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ART Networks 
 

§ 1. Basic Anatomy of an ART Network 

With this chapter we arrive at what is in many ways the pinnacle of theoretical neuroscience in 

regard to large scale neural network systems as it stands today: the ART network. Figure 17.1 is 

the block diagram representation of the general network anatomy we consider in this chapter. It 

consists of an afferent convergence port, GN(2), two ART resonator fields, F1 and F2, and a control 

network system, which we will call the attentional/orienting sub-system.  

It is appropriate to mention here at the outset that the terminology we will be using here differs 

slightly from the standard terminology found in the archival literature on ART. The standard 

terminology is the product of Grossberg's theory of embedding fields [GROS2-3,16,18], and the 

main difference is that the resonator subnetwork is there said to be part of an attentional sub-

system. Insofar as one is speaking of psychological function the standard terminology is wholly 

proper. But in this text it is pedagogically desirable to make a distinction between data path signal 

 

Figure 17.1: Basic anatomy of an ART network. In this textbook a terminology distinction is made between 
the resonator F1↔F2 and the attentional/orienting subsystem. In the standard ART literature the resonator is 
regarded as belonging to an attentional subsystem. The distinction drawn here is made in order to cleanly 
separate data path function (resonator) from adaptation control function (attentional/orienting subsystem). 
Thick lines in the figure denote vector signals. Thin lines denote scalar signals. Signal processing efferents 
(outputs) of the system would typically be taken from F2. Control pathway inputs and outputs are made via 

the attentional/orienting subsystem. Normalizer GN(2) operates as a convergence network for afferent inputs. 
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and control path signal functions, and this is why the non-standard terminology is adopted here.  

The data path signal processing carried out in the F1-F2 resonator does serve to support what 

one may call an attention function from the perspective of psychology inasmuch as it is in the 

resonator where some signals are "ignored" (quenched) and others are "attended to" (enhanced), 

but this goes merely to the matter of what is being "attended to" and what is being "ignored." The 

control function, on the other hand, is the mathematical mechanism determining the form of what 

one can call "the attention function" at the local scale of the network. Aside from this mild 

difference in points of view, everything we will discuss in this chapter is isomorphic to the 

standard treatments of ART networks and remains faithful to Grossberg's theory.  

The previous two chapters have presented the details of all but the attentional/orienting 

subsystem and the mechanics of adaptation. Our primary task in this chapter is to supply those 

details yet to be explained. After this task has been completed the reader will find he can draw 

new box boundaries in a more detailed block diagram and recover the "boxes" as they are usually 

presented in the archival literature.  

§1.1 Concepts of Embedding Field Theory 

It is a common if lamentable habit for papers on neural network theory to present the form of 

the neural network system being discussed with little more than a vague statement to the effect 

that "such and such corresponds to this or that anatomical brain structure." Little or, more often, 

no real justification is given for why this alleged correspondence should be regarded as actual. 

Often the "justification" seems little more than "in the brain the forward data path goes through 

this structure first and that structure next." Why the particular mathematical forms of the layers in 

the network system were put together in the specific ways they are often seems more a matter of 

mathematical or computational convenience than of biological or psychological fidelity. Those in 

neuroscience who are skeptical of the usefulness of neural network theory – and there are many – 

sometimes level the criticism that mathematical neural networks are little more than fancy curve-

fitting exercises and/or that they lack the depth of cumulative research. The neural networks 

presented in the theoretical literature often have more of the flavor of being inventions than 

discoveries. Lamentably, this criticism is true more often than it is not. But informed criticism of 

this sort cannot in fairness be leveled at ART models and networks. In this section we discuss 

why this is so. The reader will find that one important fruit of this discussion is a deeper 

understanding of and appreciation for the meaning Grossberg's terminology. It is through the 

window of this meaning that one can see the connection between ART constructs and neuro-

science.  
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The foundations of adaptive resonance theory were laid down in the years from 1969 to 1976. 

Arguably, the most important chapters in this development are found in [GROS2-3,5-7,11-

14,16,18-20]. We will not review the entire theory of embedding fields in detail here. That would 

be quite a lengthy undertaking. Nonetheless, it is important to know something of the flavor of 

this theory and the long road Grossberg took in developing it.  

When one remembers ART networks describe very large scale neural systems, it will come as 

no surprise that ART's foundational starting point is psychology and psychological phenomena. 

One of the key stepping-stone-to-ART papers begins with the words,  

 This paper describes a psychophysiological model aimed at discussing how animals pay 
attention to and discriminate among certain cues while ignoring others, based on criteria of 
relevance derived from past experience or innately preprogrammed in their neural apparatus. 
The model builds on previous results . . . that introduce some psychophysiological mechanisms 
of classical and instrumental learning, and of pattern discrimination. These results include 
network mechanisms of drive, reward, punishment, serial learning, arousal, expectation, and 
various perceptual constancies . . . This collection of mechanisms comprises the theory of 
Embedding Fields.  

 A central theme in the present model will be that two systems are continually readjusting each 
other. One system (an attentional system) strives toward an ever more stable response to patterns 
of fluctuating cues by focusing attention on important subclasses of cues. This system is 
incapable of adapting to unexpected environmental changes. The second system (an arousal 
system) overcomes the rigidity of the attentional system when unexpected events occur, and 
allows the network to adapt to new reinforcement contingencies [GROS16]. 

The last paragraph quoted above gives us the reason why a psychological perspective regards 

the F1-F2 resonator as part of the attentional subsystem. The resonator is "rigid" insofar as its 

basic dynamics are concerned and in the sense that, left entirely on its own, it succumbs to the 

problem of the stability-plasticity dilemma. The arousal system – which is commonly called the 

orienting system in later ART network papers – is the mathematical mechanism by which the 

stability-plasticity dilemma is addressed by ART. Embedding field theory recognizes two general 

classes of signal activities. Specific activities concern the details of specific signal patterns 

(vectors). The individual components of x1 and x2 are examples of specific activities when they 

specifically target distinct inputs to SNI maps. Nonspecific activities are those which involve 

signals that target multiple SNI maps without discrimination. The nonspecific inhibition (15.7) 

and attentional gain control pathway of figure 15.23 are examples of activities of this class.  

 [We] will suggest that the nonspecific neural activity generated by a novel event filters through 
all internal drive representations. The effect of this activity on behavior will depend on the 
pattern, or context, of activity in all these representations when a novel event occurs. Sometimes 
the novel event can enhance the effect of an ongoing drive, sometimes it can cause a reversal in 
sign (as in the frustration reaction), and sometimes it can introduce and enhance the effect of a 
different drive. We will be led to assume that every novel event has the capacity to activate 
orienting reactions, but whether or not it does depends on competition from the drive loci which 
the event also activates. The nonspecific activity generated by the novel event will also be 
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assumed to reach internal sensory representations, where it helps determine which cues will 
enter short-term memory to influence the pattern of internal discriminatory and learning 
processes [GROS16].  

We have seen Grossberg describe embedding field theory as a psychophysiological theory. 

This does not mean he dogmatically claims specific ART network structures are models of 

specific anatomical regions of the brain. (To do so would indeed have been recklessly brash in 

1975 given the state of knowledge available at the time). Nonetheless, the psychological 

functions served by different parts of a network do suggest in a general if equivocal way certain 

correspondences with known facets of the roles of general anatomical regions of the brain. He 

refers to these correspondences as mock structures.  

 The networks will contain several functionally distinct regions. The interactions between these 
regions call to mind familiar anatomical facts. It will be apparent that the network regions are 
not presumed to be exact replicas of real anatomical fragments. Nonetheless, the anatomical 
relationships between the network regions, as well as their functional roles in total network 
processing, suggest natural analogs with real anatomies. These analogs will be pointed out both 
to suggest possible new insights about the functioning of real anatomies, and to serve as an 
interpretive marker for the networks that will arise in the future from additional postulates. The 
psychological validity of formal network interactions is, however, independent of how well we 
guess neuroanatomical labels for network components at this stage of theorizing, since the 
formal anatomy is still, at best, a lumped version of a real anatomy.  

