattern was successfully recognized by v2. The smaller of the two X 

patterns was not successfully recognized (v2 was mildly "bewildered" as shown in A) but the x23 

("X") signal did come out much stronger than the other two. Other than for an additional delay in 

the activation of x23 following the application of the X patterns, the resonance characteristics 

showed little pattern-to-pattern variation. 

If one thinks about this a little, this is a fairly remarkable accomplishment for R(1). How did 

these things happen? There are several factors at work here. Let us begin with the actions of GN(2) 
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Figure 16.16: STM1 patterns for X-pattern of amplitude 0.5 (B) and 0.01 (C). Signal traces are shown in (A). 
There is good reproduction of the STM, other than for an amplitude drop. The second X pattern was not 

cleanly encoded, as shown in (A), although x23 did have the largest amplitude of the x2j variables. There was 
no pattern noise applied in this simulation. Note that although the two X pattern inputs differed in amplitude 

by a factor of 50:1 going into GN(2), the STM amplitude difference is only about 4:1. 

normalization. Here we apply equation (14.12). If the non-zero pixel amplitudes have amplitude a 

then for the X pattern the total signal activity is G = 9a (there are 9 non-zero pixels in X). For the 

non-zero pixels the relative amplitudes are ωi = 1/9. Using B = (n – 1)C, we rewrite (14.12) and 

obtain  
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We have B = 1, A = 0.5, and n = 25 for our GN(2). For a = 0.5, this gives us xi = 0.0667. For a = 

0.01 we get xi = 0.0113. What was a 50:1 amplitude ratio going into GN(2) is only a 5.9:1 ratio 

coming out. The Grossberg normalizer takes large amplitude spreads and compresses them into a 

much smaller range.  

Next let us consider the absence of sequence interaction. Why did the STM set up by the large 

T pattern not overwhelm the smaller incoming X patterns? The reason is because of the 

quenching threshold dynamics of v1. At the feedback level we are using, feedback from v2 is not 

sufficient to sustain STM1 when the input pattern changes significantly. Thus, STM1 begins to 

decay, and it takes the x2j values with it during its decline. Thus, with a Heaviside extractor 

activation function for the feedback, the feedback signals Kji likewise fall. This is why the prior T 

activity could not block the smaller X activity from initiating a new STM. This can clearly be 

seen in figure 16.16A. It is true that the amount by which x21 must decay before x23 can "take 

over" is larger for larger amplitude differences between the T and X patterns. This is what causes 

the small increase in the time required for x23 to become active in 16.16A. But once it does, the 

resonance quickly develops and R(1) takes itself into the new X state in its STM patterns.  

Next we note that the X pattern in STM1 does not contrast-enhance. This is because the final 

distribution dynamics in a Grossberg CE layer (which is what v1 is) do not depend on absolute 

individual signal amplitudes but, rather, on the normalized amplitudes Xi = xi/x. This is why per-

pixel signal amplitude does not affect the development of STM1 in the absence of noise. 

Why did v2 fail to cleanly categorize the smaller X pattern? This is because the final v2 

distribution pattern does depend on total activity x(t), which is smaller for the small X pattern. 

Instead of contrast-enhancing the pattern into a 0-1 distribution, the v2 layer was only able to 

produce a partially contrast-enhanced output for its x2j variables. We saw this same thing in some 

of the examples from chapter 15.  

Unfortunately, this happy state of affairs does not maintain when pattern noise is present. If 

we make the usual assumption that pattern noise is statistically independent of the patterns, 

pattern noise does not drop in amplitude along with the input pattern. The result of this is, as you 

perhaps have already realized, noise-induced contrast enhancement (NICE) as a function of input 

pattern amplitude. We will call this amplitude-induced contrast enhancement or AICE.  

Figure 16.17 illustrates AICE in a TXTX sequence. In this simulation the noise distribution is 

(0, 0.20), the T pattern has amplitude 1 in its non-zero elements, and the X pattern amplitudes are 

0.5 and 0.1, respectively.  
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Figure 16.17: TXTX sequence with pattern amplitude sensitive NICE (AICE). The T pattern amplitudes are 
1.0. The X pattern amplitudes are 0.50 (B) and 0.10 (C). The pattern noise distribution is (0, 0.20). The 

contrast enhancement distortion in (B) is not severe enough to affect pattern categorization. The AICE in (C) 
produces a coding failure. 