 A network region of particular interest is reminiscent of the hippocampus. This region supplies 
motivational feedback to several other network areas . . . This feedback is determined by a 
competition between channels responding to different drives. Each channel is influenced by 
sensory and drive inputs. The sensory pathways can be strengthened or weakened by reinforcing 
events ("conditioned reinforcers"). If a given channel has a prepotent combination of input from 
conditioned reinforcers and drive, it will suppress other channels using its on-center off-surround 
anatomy . . . Thus the mock-hippocampus receives input from a region that is implicated in 
reinforcement, and delivers feedback to this region. We therefore (undogmatically) interpret this 
second region as a mock-septum . . . The mock-hippocampus also supplies conditionable non-
specific feedback, in the form of late, slow potential shift, to sensory processing areas (e.g., 
mock-neocortex) of the network. This feedback, which is related to the network's arousal, drive, 
reinforcement, and motivational mechanisms, helps to determine which cues will be attended to 
by the network [GROS16]. 

In figure 17.1, the x1 pathway to F2 is a correspondent to what Grossberg above calls a 

conditioned reinforcer. The x2 pathway back to F1 corresponds to what he calls a "contingent 

negative variation" [GROS6, 16]. "Cues" correspond to the afferent pattern inputs P shown in the 

block diagram. "Drive" inputs, which are not yet depicted by figure 17.1, are inputs coming into 

F1-F2 from elsewhere in the overall system. One thing such inputs do, by stimulating x2 in the F2 

field, is provide an anticipatory biasing to F1 without also stimulating x1 into high levels of 

activity. The ability to do the one without also doing the other is a capability provided by the 

attentional/orienting subsystem of figure 17.1 [GROS6].  

 The mock-septum is influenced by a source of drive input (mock-hypothalamus) and of non-
specific arousal (mock-reticular formation). The level of nonspecific arousal is modulated by the 
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degree of unexpectedness of external events. . . Thus, although the arousal itself is nonspecific, 
its regulation can be dependent upon specific sensory cues. The nonspecific arousal filters 
through the drive-representing channels, and can either contrast enhance their activity, or cause a 
positive (negative) motivational bias to flip into a negative (positive) motivational bias. Thus 
nonspecific arousal can have specific effects on the pattern of motivational feedback. The non-
specific arousal also feeds into sensory processing areas (e.g., mock-neocortex), where it 
influences which cues will generate enough neural activity to reverberate in short-term memory, 
and thereupon be able to influence processes of learning and discrimination. The nonspecific 
arousal that is triggered by unexpected events differs from the nonspecific conditionable feed-
back that is related to network drive, reinforcement, and motivational levels. Indeed, these two 
sources can compete with each other [GROS16].  

The hypothalamus is a deep-lying subcortical structure in the cerebrum notable for its use of 

blood-born signaling chemicals (hormones), its central role in integrating autonomic and 

endocrine functions with behavior, and its control of homeostasis (body temperature, metabolism, 

blood pressure, stress responses, etc.). By likening the source of drive input in his model to the 

hypothalamus ("mock-hypothalamus"), Grossberg is indirectly telling us that the signals for drive 

representation are slow compared to timeframe of I, x1, and x2. (In [GROS20] he says this 

explicitly).  

The reticular formation is part of the brain stem and is involved with the coordination of 

reflexes and simple, stereotyped behaviors. It also contains neurons that project to almost every 

part of the cerebrum with metabotropic neurotransmitters. These projections modulate arousal, 

wakefulness, and vigilance. By likening the nonspecific signals to the "mock-reticulum" we see 

that these signals are, likewise, relatively slow signaling processes because of the slow-acting 

nature of metabotropic signaling.  

The septum is part of the limbic system, and it is thought the septum and hippocampus, acting 

together, performance a comparison function between expected and actual stimuli. Their joint 

actions are sometimes called a "stop system" and sometimes called a "needs checker" by 

motivational psychologists. The theory holds that if an actual stimulus does not match what is 

expected, or if the expected stimulus is aversive, the septal-hippocampal system immediately 

inhibits any motor behavior in the process of execution and identifies this behavior as "faulty." In 

addition, it initiates exploratory behaviors for identifying environmental stimuli associated with 

punishment, non-reward, or failure. A large fraction of cells in the septum that project to the 

hippocampus use acetylcholine as their neurotransmitters, which is another relatively slow-acting 

modulator neurotransmitter. Thus, the mock-septum, mock-hypothalamus, and mock-reticulum 

combine to implicate a relatively slow (long duration) control mechanism modulating the actions 

of the main signal processing pathways.  

 In summary, at least two major feedback loops exist in the network. One feeds between 
external sensory and internal sensory (e.g., drive) processing areas (cortex → hippocampus → 
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cortex). The other feeds within the internal sensory processing areas (septum → hippocampus → 
septum). 

 The drive representations are organized into dipoles, such that each dipole controls a positive 
and a negative incentive motivational channel; e.g., relief and fear, hunger and frustration. The 
regulation of motivational output from the dipoles, and of learning based on this output, has been 
interpreted as using two distinct transmitter systems, which are presumed to be analogous to 
adrenergic and cholinergic transmitters1 . . . The need to synchronize the activity of the two 
parallel channels in a given dipole, and to sample the resultant activity in both dipole channels, 
suggests that the two transmitter systems are also organized in parallel across the two channels 
[GROS16]. 

Grossberg's dipole terminology refers to affective opposites such as "fear and relief." It is 

widely – but not universally – accepted in psychology today that "emotions" come in pairs of 

opposites, although there is widespread disagreement over precisely which emotions pair up to 

form opposites.2 In Grossberg's theory, he refers to such things as "fear" as a "drive," which is 

one view of "what an emotion is/does" but is not a universally-accepted view. (When it comes to 

the current state of emotion-motivation theory, there is no universally-accepted model in 

psychology). In this book we will not embroil ourselves in the present-day controversies raging in 

emotion- and motivational- psychology. For our purposes, we will regard a Grossberg "drive" as 

a signal that tends to stimulate some particular behavior or action. Drive signals project to maps 

(cell populations) he calls arousal populations. In the embedding field theory, the network 

subsystems that contain arousal maps are organized into behaviorally-opposed pairs called 

dipoles. Projections from the arousal subsystem to the sensory system are called 

incentive/motivation signals.  

§1.2 Dipole Networks and Orientations 

We can see that Grossberg's model of attention, reinforcement and discrimination learning is a 

model at a high level of abstraction inasmuch as its foundation started with psychological 

phenomena and their associated behavioral consequences. His research was not aimed at settling 

controversies in psychology that embroil the theories of these phenomena, but rather was aimed 

at clarifying what the mathematical implications are for neural network systems that the empirical 

findings of psychology were reporting. Nonetheless, what emerged was a general principle for 

neurological organization in vivo. Almost everything that goes into making the transition from the 

basic resonator to a full-blown ART network can be found in [GROS16].  

The principle of the dipole network is one of the key ideas involved with control of adaptation 

                                                 
1 Adrenergic implies a neurotransmitter such as noradrenaline, which plays a metabotropic modulatory role 
in central systems. Cholinergic, of course, refers to acetylcholine as the neurotransmitter.  
2 Indeed, there is currently no agreement as to what "an emotion" even is. Reber's Dictionary of Psychology 
tells us that the different "definitions" of "emotion" are really so many different mini-theories. 
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in ART networks and holds a prominent place within what here we are calling the 

attentional/orienting subsystem of figure 17.1. As we have just seen, key parts of the 

attentional/orienting functions play out over a very different time scale than that of the data path 

signal processing in the basic resonator. This presents certain computational challenges in putting 

together network simulators, and one consequence of these challenges is that often the simulation 

of these processes is greatly simplified in ART network computer models, e.g. [CARP2]. In this 

chapter, we will likewise make such a simplification. But before we do, it is a good idea to 

understand what it is that is being represented in abstract form, and that is the goal of this section.  

The basic idea of the dipole network was developed in [GROS20] in 1972 as part of research 

into neural network mechanisms capable of reproducing observed psychological effects in 

classical conditioning experiments. The basic Grossberg conditioning network is shown in figure 

17.2 below.  Afferents C stimulating a "sensory" layer S1 are called the "conditioned stimuli" of a 

 
Figure 17.2: Grossberg conditioning network. Layers S1 and S2 are "sensory" layers of Instar/Outstar nodes. 
S2 makes Outstar projections to all the nodes in a destination layer, the M layer, originally intended to depict 
conditionable "motor" responses. S1 receives conditional stimulus inputs, C, and makes Instar projections to 
S2 and Outstar projections into one or more dipole layers. D1 is one such nonrecurrent dipole layer. A dipole 

layer receives "drive" inputs, D, and tonic biasing-drive inputs B. In [GROS20] the Outstar projections 
undergo adaptation according to an Outstar adaptation rule (OAR). Within the dipole layer, the projections 

from I1 and I2 to the "arousal nodes" I3 and I4 have elastic weights z1 and z2 which undergo short-term 
depression when the activity levels of I1 and I2 are high, and recovery from depression when I1 and I2 activity 

levels are low or zero. The I3-I4 projections to I5 and I6 create a "rebound effect" in which removal of drive 
stimulus D causes I5 to become inactive and I6 to become active, whereas application of drive D causes I5 to 

become active and I6 to become inactive. 
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conditioning experiment. Afferents D and B represent various "drive" signals, such as hunger or 

fear, that serve as the unconditioned stimuli in a classical conditioning experiment. "Drive" 

signals activate "arousal" nodes, I5 and I6, in one or more dipole layers. These project to one or 

more downstream sensory layers S2. The dipole layer is able to produce what is called a rebound 

effect in which the removal of a drive D results in a short-term enhancement of the opposite drive 

response. For example, removal of a "fear" drive signal causes a short-term "relief" rebound. 

Outstar projections from S1 into the dipole layer "learn" to stimulate the same drive response 

behavior when the conditioned stimulus C is applied thereafter. In this way, responses of layer S2 

to stimulus C become "conditioned by experience" so that afterward C becomes "associated" with 

the unconditioned drive D. Signal D is called a "phasic" drive signal. Drive signal B is called a 

"tonic" signal. "Behaviors" are represented by the projections from S2 to a "motor" layer M that 

represents "habit" responses to sensory stimuli. The work in [GROS20] was aimed particularly at 

aversive types of arousals, such as the fear-relief dipole, and so the primary response I5 projected 

to S2 with an inhibitory signal and the rebound response I6 projected with an excitatory signal. A 

drive-rebound mechanism having the nature of a positive incentive rather than an aversive 

disincentive would reverse these projections, making I5 excitatory and I6 inhibitory.  

The psychological hypotheses upon which this network is based were presented and justified 

in [GROS19]. The work in [GROS20] was aimed primarily at the rebound mechanism and the 

development of the dipole layer network. Grossberg found that in order to produce a rebound 

effect it was necessary to introduce elastic projection mechanisms in which connection weights z1 

and z2 undergo a short-term depression modulation. In the presence of zero or low activity in I1 

and I2, elastic weights z1 and z2 slowly build up to equal maximum strengths. At high levels of 

activity in I1 and I2, z1 and z2 undergo a rapid decay in synaptic strength. Grossberg draws an 

analogy between this mechanism and neurotransmitter depletion (this is what he is referring to in 

the previous quote when he speaks of "two distinct transmitter systems"). In the presence of a 

long-lasting tonic input B, z1 and z2 decay at equal rates and remain at more or less the same non-

zero numerical values. Then when "drive" D is applied to I1, the decay of z1 becomes faster, with 

the result that z1 becomes less than z2. If drive stimulus D is sufficiently large, the activity of I3 

remains higher than that of I4, with the result that I5 remains active and I6 is inhibited. But when 

drive D is small or is removed, I4 receives a higher level input than I3, causing I5 to be inhibited 

and I6 to become active until z1 builds back up to equal z2 in magnitude. This is what produces the 

transient rebound effect Grossberg was after. When z1 = z2 and activities x1 = x2 in I1 and I2, then 

in the absence of other stimuli I3 and I4 have equal activities x3 = x4 and the cross-inhibitions to I5 

and I6 keep both dipole outputs at zero.  
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The operation of this dipole layer is described by a set of eight coupled differential equations 

for the state of the dipole layer plus two output equations describing the projections from I5 and 

I6. Using lower case Greek letters to denote parametric constants, the dipole layer is described by 

the nonlinear state equation [GROS20] 
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Here Z1djS1 denotes the total Outstar excitation into I3 or I4 from the S1 layer. The activation 

function f(x) is the Heaviside extractor h(x – Γ) where Γ is a threshold. The various system 

parameters are non-negative.  

Grossberg gave some steady-state parametric bounds for the parameters of this system in 

[GROS20] but no specific numerical values. This is understandable given that the state equation 

is nonlinear and the availability of computing resources for simulation studies of such a system 

was limited in 1972. What is important for our purposes here are the following observations on 

this system.  

The first observation is that the Instars in this system are simple Instars with self-recurrent 

feedback rather than shunting-node Instars. The same is true of the Instars in S1, S2, and M. The 

inhibitory feedback an Instar supplies to itself makes these nodes a class of "leaky integrator" 

type Instar. Output projections from the Instars are made via a thresholding Heaviside extractor 

activation function.  

The second observation is that a principal nonlinearity in the state equation is produced by the 

presence of delayed x1(t – τ) and x2(t – τ) terms in the nonlinear state matrix. Recall from the 

previous section that delays of relatively long duration are implicated in the mock anatomies that 

are associated with the attentional and orienting functions of figure 17.1. The same is true for the 

conditioning network of figure 17.2 and, indeed, a more general version of this system introduces 

additional delay lags in the transmission of signals from I3 and I4 to I5 and I6 such that the 

stimulation of the dipole layer via the Outstar connections from S1 induces a delayed response 

from the dipole layer to S2. The putative physiology represented by the dipole layer is modulatory 

and metabotropic in its nature, and this implicates the introduction of signal processing delays of 
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long duration relative to the time scale of the direct data processing pathway S1-S2-M. This is 

important in preventing spurious dipole action from interfering with the normal signal processing 

carried out in the data pathway in the absence of "drive" and "conditioned response" factors.  

The third observation concerns the overall general form of the dynamics of the elastic weights 

z1 and z2. Let yi = h(xi(t – τ) – Γ) with i = 1 or 2. If we assume xi is approximately constant except 

at its onset or offset, the differential equation describing zi reduces to a linear differential equation 

with solution  

   ( ) ( ) ( )[ ] ( )[ ]( )ty
y

tyztz i
i

iii ⋅⋅+−−⋅
⋅+

⋅
+⋅⋅+−⋅= δβ

δβ
γβδβ exp1exp0 . 

When yi = 0, zi asymptotically approaches the steady-state value γ at rate β. (β has units of inverse 

time constant; it is a neper frequency). When yi > 0, the steady-state value of zi is less than γ, and 

if β ≪ δ ⋅ yi then the steady-state weight value is much less than γ. Thus the amount of elastic 

short-term depression is controlled by the δ parameter and the level of activation yi. The neper 

frequency for non-zero yi also increases, denoting that the build-up to maximum zi occurs slowly 

compared to the run-down to a depressed level of zi. Thus, a "depressed" elastic pathway remains 

depressed over a length of time determined by β following the offset of yi. Examining the dipole 

layer of figure 17.2, this tells us that the duration of the rebound signal from I6 to S2 is determined 

by the recovery time of z1 following the offset of drive D.  

How the system of figure 17.2 will react to stimulus C after conditioning depends on the state 

of the system at the time the Outstar weights from S1 to D1 undergo adaptation. If this learning 

takes place when stimuli C and D are active, such that x3 > x4, adaptation under the OAR will lead 

to an Outstar weight pattern such that subsequent activations of C will stimulate I5 and inhibit I6 

even in the absence of the drive stimulus D. However, "rebound" does not then occur upon 

cessation of C because the Outstar pathways to D1 are not elastic. Grossberg notes that to produce 

a "higher-order" rebound effect from C requires modifications to the dipole layers which 

introduce feedback from I3 to I1 and I4 to I2 in order to bring the elastic pathways into operation. 

However, he discusses this only qualitatively in [GROS20].  

§ 2. Matching and Reset in the Orienting Subsystem 
Although [GROS19-20] predated Grossberg's discovery of ART, the ideas contained in them 

turned out to be important contributing factors for solving the stability-plasticity dilemma in ART 

networks. Indeed, in "the ART paper" [GROS6], Grossberg introduced another recurrent form of 

dipole network (figure 9 of that paper). He proposed that something like this network would be 
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needed to achieve stable learning behavior in an ART resonator system while maintaining 

network plasticity sufficient to "recognize and learn" novel events in the data pathway. The 

discussion of this new form of dipole in [GROS6] was qualitative rather than quantitative, and it 

is fair to say that Grossberg's idea serves to this day in the role of an inspiration for developing 

efficient algorithms for ART networks rather than an active model. For example, the ART 1 

network of [CARP2] alludes to the existence of "dipoles" in the F2 layer, but merely models the 

end effect such a properly designed network should have on the resonator function. ART 1 then 

employs a merely mathematical function in its algorithm to mechanize this end effect, skipping 

the biological details of how this might happen in a biological ART model.  