We have so far considered only input patterns with underlying pixel values of either 1 or 0, or 

patterns that are merely scaled versions of these. These kinds of patterns are typically called 

"binary" patterns because a pixel is either "on" or "off". It is true enough that contrast 

enhancement and additive noise produce continuous-valued pattern signals, but the terminology is 
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Figure 16.18: Analog pattern definitions. The label under each figure will be used to identify the pattern in 
the simulations. The new patterns are not contrast-enhanced. Their underlying pattern is defined as shown. 

the same nonetheless. We now turn to consideration of patterns with continuous-valued 

underlying pixel definitions. These are commonly called "analog" patterns. Figure 16.18 

illustrates several such patterns we will define and use in the next series of simulations. For ease 

of comparison, the figure sets these new "analog" patterns against their "binary counterparts" we 

have been using so far.  
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The significance in introducing analog patterns lies partly in the phenomenon of fine 

discrimination and partly in its opposite, generalization. As an example of the first, if you know a 

pair of "identical twins" it is possible and common after a short while to be able to tell one from 

the other by noting subtle differences that exist in their appearances, while other people, who do 

not know them, cannot tell them apart. Examples of the second are provided by any general class 

of identifications such as "man", "dog", "automobile", etc. These sorts of feature distinction and 

object assimilation are what analog patterns such as those above are used to model. Our next 

topic, then, is how R(1) performs when given subtly different yet distinct input patterns. As we are 

about to see, contrast enhancement effects (NICE and AICE) are important impairments in 

classifying analog patterns.  

We will begin with generalization. In our first example R(1) is presented with a pattern 

sequence T3-X1-X2-T3 with the fourth pattern scaled to one-half the magnitude of the first. We 

assume moreover that no pattern noise is added. Figure 16.19 gives the trace results of the 

simulation. Despite the differences between these patterns and the baseline patterns stored in the 

weights W and Z, the system has no problem in properly classifying the patterns.  

 
Figure 16.19: Simulation traces for T3-X1-X2-0.5T3 sequence. The system successfully classifies all four 

patterns. 
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Figure 16.20: STM1 patterns at time indices 999, 1999, 2999, and 4000 for the T3-X1-X2-0.5T3 simulation. 

Now consider the patterns developed in STM during this simulation. These are illustrated in 

figure 16.20. Comparing these plots to the original patterns in figure 16.18, we see that significant 

contrast enhancement has been performed on the patterns. R(1) has thus not only generalized the 

patterns according to its classifying vectors, but has done so despite this contrast enhancement. 

This illustrates the ability of the network to generalize. But why has such radical contrast 

enhancement occurred?  

The mechanism is, of course, the same as that which underlies NICE and AICE and is found 

in Grossberg's contour-enhancement theorems of chapter 15. Indeed, one interesting way to look 

at an analog pattern A is to regard it as a scaled version of the sum of a binary pattern B plus a 

noise pattern N such that A = s ⋅ (B + N)/|B+N| where s is some scale factor. By making N 

sufficiently large, "missing pixels" – pixels of level zero in A that are non-zero in B – can be 

approximated by letting N have a zero-value in that pixel location. From this way of looking at 

things, contrast enhancement of analog patterns can be viewed as another species of NICE.  

Since R(1) successfully decoded the pattern in the example above, is this contrast enhancement  
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Figure 16.21: Simulation results for T3-X1-T1-T3 sequence with noise (0, 0.10). R(1) fails to discriminate 

between patterns T1 and T3 in the first and fourth locations. 
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Figure 16.22: STM patterns for the T3-X1-T1-T3 pattern sequence simulation. 

really a problem? The answer is "no" if we consider only the generalization problem, and "yes" 
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when we come to the fine discrimination problem. Suppose we wish to discriminate between 

patterns T1 and T3, and to this end we replace the classifying vector for J in R(1) with a 

classifying vector T3. Figure 16.21 gives the results of simulating a sequence T3-X1-T1-T3 in the 

presence of additive pattern noise drawn from a uniform distribution over the range (0, 0.10), and 

figure 16.22 illustrates the STM patterns for the simulation.  

R(1) is unable to categorize the initial T3 pattern, producing x21 and x22 activations of almost 

the same magnitude. Comparing 16.22A against the T patterns of figure 16.18, we see that the 

contrast-enhanced STM differs from both. In one sense it is a "blending" of both patterns, which 

is easy enough to understand from figure 16.21, where we see both classifying vectors 

contributing in nearly equal amounts to the feedback vector K. But the STM pattern is by no 

means merely the average of the two patterns; it has been contrast enhanced and not simply 

summed and scaled. The final result is, in a sense, as much like classifying vector T1 as it is for 

T3. 