This is a perfectly legitimate tactic for an artificial ART network to employ, and it is likewise 

a tactic that has computational advantages for neuroscience theory in modeling biological systems 

using adaptive resonance theory. However, unless one is well acquainted with ART such a tactic 

can often seem ad hoc and open to charges that the model is merely a curve fit or that it employs 

non-biological mathematical chicanery. This tends to reduce its credibility in the eyes of the 

wider neuroscience community. Our task in this section is to examine step-by-step the model 

evolution from the ideas latent in figure 17.2 to the incorporation of these ideas in the 

attentional/orienting subsystem of figure 17.1.  

The first step is very easy. The S2 layer makes Outstar projections to the M layer; the F2 layer 

of a resonator makes Outstar projections back to the F1 layer. Suppose in figure 17.2 that the M 

and S1 layers were actually one and the same. This amounts to "folding M back into S1" 

[CARP6]. If we do this and, in addition, make the straight-forward changes of making S2 a 

competitive network of shunting-node Instars, replace the simple Instars of S1 with shunting-node 

Instars, and introduce the Instar fan-in matrix W between S1 and S2, then we convert the data 

pathway of figure 17.2 into a basic ART resonator.  

The next step is not so trivially obvious. The rebounding dipole layer of figure 17.2 does not 

play precisely the same role as the orienting function in figure 17.1, but the orienting function in 

its basic operation is cast in a role analogous to that played by D1 in Grossberg's psychology 

model. It is this analogy we must examine.  

In figure 17.2 the projections from the dipole layers to S2 bear such names as "incentives" and 

"motivations" serving to arouse or inhibit the excitability of S2 in response to upstream signals 

from sensory layer S1. More specifically, the projections from the dipole field are intended to 

alter the behavior of S2 on the basis of "past experiences." The projections R in figure 17.1 have a 

similar function except, in their case, what is to be modified is the F2 response to F1 in so far as 

this modulation of F2 response serves to stabilize the learning of classification codes by F2. Let us 
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suppose F2 has (by means we have not yet discussed) "learned" to classify certain input vectors I 

such that some degree of partitioning of the input space of I has been accomplished. Let us 

further suppose that now a novel input pattern Inew is presented for which F2 responds with a 0-1 

distribution, classifying that input with, say, node v21.  

The key question so far as the stability-plasticity dilemma (SPD) is concerned is this: Does 

Inew actually present the same features represented in the prototype exemplar v21, so that 

differences between Inew and this exemplar are merely irrelevant "noise"? Or does Inew actually 

present important different features such that it should properly be classified as something else? 

Or, at the extreme, are the features of Inew so different that the resonator should not classify it at 

all? These questions are particularly critical during the early development of feature codes by the 

resonator, when not all the rows of W and columns of Z have achieved stable LTM patterns.  

Consider what ensues if no orienting function exists to modulate the behavior of F2. In this 

case, F2 will attempt to classify Inew and it will adapt W and Z according to the strength of the 

responses of the F2 nodes, whatever these may be. Put another way, the default mode of 

operation for F2 favors plasticity. Left to its own devices, the resonator falls under the conditions 

of the Grossberg sparse pattern theorem [GROS5] and stable coding will not be achievable. 

Grossberg tells us,3  

The following difficulty must be overcome. Suppose that two patterns I1 and I2 would ordinarily 
be encoded by the same population v21 in F2 . . . If I1 is presented sufficiently often before I2 is 
presented, how can I2 be prevented from being encoded by v21 and yet be allowed to search for 
and find an as yet unpracticed population in F2? An adaptive resonance between F1 and F2 does 
not suffice. . . Somehow presentation of I2 must inhibit v21 – including the large excitatory F1-to-
F2 signal generated by I2 – until I2 can find an uncommitted population among the uninhibited, 
or renormalized populations of F2. In particular, there must be at least two sources of input to F2: 
the excitatory signals that code the patterns at F1, and the signals that are elicited by a mismatch 
of patterns. The latter signals differentially inhibit populations which are currently active in 
STM. These input are nonspecific because the STM code is opaque4. How does nonspecific 
arousal interact with current STM activity to differentially inhibit active populations? [GROS6]. 

Within the block diagram divisions Grossberg made in the 1976 paper, and the later ART 

network models developed from it, the signal processing responsible for "differentiating" a non-

specific input to selectively disable v2j nodes places a recurrent dipole field within the same "box" 

of the block diagram as the v2j nodes are located. (The overall "box" is called the F2 layer in 

                                                 
3 The mathematical symbols in the quotation appearing here have been altered to fit the notation used in 
this textbook.  
4 By "opaque" Grossberg means STM2 does not contain sufficient information to make an evaluation of 
whether or not a specific activity pattern in v2 is a proper association with the input pattern. Simply put, if 
the resonator is learning to encode inputs, it cannot know in advance what the right answers are. Therefore 
the second (dipole) input source cannot be specific in targeting populations in v2. Therefore it is non-
specific. 
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standard ART network terminology). For the block diagram of figure 17.1, we are going to place 

this function inside the attentional/orienting "box" and this is why R is a vector signal in that 

diagram. The differentiation of a nonspecific arousal signal to produce specific inhibitions will all 

take place within that "box," which is merely a different way of describing the same function.  

Let us consider the functional requirements of the orienting function Grossberg has just 

described. First, we have need of some means to measure and evaluate a "mismatch." The first 

question to ask here is: Mismatch of what? In ART, "mismatch" refers to a mismatch between the 

bottom-up input pattern I and the top-down "expectation" Z ⋅ x2. The only information available 

to measure and evaluate "mismatch" is the information contained in I and STM. We will need a 

mismatch function and a threshold, called the vigilance parameter, for deciding when the 

measured mismatch is too much and for generating a nonspecific inhibition, A. Next, the 

nonspecific inhibition A must lead to discriminating inhibitions (R) that reset nodes in F2 to 

permit a search for a different node to use in classifying P. We can see from this that we will 

have to come up with new definitions for the signals to/from the dipole field of figure 17.2.  

Third, the arousal signal must not happen too quickly – or else it would activate before the 

establishment of the initial resonance and before a mismatch can properly be evaluated. Once 

aroused, inhibition must be of sufficiently long-lasting duration to permit the search for a new v2j 

to complete and to permit adaptation to take place in W and Z as the new node "learns" P. This 

requirement tells us that, whatever the form our dipole layer eventually takes on, the function 

served by the elastic modulation mechanism of the D1 layer in figure 17.2 must be retained. 

Furthermore, the signal produced by the mismatch function plays a role analogous to that played 

by the nonspecific "drive" inputs going into the dipole layer in figure 17.2.  

Fourth, we must allow for the possibility that the second v2j node – let us call it v22 –  might 

also not make a proper match for P and a third, fourth, fifth, etc. v2 search might be required. 

Thus, the durations of the specific inhibitions that reset specific nodes in v2 must be sufficiently 

long that, if necessary, the search process can try every node in the F2 layer before the specific 

reset inhibition of v21 can "wear off." Finally, we must allow the possibility that all v2 nodes 

could have been previously "committed" to specific encodings and that the encoding capacity of 

the resonator is used up before the pattern P was every applied to the resonator for the first time. 

In this case, the orienting function must prevent any attempt to encode P at the expense of 

"erasing" the previously learned pattern classifications. Thus, the orienting function serves 

learning stability at the expense of learning plasticity. Resolution of the SPD depends on making 

the proper tradeoffs between the "plasticity inclinations" of the resonator and the "stability 

inclinations" of the orienting subsystem.  
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We will see later that there are some additional considerations that come into play in solving 

the stability-plasticity dilemma. We will come to these in due course. For the present, we have the 

general outline of requirements we need to begin filling in some details regarding the orienting 

subsystem.  

§ 2.1 Mismatch Measurement 
When does an active category x2j mismatch the pattern input P? Different published ART 

networks have employed different answers to this question. For example, ART 1 [CARP2], which 

is designed to operate on binary-valued signals, compares a vector length measure, known as a 

Hamming weight, of input vector P against a similar Hamming weight measure for x1. ART 2 

[CARP3] employs various derived unit vectors to, in effect, compare the vector direction of P 

against the vector direction of K. Figure 17.3 illustrate a third method for detecting mismatch, 

which we will use in the example network presented in this chapter. This method is similar to the 

mismatch detection function of ART 2. 

 
Figure 17.3: Mismatch network used in the example network. The signal processing functions for mismatch 
detection and attentional gain are identified by the pink boxes and signaling lines. The mismatch function is 

similar to the function used by ART 2. Vector terms are summed by a simple nonrecurrent Instar and scaled. 
If the result exceeds the vigilance threshold ρ, a non-specific arousal signal A is produced and sent to the 
subnetwork for implementing the reset function. The attentional gain functions G1 and Gk are similar to the 
one used in figure 15.23. G1 is the same as described in chapter 16, Gk differs only in the use of a GN(1) 

prior to summing. The mismatch arousal function enforces equal stimulus levels among non-zero stimuli as 
a principal part of its feature detection scheme. vk is a non-interacting layer of SNI(4)-type Instars. 
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Figure 17.3 also supplies more details on the construction of field F1. F1 is a resonator of a 

type we will call R(3). This resonator differs from the R(2) resonator described in chapter 16. In R(2) 

the structure consisted of the cascade of a non-interacting layer of SNI(4) Instars followed by a 

CE(2) layer. The F1 field in figure 17.3 reverses this order. Another difference is that the input to 

layer vk is the sum of the forward-pathway signal xi (weighted by a scalar path gain γf) and the 

top-down expectation signal vector K. Layer vk has n nodes (the same as the number of afferent 

inputs, and the same as layer vi) and its nodes feed back to their corresponding nodes in layer vi 

via a scalar feedback weight γb. The vi layer is designed to contrast-enhance xi if the top-down 

pattern K is non-zero and mismatches the bottom-up pattern xi. Layers vi and vk are also given a 

nonspecific inhibitory input r. Layer vk and the F2 field constitute a type-R(2) resonator similar to 

the resonator introduced in chapter 16.  

§ 2.2 ART Network Functional Principles 

The term "ART network" describes a general class of network system architectures rather than 

one particular instantiation of a system. What all ART network systems share in common is a set 

of functional principles [CARP3], all of which must be met by the organization of the network.  

1. Stability-plasticity tradeoff. The principal difference between an ART network and the 
simpler competitive networks of the earlier chapters lies with the ART resolution of the 
stability-plasticity dilemma. An ART network always maintains the potential for adapting 
weights W and Z yet also has a finite capacity for input categorization by the F2 layer. 
The task of the network is to learn a stable recognition code in response to arbitrary input 
pattern sequences (plasticity). At the same time, the network must be resistant to 
recoding of previously learned categorizations in response to subsequent input patterns 
regardless of how many different patterns are presented to it and regardless of how long 
the duration of these patterns may be (stability). The principle of active stability-plasticity 
tradeoff is the fundamental principle of ART network organization, and all other 
functional principles serve this one. 

2. Search-direct access tradeoff. At the beginning of its operation, the N nodes of the F2 
layer are initially uncommitted, i.e. the network generally has no predisposition to 
respond to any particular set of input patterns. Rather, it develops differentiated responses 
to different classes of input patterns through adaptation according to whatever patterns it 
happens to be presented with during its early operation. Thus, over time the network 
progresses from a state of having no committed F2 nodes to a state of having committed 
all N nodes to the categorization of N distinct classes of input patterns. When presented 
with a pattern belonging to an "already learned" classification, the network responds at 
once with the appropriate output pattern x2 for that classification. This is called direct 
access. On the other hand, when presented with an input pattern for which it has no 
already established classification, the network must automatically "commit" another F2 
node to the learning of this new classification. Thus, the network must search for an 
uncommitted F2 node, and it must automatically disengage this search as an input pattern 
becomes "familiar" to the network. Furthermore, the network's N learned categories must 
remain distinct, i.e., dual-coding of one input pattern by two or more F2 nodes must be 
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prevented.  

3. Match-reset tradeoff. The Instar weight vectors Wj and Outstar weight vectors Zj are 
exemplars for the N possible classification categories of the network. Whether or not an 
afferent input pattern "belongs" to a particular category depends on how well the vector xi 
matches the top-down expectation K of figure 17.1. If the nonspecific mismatch arousal 
A is less than the network's vigilance threshold ρ (figure 17.3), the input pattern is said 
to "match" an established category. If A exceeds this threshold then the input pattern is 
said to mismatch expectation. In this case, the responding x2 must be squelched (reset) so 
that the network can either (1) learn a new classification (if uncommitted F2 nodes are 
still available) or (2) signal that this input pattern cannot be assimilated by any of the 
network's recognition categories.  

4. Resonant state accommodation. Adaptation is the equilibrium between assimilation and 
accommodation. In an ART network equilibrium is defined by the condition of STM 
resonance. Resonance in an ART network means that both dxi/dt and dx2/dt are, ideally, 
equal to zero (or, practically, that both are nearly equal to zero) and will remain so for as 
long as the input afferent pattern does not change. It follows from this practical definition 
of adaptation that accommodations (changes) in W and Z can only take place when the 
network is in a resonant state.  

5. Mismatch reset hold-off during accommodation. Accommodations in W and Z alter 
the feedback from F2 to F1 and this, in turn, alters the feedforward signaling from F1 to F2. 
The "initial learning" of a new category by an F2 node must be carried out without that 
node being reset by any spurious mismatches that may occur during the weight 
adaptation process. Inasmuch as both x1 and x2 undergo changes during weight adaptation 
the practical consequence of this principle is that mismatch resets can be allowed to take 
place only when the network is in a resonant state. This principle is met in different ways 
by different ART network architectures. [CARP3] describes one such method; the 
example network presented in this chapter uses a different method. Both, however, are 
aimed at the same final outcome, namely stable learning of new categories by the 
network up to the classification capacity of the network.  

6. No LTM recoding by superset inputs. SNI competitive layers are feature detectors. In 
general, two afferent input patterns P encoded by the same F2 node will contain some 
input signals common to both input patterns (the "features") and others that are 
significantly different. The latter are treated as "noise" by the network. An input pattern 
that contains all the "feature signals" encoded for by F2 plus additional signals in excess 
of these is said to be a "superset input." Put in other terms, such a pattern contains signals 
that are not part of the top-down expectation K. These "extra" signals cannot be permitted 
to cause recoding of the LTM patterns that define a category because this leads to loss of 
stability in the network "learning" process. In ART network terminology, this principle is 
often referred to as "the 2/3 rule." Satisfaction of this principle in ART 2 and in the 
example network presented in this chapter is achieved by introducing contrast 
enhancement capability into the F1 field.  

7. Stable-choice/re-arousal tradeoff. The mismatch/search/resonance dynamics that 
support the principles outlined so far apply when the afferent input pattern is itself stable. 
Otherwise the network could not be said to be accommodating itself to ("learning") an 
input pattern. However, there is no prior constraint that can be placed on the input 
afferent patterns, and these can change at any time. The onset of a new pattern (with the 
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coincident offset of the prior input pattern) must interrupt whatever classification or 
accommodation activities may be in progress by the network. Put another way, resets in 
F2 that may have been caused by mismatch signals from the orienting subsystem endure 
during the duration of a stable input pattern but are overridden by changes in the afferent 
input. This principle is satisfied in the example network presented here by the onset/offset 
inhibition subsystem in figure 17.1. Similarly, because the dynamics of contrast 
enhancement and choice in SNI competitive layers is dependent on the total excitation 
acting on the network – and because there is a limit to the degree to which Grossberg 
normalizers can compensate for variations in the total stimulation presented by afferent 
inputs – there must be a minimum afferent excitation threshold mechanism in place in 
order for network accommodation to occur. (This requirement, too, is part and parcel of 
"the 2/3 rule" for ART networks).  

§ 2.3 Dipole Action in F2 

The central core of an ART network's ability to resolve the stability-plasticity dilemma lies 

with the mechanisms of mismatch reset by the orienting subsystem. This is accomplished by 

dipole actions incorporated into the F2 layer of the network. In this section we will examine the 

biological signal processing underpinnings of the F2 dipole structure. In the next section we will 

see how this action is mimicked in ART network simulators.  

The need for and role of the dipole network was first put forth in [GROS6]. Figure 17.4 

illustrates the basic concept. In this model the basic CE(2) layer of chapter 15 is replaced by a pair 

of three-node networks, the first of which is called the on-cell pole, and the other the off-cell pole. 