R(1) successfully classifies X1 – where its task in this case has been merely generalization – 

and it correctly classifies T1, which has undergone only relatively modest contrast enhancement 

due in part to the additive noise and in part to some initial feedback contributions from the T3 

classifying vector (see figure 16.21). But it completely errs in classifying the final T3, mistaking 

it for a continuation of T1. Figure 16.21 shows that the T3 classifying vector is never even 

brought into play. The reason for this is easy to understand: the abolition of STM when inputs 

change is based on the new pattern producing a more uniformly distributed excitation of v1. T1 

and T3 are simply too much alike for the latter to abolish the STM left over from the former.  

Would R(1) have performed better on this simulation if there had been no noise? The answer is, 

"no, it does not perform differently in any significant way." There are limits to what the basic 

ART resonator network can do by itself.  

§ 5. Resonator 2 

Historically, resonator 1 is the oldest of the published ART resonators. It is not, however, the 

only kind of ART resonator. In this section we will look at a simpler but still very effective ART 

resonator. We will call it resonator 2 (R(2) for short).  

In R(1) layer v2 does make some modest contribution to contrast enhancement of STM1, but the 

majority of NICE effects are due to the lateral feedback connections in v1. This implies that NICE 

can be reduced if these connections are removed. R(2) does just that, replacing v1 with a non-

recurrent layer of the form 

   ( ) ( ) −+ ⋅+−⋅−+⋅−= iiiiii JxDJxBxAx 1111&             (16.4) 
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where we continue to use our convention that x1i actually denotes h(x1i), where h is the Heaviside 

extractor activation function. Ji
+ is the total excitatory input to node i and Ji

– is the total inhibitory 

input to node i. In the v1 layer of R(2), neither of these terms contain any contribution from v1 and 

so v1 is, except for its Heaviside extractor activation function, a linear network for all x1i with 

activity > 0. NICE is an inherently nonlinear effect, and this is why this new v1 layer does not 

contribute to it. We will see that the remaining residual NICE contributed by v2 is much smaller 

than the magnitude of the effect in R(1).  

When the two J terms are zero, (16.4) tells us x1i will undergo an exponential decay to zero at 

a rate determined by A. A is often called the neper frequency and its inverse is a time constant, τ. 

With some simple algebraic manipulation, we can rewrite (16.4) as 

   ( ) ( ) −+ ⋅+⋅−⋅−⋅+−=⋅ iiiiii JxDJxBxx 1111 τττ & . 

Now, if τ is very small, the transient response of this system will be much faster than that of the 

v2 layer and v1 will reach its forced response while v2 is still reverberating. Setting the derivative 

equal to zero (the forced response condition if v1 responds much faster than both v2 and the input 

signal rate) and solving for x1i we obtain  
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We will use (16.5) as our model equation for v1 in R(2). We will designate the Instars in this layer 

as SNI(4).  

It still remains to define the two J signals. For Ji
+ we use (16.1) and obtain 

                   (16.6) (∑
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which is the same excitation used by R(1). Here h2 is the Heaviside extractor. For Ji
− we use 

    .                   (16.7) (∑
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1
22

Expression (16.7) is called a non-specific activity in ART terminology. Its employment in 

(16.4,5) is called a non-specific inhibition [GROS6, 16], [CARP2]. In the anatomy of R(2), the 

term B3 ⋅ Ji
− is also called an attentional gain control because it exerts an effect by which v1 is 

influenced differently by input signals I than by v2 excitatory feedback signals K. Replacing v1 by 

the system defined by equations (16.5)-(16.7) gives us the system depicted in figure 16.23. 
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Figure 16.23: Resonator 2 system. 

The behavior of this anatomy is illustrated in the following simulations. In these simulations 

we use GN(2) for the normalizer and the same v2 layer as used for the R(1) simulations. The 

parameters for these subsystems remain unchanged from their previous values. For the v1 layer 

the parameters are: (1) τ ⋅ B = 1; (2) τ = 0.001; (3) B3 = µ ⋅ γ  with µ = 0.5 and γ (the feedback 

gain for K from v2) equal to 0.05 as in R(1).  