 

Figure 17.4: Dipole network model for an ART v2 node. Instars 5 and 6 are type-SNI(3) nodes. The x2j output 
projects to an Outstar node, and the f(x) activities of 5 and 6 make inhibitory projections to other Instars in 

the 5-6 layer. Instar pairs 1-3 and 2-4 modulate the relative activities of the on-cell and off-cell dipole pair by 
means of elastic (short-term modulated) projections z1 and z2. See text for discussion. 

548 



Chapter 17: ART Networks 

In the terminology of this chapter, the N dipole networks constitute a v2 layer. Instars 3 through 6 

are associated with the F2 layer of figure 17.1 while Instars 1 and 2 are associated with the reset 

function network (figure 17.3) of the orienting subsystem.  

Instars 5 and 6 are the type-SNI(3) nodes introduced in chapter 15 for classifier CL(2). Instar 5 

makes inhibitory f(x2j) projections to other on-cell nodes in the third layer of the other dipoles in 

the v2 layer. Instar 6 makes similar projections to the off-cell nodes. Instars 1 through 4 make up a 

rebound network, which is basically a recurrent version of the conditioning network shown in 

figure 17.2 earlier. The network pictured above is essentially the same that of figure 9 in 

[GROS6] except for the addition of nonspecific inhibition B and the explicit representation of the 

input Wj
Tx1 as an input to Instar 3.  

The purpose of this network is to implement the ART search process following a mismatch 

reset event. Grossberg qualitatively explains the function of this network as follows: 

 [How] does nonspecific arousal, which is distributed uniformly across all populations in v2, 
alter the balance of excitation in favor of previously inactive populations? This problem is 
particularly evident in adaptive resonances. Here a mismatch between the pattern [x2] coded by a 
population (say v21) and a test pattern at [F1] . . . suppresses the [F1-to-v21] signal, and causes x21 
to decay, before nonspecific arousal arrives. Clearly a more slowly decaying trace must remain 
to indicate that v21 has just been active. This trace must also be slowly decaying to maintain 
inhibition of incorrect populations during a search routine. More precisely, STM activity at v21 
depletes the slow trace in v21's arousal pathway, while the trace accumulates at inactive 
populations. Then equal arousal signals to all populations are gated, or shunted, by their slow 
traces, so that previously inactive populations receive larger arousal signals [GROS6]. 

The key to this recent-activity-dependent search process lies with the elastic projections z1 and 

z2 in figure 17.4. Let us assume figure 17.4 represents an active node in v2 (call it v21) with the 

on-cell Instar 5 corresponding to the active node of a 0-1 distribution in F2. Let us further assume 

the non-specific inputs A and B are inactive. Then node 3 actively responds to the feedforward 

input signal Wj
Tx1, exciting both Instars 5 and 1. At the same time, lateral F2 projections to the 

other F2 nodes hold their nodes 5 in the inactive state. The activity of node 1 causes a slow decay 

in the synaptic connection z1 (an elastic short-term depression or STD), while inactivity by node 2 

allows elastic connection z2 to recover to full strength.  

Now assume a mismatch-induced nonspecific arousal A is presented to the network. This 

signal excites nodes 1 and 2 but, owing to the greater magnitude of z2, this arousal stimulates 

node 4 more strongly than node 3, assuming the level of stimulation is high enough to overcome 

node 4 inhibition from node 5. Consequently, the off-cell node 6 is activated and sends an 

inhibitory signal to node 3. This reduces the activity of node 5, which promotes greater activity in 

node 4 and leads to a positive feedback cascade action where node 5 is turned off and node 6 is 

turned on. Feedback from node 4 to node 2 maintains this state after arousal A is removed. The 
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lateral inhibition from the off-cell to other off-cells in F2 allows these other nodes to respond to x1 

and, thus, a new competition arises among the remaining F2 nodes leading to a new 0-1 

distribution. v21 remains inactive until the slow decay of z2 reaches the point where Wj
Tx1 

excitation can again bring node 3 active. (Note that after removal of A, the inactivity of node 3 

allows z1 to begin rebuilding the strength of its elastic connection).  

In the case where we do not have an initial 0-1 distribution, the most active F2 node will also 

be the node where z1 depletion is greatest. This is because: (1) the most active node 5 will also 

have the most active node 3; and (2) the lesser activities of Instars 5 in the other nodes is 

accompanied by a greater level of activity in their Instars 6 relative to the Instar 6 of the most 

active F2 node. Therefore, a nonspecific arousal A will still selectively target the most active F2 

node for mismatch reset.  

The elastic projections z1 and z2 instantiate a phenomenological model of short term 

depression effects. STD is a known biological phenomenon. Grossberg speculates [GROS6, 

CARP4] that the effect may be due to neurotransmitter depletion in the presynaptic terminals of 

upstream neurons within the populations represented by Instars 1 and 2. This is consistent with 

hypotheses made by various physiology researchers, although it is known today that this cannot 

be the only factor contributing to STD:  
 There have been many attempts to model depression and recovery from depression. One 
approach is based on activity-dependent "depletion" of available release sites . . . Such 
approaches to modeling depression fail in several ways. This type of model predicts that pre-
synaptic activity at rates faster than the time required to recover from depression would deplete 
available release sites, thereby making synapses extremely ineffective during high-frequency 
trains. Although depression occurs during trains, synapses are generally about ten times more 
effective during high-frequency trains than would be predicted by such a depletion model. This 
observation gives rise to the hypothesis that recovery from depression might be more rapid 
during stimulus trains . . .  

 Recent studies have provided new insight into depression and recovery from depression. For 
example, at the climbing fiber synapse, although recovery from depression follows a single 
exponential in 1 mM external Ca2+, in 4 mM Ca2+ a rapid phase of recovery is apparent. This 
suggests the hypothesis that high levels of residual calcium accelerate recovery from depression.  

 Cares accelerates recovery from depression at the climbing fiber-Purkinje cell synapse . . ., an 
effect that is also observed at hippocampal synapses . . . and at the calyces of Held . . . The 
mechanisms responsible for depression and recovery from depression differ for various types of 
synapses. They include inhibition or neuromodulation of Ca2+ channels through metabotropic 
receptors, depletion of docked vesicles, desensitization of postsynaptic receptors, and other as of 
yet unidentified mechanisms [REGE]. 

Because Instar map models are very high-level models, encompassing the abstract 

representation of thousands of individual neurons, it is mere speculation to try to assign any 

particular physiological mechanism to the elastic behavior of z1 and z2 without first undertaking 

more detailed anatomical and physiological research to seek out more detailed neural network 
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models – perhaps at the level of Rulkov network models paired with even lower-level models 

(Linvill models, Hodgkin-Huxley models) of STD and recovery-from-STD phenomena. What we 

can say is that the elastic modulation mechanism Grossberg proposed fulfills a necessary and 

crucial role in the proper function of ART networks, and to the degree that ART networks 

provide an accurate model of psychophysical phenomena, the elastic projection hypothesis gains 

support from the success of ART network theory. Here the ever-mounting body of evidence year 

after year places the ART model on ever-increasingly-solid grounds as the best description 

computational neuroscience currently possesses of high-level brain system behavior.  

This brings us to the second nonspecific input, input B, depicted in figure 17.4. It is equally a 

vital part of ART network dynamics that significant changes in the network's afferent input 

pattern must trigger a global recovery-from-mismatch-reset as well as also effecting a general 

reset of the ART competitive layers within the network (property 7 above). Failure to include the 

recovery-from-STD effect leads to misclassification errors by the network and, under some 

signaling conditions, can even lead to recoding of LTM patterns. Elastic projection STD in the 

ART model is quick in onset and, left to itself, slow in offset. Significant input pattern changes, 

on the other hand, produce rapid offset of this STD, i.e., rapid recovery-from-STD. As we saw in 

the earlier quote from Regehr and Stevens [REGE], rapid recovery-from-STD is a known feature 

of the short term depression phenomenon. Nonspecific input B, in addition to producing 

inhibition in Instars 1 and 2 in figure 17.4, also produces rapid recovery of both z1 and z2 to a 

state of full-strength connection. Because physiologists are in agreement that rapid recovery-

from-STD does exist but the jury is still out on the physiological explanation of this phenomenon, 

we will not speculate here on a mechanism for the effect of input B. It remains for the time being 

a phenomenological mechanism within the overall functioning of an ART network. 

§ 3. Functional Subsystems of Example ART Networks 

The operational characteristics of ART are illustrated in this chapter by means of an example 

network. In this section the parameters for the subsystems within this network are described. The 

dynamical behaviors of the network are illustrated in the following sections. The network has n = 

25 input signals in the input afferents pattern vector P and N = 3 classification nodes (dipoles) in 

the F2 layer.  

§ 3.1 The Data Path Subsystems 
The network contains two layers within F1 comprising a type R(3) resonator with 25 nodes in 

each layer (vi and vk in figure 17.3). The feedforward and feedback weights connecting vi and vk 

are fixed and make one-to-one projections of the form 
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In the example network, γf = 0.60 and γb = 0.20.  

Input afferents are preprocessed by normalizer GN(2) with parameters B = 1, A = 0.5. The 

contrast enhancing parameter is C = B/(n – 1). The total input to GN(2) is P + af⋅xi where P is the 

afferent inputs pattern vector and af = 0.50. The principal purpose of this feedback is to provide a 

degree of filtering for uncorrelated high-frequency noise that might be present in P. 

The attentional priming signal G1 (figure 17.3) is given by µ ⋅ ∑ (x1) where the sum is taken 

over the n elements of x1 in the feedback path from vk to vi in figure 17.3. Here µ = 0.05. The 

attentional priming signal Gk (figure 17.3) is similar and is given by ∑GN(1)(x2). This signal is 

weighted by the term B3 (equation 15.5). For the example network, B3 = 0.02. The sum is taken 

over the N signals of x2 in the F2 layer. The GN(1) parameters are A = 0.90 and B = 1.   

Layer vk (figure 17.3) is a nonrecurrent layer of type-SNI(4) nodes (chapter 16, section 5). The 

parameters of this layer are τ ⋅ B = 1, τ = 0.001, B3 = 0.02. The output of this layer is h(x1) where 

h is the Heaviside extractor activation function. This output is denoted x1 in the previous figures 

17.1 and 17.3. vk receives top-down feedback (expectations) from F2 given by γ12 ⋅ Z ⋅ x2, where 

Z is the Outstar feedback matrix and x2 is an abbreviation for h(x2), h being the Heaviside 

extractor function. γ12 = 0.50 for the example network. It receives bottom-up signals from layer vi 

weighted by the scalar forward gain factor γf = 0.60. 

Layer vi is an n = 25 node layer of type-SNI(3) (chapter 16) with parameters B = 1, A = 0.65, 

u(1) = 0.85, D = 2.0, u(2) = 0.98, and gmax = 1. These parameters yield QT = 2.43 and, as can be 

seen from the parametric values, vi is set to produce a relatively high level of contrast 

enhancement (CE). vi receives top-down feedback from layer v1 weighted by scalar feedback 

weight γb = 0.20 for the example network.  

The F2 subnetwork consists of a single competitive layer of N dipoles. In actual simulations 

this layer is approximated using a competitive layer of type-SNI(3) nodes augmented by a dipole 

action approximation (rather than an explicit simulation of the network of figure 17.4). The dipole 

function is formally placed within the orienting subsystem's reset function block in figure 17.3 

and is described below. The F2 SNI layer (layer v2 with outputs h(x2)) has parameters B = 1, A = 

0.8, D = 9.0, u(1) = 0.95, u(2) = 0.98, and gmax = 1, giving QT = 4.75 for v2. Layer v2 receives 

bottom-up inputs from vk of the form γf2 ⋅ W ⋅ x1, where W is the Instar weight matrix and the 
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forward path gain is γf2 = 30.0. This large forward path gain is required because, unlike resonator 

type-R(2) in chapter 16, the elements of weight matrix W are determined by IAR adaptation and 

are much smaller than the fixed values used in the simulations in chapter 16. Note that neither γ12 

nor γf2 affect the values in Z or W obtained under the IAR method. Layers vk and v2 collectively 

form a type-R(2) resonator.  

§ 3.2 Initial Weight Settings and Adaptation 

The networks employ the Instar Adaptation Rule (IAR) for the Instar weights and the classic 

Outstar Adaptation Rule (c-OAR) for the top-down feedback weights. However, the orienting 

subsystem places certain restrictions on when adaptation will take place. These restrictions are 

key to the ART network's resolution of the stability-plasticity dilemma, which is the hallmark of 

ART networks generally. There are two general cases or modes of operation that must be taken 

into account to resolve the SPD: (1) the case when v2 contains so-called uncommitted nodes, i.e. 

F2 nodes that have not yet "learned" the LTM encoding for a particular input pattern; and (2) 

when all v2 are committed, i.e. every node in F2 has encoded LTM patterns.  

An ART reset-and-search action is based on the occurrence of a mismatch between the 

bottom-up input pattern and the top-down expectation pattern. However, this reset must be 

inhibited while a new category LTM is first being established. This is accomplished by making 

the top-down weights Z equal to zero prior to any adaptation establishing the top-down LTM. At 

the same time, however, v2 must be able to respond to x1 regardless of whether or not an initial 

LTM is established. This is accomplished by initializing the W matrix to small random values. 

The ART network examples in this chapter respond to input patterns by producing a 0-1 

distribution in x2 for patterns that are recognized and learned. In this way, the IAR and OAR 

actions are "gated" by the choice made at F2. However, certain restrictions must be enforced on 

when adaptation is allowed in order to stabilize LTM learning and prevent spurious recoding of 

previously learned LTM category codes. These restrictions are as follows. 

1. Adaptation is only allowed to occur when the system is in resonance. Formally, this 
means dxi/dt and dx2/dt are both equal to zero for all elements of these vectors. As a 
practical matter, the restriction requires that the sum of the absolute values of the 
derivatives for non-zero values of the xi and x2j does not exceed some critical threshold. 
(For zero-valued elements the derivatives are automatically zero by the clipping action of 
the Heaviside extractor function). Because the magnitude of a derivative depends on the 
magnitude of the signal – i.e., d(ax)/dt = a⋅dx/dt – the derivative vectors are normalized 
by GN(1) normalizers prior to comparison against the resonance threshold. For our 
example network, these normalizers have parameters B = 1 and A = 0.90.  

2. Adaptation is only allowed to occur when the degree of mismatch arousal is less than the 
threshold for mismatch reset. In other words, no mismatched patterns are to be encoded 
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in LTM. Thus, the mismatch arousal signal exerts a global and nonspecific inhibition on 
LTP and LTD in layer v2.  

3. Adaptation is only allowed to occur if the total input excitation, ∑i=1:n xki, exceeds a 
threshold for adaptation. This is tantamount to saying that weak stimulation of v2 by vk 
cannot stimulate LTP or LTD induction.  

The biological plausibility of condition (1) can be understood by remembering that Instar 

nodes represent populations rather than neurons, and that the excitation and activation signals of a 

node are not "firing rates" but, rather, abstract representations of the total activity of the network. 

The existence of a resonance state implies a condition of cyclic equilibrium within the 

populations represented by Instar nodes. Such a condition implicates the establishment of tetanus 

signaling by the member neurons within the population, which is likewise a well-established 

condition under which LTP and LTD induction can take place.  

The biological plausibility of condition (2) is understood by remembering that LTP and LTD 

are inherently metabotropic processes. Now, metabotropic second messenger cascades can 

interfere with one another, and thus it is entirely reasonable that nonspecific signals distributed 

over a neural population can block the metabotropic processes responsible for LTP and LTD.  

The biological plausibility of condition (3) is understood by remembering that synapses 

capable of LTP are typically likewise capable of LTD. Although the physiology of LTP and LTD 

induction is far from completely understood, it is known that NMDA-mediated LTP and LTD 

depend on the amount of Ca2+ entering the cell. Physiologically reasonable models such as the 

calcium control model [GERS1: 377-383] incorporate a lower threshold of Ca2+ concentrations, 

below which no LTD or LTP induction takes place. As this depends on signaling activity, it is 

thus quite reasonable to conclude that LTM adaptation should likewise depend upon total 

stimulus activity converging at v2 in at least the case of W adaptation. As for presynaptic forms of 

LTP and LTD, the physiology of this phenomenon is not so well understood, but it is 

hypothetically reasonable that this, too, should depend on the level of activity of the postsynaptic 

cells (perhaps by means of some retrograde second messenger such as NO; this is speculative but 

that merely reflects our current state of knowledge of presynaptic LTP and LTD). Thus, it is also 

reasonable that LTM for Z adaptation should depend on the total level of activity in x1.  