 
Figure 16.24: Standard TJXO sequence for R(2). The input parameters for this test sequence are the same 

as used previously in the first R(1) examples. All patterns have the same relative weighting. The additive 
pattern noise distribution is (0, 0.20). The network correctly classifies the T, J, and X patterns. There is very 

little NICE in STM1. Pattern O is misclassified and its STM1 is recognizably the O pattern. 
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The first simulation is a repeat of the TJXO series we first used to examine R(1). Figure 16.24 

provides the signal traces for this simulation. Acting as a classifier, the performance of R(2) is 

equivalent to that of R(1) for the known patterns, and more or less the same for the unknown 

pattern O. The same continues to hold true for the other pattern tests used earlier. The differences 

between the two resonators shows up in STM1. We may first note that although v1 has a very fast 

response to signals (as it should), the total amount of time to process the incoming signals is not 

significantly different from that of R(1); layer v2 dominates this aspect of the system dynamics. 

The biggest difference is the near-total lack of contrast enhancement distortion (NICE) in STM1. 

Almost all the pattern distortion in STM1 is directly due to the additive pattern noise itself, which 

is to be expected. This point will be demonstrated in the next simulation, where the performance 

advantage of R(2) in regard to NICE is more graphically illustrated. STM1 plots are not presented 

for the present simulation because, quite frankly, they are boring. The T, the J, and the X come 

out looking like T, J, and X with all background noise squelched and only a small amount of 

additive noise visible in the pattern pixels. This is demonstrated by the mismatch metric in 16.24.  

Our second simulation is a T3-X1-T1-J sequence (all patterns equally weighted) with pattern 

noise distribution (0, 0.20). This test is almost identical to the simulation of figure 16.22, with the 

use of the J pattern at the end being the only difference of consequence. Figure 16.25 shows the 

signal traces for this simulation, and figure 16.26 provides the STM1 patterns. 

Looking first at figure 16.25, we observe that all four patterns were properly classified by R(2). 

Like R(1), R(2) is incapable of distinguishing the alternative T and X patterns given weights that 

are exact copies of these patterns. The mismatch metric is significantly less than for R(1), which is  

 
Figure 16.25: Signal traces for T3-X1-T1-J pattern sequence. R(2) correctly classifies all four patterns. 
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Figure 16.26: STM1 plots for the T3-X1-T1-J sequence. Note that there is very little distortion of the STM 
patterns. Comparison of these patterns with figure 16.22 demonstrates that NICE is suppressed by R(2) 
leaving primarily additive pattern noise distortion only. Close examination of the numerical results of the 

simulation shows that some NICE does persist, but it is negligible compared to the additive pattern noise. 
Note also that the noise in this simulation is twice the amplitude of that used for figure 16.22. 

a reflection of the absence of NICE effects in R(2). It is to be noted that the additive pattern noise 

distribution for this simulation is twice the amplitude of that used previously in the R(1) example 

simulation.  

Next we examine figure 16.26. Comparing this figure to figure 16.22 from the R(1) simulation, 

we can easily see the dramatic improvement in preserving the input pattern in STM1 realized by 

R(2). Again, this better copy-fidelity is despite the fact that twice as much pattern noise was added 

prior to GN(2). Other simulations, corresponding to figure 16.21, show that the failure of R(2) to be 

able to make the fine discrimination between, say, T3 and T1 is not due to the STM but, rather, to 

the settings of the weights themselves. As we will see in chapter 17, the fine discrimination 

problem is fundamentally a problem Carpenter and Grossberg call the subset-superset problem 

[CARP2]. Its solution is intimately tied in with the solution of the stability-plasticity issue in 

adaptive neural network systems. This is something we take up in chapter 17. 
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§ 6. Summary 

This chapter has introduced two basic resonator networks of the sort commonly used in ART 

network system models. By themselves, these networks do not yet constitute a full ART system. 

They are resonators, but we have not yet made them adaptive resonators. We will see in the next 

chapter that adaptation, methods to address fine discrimination, and the stability-plasticity 

problem require additions to the network system for controlling the adaptation process itself.  

In this chapter we have given our attention to the basic resonance dynamics in play in minimal 

ART resonator networks. The theory presented here is largely comes from Grossberg's 1976 

paper [GROS6], which preceded the first artificial ART network, ART 1 [CARP1], by almost a 

decade. As mentioned at the beginning of this chapter, our focus in this text is biological signal 

processing and computational neuroscience rather than engineering applications of ART. 

However, the material presented here should be of great help to those interested in engineering 

neural networks, and in helping to understand some of the thinking that goes into the classic ART 

papers of Carpenter and Grossberg.  

Exercises 

1. x 
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