When all three of the conditions stated above are satisfied, adaptation takes place by means of 

the IAR and c-OAR methods,  
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where Wj and Zj are the weight vectors chosen by the 0-1 distribution in v2 and η is the learning 
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rate constant for adaptation.  

§ 3.3 Input Onset/Offset Reset 
Figure 17.1 depicts a nonspecific inhibitory signal aroused by changes in the input signal 

pattern I. Simulation studies carried out on ART networks reveal the functional need for changes 

in the input pattern – provided these changes are large – to trigger a reset of STM in F1 and F2. 

The requirement arises because STM patterns are "memory traces" (in the mathematical if not the 

psychological sense of that word), and changes in STM tend to lag changes in I. This is especially 

the case for STM2 which, as our earlier simulations of the Grossberg resonators has shown, is 

significantly slower than either I or STM1. If STM is not reset by the occurrence of large changes 

in I, misclassifications and even spurious recoding of LTM happen. Carpenter and Grossberg 

refer to this as "coordinating STM processing with an input presentation rate" [CARP3].  

Of the several biological hypotheses that go into ART networks, the onset/offset reset 

mechanism is perhaps the hypothesis most vulnerable to criticism by physiologists. The issue is 

not one of whether or not such a reset can be implemented by biologically-realistic network 

models; it is easy enough to do so through, e.g., one of Grossberg's dipole networks such as that 

of figure 17.2. Rather, the issue is whether or not such a reset mechanism exists at all in 

biological systems. For example, subdural probe data collected by Bruns and Eckhorn [BRUN] 

show a considerable time lag taking place between onset or offset of a visual stimulus and the 

wave-like firing activities recorded from a human subject. Similar lags between stimulus onset 

and changes in signaling waveforms are observed in visual areas of awake monkeys [FREI1].  

This does not mean that fast onset/offset resets do not occur in biological systems. There is a 

vast distance between the level of phenomena studied by the works just cited and the level of 

information processing modeled by ART networks. The ART models show that such a reset 

mechanism performs an indispensable function in ART networks. This is tantamount to a 

prediction coming out of adaptive resonance theory. It is a fundamental role of computational 

neuroscience to make such predictions, else the field languishes as a mere sinecure for 

mathematical exercises with no assignable contribution to biological science. Biologists are, 

rightfully, suspicious of predictions that arise solely from mathematical models, and this is to say 

no more than that all hypotheses are suspect until confirmed. Here we have a prediction for 

experimentalists to either confirm or refute (the latter being the more challenging since it is not 

possible to prove a negative). The experimental challenge here is great because such an effect, if 

it exists at all, would only be registered on a fairly large scale of neuronal structure, and existing 

experimental methods are not quite up to the task of detecting fast-acting (small lag) changes 
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following stimulus onset or offset at this scale.  

For the models used in this chapter, onset/offset reset is implemented by the simple expedient 

of comparing the difference of the sum of the terms in | I(t + ∆t) – I(t) | against a fixed threshold.  

§ 3.4 Dipole Reset Function  
Figure 17.4 and the accompanying text explained the idea of an F2 dipole layer in ART 

networks. In practice, ART network simulators rarely employ this level of detail in modeling the 

network. In part this is to save computation time. In part it is to avoid certain numerical issues 

that can arise when modeling a system in which the subsystems have a great deal of difference in 

the time constants among different parts of the system. What is usually done instead is that the 

overall function of the dipole action is approximated without going through the interior details of 

calculating how the network implements this function. Such a model is called an input-output 

model of the subsystem. We use such a model here for the example ART network. 

The dipole field has four distinct modes of operation: (1) a normal mode in which the 

inhibitory pathways of the dipole field are inactive and F2 acts merely as the second contrast 

enhancing layer of an ART resonator; (2) a reset mode in which an arousal signal, arising from a 

mismatch between the network's input pattern and the top-down expectation from a learned 

category, causes the inhibition of the most active v2 node; (3) an inhibition persistence mode 

modeling the time span over which the dipole field inhibitions remain active; and (4) an 

inhibition reset mode in which dipole resets are cleared by a second nonspecific signal arising 

from input onset/offset resets.  

The normal mode corresponds to the case where Instars 2, 4, and 6 of figure 17.4 are all 

inhibited for each node in v2. In this case, and in the case for every v2 node that has not undergone 

a recent dipole reset action, F2 acts as if it were merely a type-CE(2) layer consisting of N – m 

nodes, where m ≤ N is the number of nodes of v2 that are not in a dipole reset mode.  

The reset mode corresponds to the activation of the nonspecific arousal signal A in figure 17.4. 

This arousal signal excites Instars 1 and 2 in figure 17.4, and if the x2j node (Instar 5) has been 

active, this corresponds to the elastic connection z1 having a lower efficacy than z2. This would 

lead to inhibition of Instar 3 with consequent inhibition of Instar 5. However, we must also take 

into account the on-center/off-surround coupling that exists in F2. It is possible that A could be 

activated at a time when more than one v2 node is active (i.e. more than one x2j is non-zero). In 

this case, the node with the largest excitation will have the smallest strength of connection z1, and 

thus will also have the largest aroused excitation of its Instar 6 node. Thus, relative to the other 

nodes in v2, this most-active node is the first to undergo reset via the dipole structure. (If two or 
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more nodes happen to have equal levels of activity – a "tie" in MAXNET terminology – all such 

maximally-active nodes are reset).  

Nodes in v2 with zero or small activation levels are unaffected by the arousal signal A unless 

this signal persists past the current time step in the simulation. Thus, with the formerly most-

active node (or nodes, in the case of a tie) reset and held inactive by the dipole action, a new 

most-active node will develop through the normal CE(2) reverberation dynamics. This is called an 

ART search. If the new most-active node also produces a mismatch between the bottom-up 

signal and the new top-down expectation, arousal A will be reactivated and the process is 

repeated. This is termed an ART search cycle. If the new most-active node produces an adequate 

bottom-up to top-down match, A becomes inactive and the search cycle ends.  

To model the input-output behavior of this process we define two vectors, d and Jrst, each 

having N elements. Vector d is called the reset-state vector; vector Jrst is called the reset-charge 

vector. d has binary-valued elements with dj = 1 denoting that node x2j is being held in a dipole-

reset state and dj = 0 denoting that node x2j is either not in a dipole reset state or else is recovering 

from a dipole reset inhibition. dj is set equal to 1 if it is currently 0 when a mismatch arousal 

occurs and its associated x2j node has the largest excitation level in x2. If dj = 1 already when a 

mismatch arousal occurs, it remains in this state.  

Elements dj are returned to the 0 state when the mismatch arousal signal becomes inactive and 

their associated nodes then enter inhibition persistence mode. When a state variable dj is set to 1, 

its corresponding reset-charge element Jj in Jrst is set to a value Jj = Jsat ⋅ x2j where Jsat is a 

maximum charge parameter (equal to 0.5 in the simulations shown in this chapter). The weighting 

of Jj by x2j reflects that the loss of connection strength z1 increases with the activity level of x2j. 

After dj returns to zero, Jj undergoes a geometric decay such that Jj(t + ∆t) = a ⋅ Jj(t), where a is 

the geometric decay ratio (equal to 0.9995 in the simulations shown in this chapter). This 

dynamic reflects the recovery of z1 (and the decay in z2) that occurs when x2j is being held in a 

dipole reset inhibition.  

In general, the inhibitory signal applied to the SNI node in v2 is given by a saturating 

Heaviside extractor function, Jar = hd(Jrst), with 
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For the simulations used in this chapter, the numerical range of the variables is such that hd is 

functionally equivalent to a simple non-saturating Heaviside extractor. Jar is represented by the 
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inhibitory vector R in figure 17.1. The elements of this vector are applied specifically to their 

associated SNI nodes in v2, and thus the dipole field representation in the ART network anatomy 

in this chapter is divided up between F2 and the reset function block shown in figure 17.3. With 

the parameter values used in the simulations in this chapter, the effect of inhibition persistence 

mode typically lasts on the order of about 8000 simulation time steps.  

Finally, when an input onset/offset reset occurs, this reset signal is applied nonspecifically to 

all dipoles, corresponding to activation of nonspecific input B in figure 17.4. In this inhibition 

reset mode, the dipole state variables are cleared, i.e. d = 0 and Jrst = 0.  

This completes the description of the dipole reset input-output function used by the network in 

this chapter. To complete the description of the reset function block in figure 17.3 only one more 

detail is needed. When a mismatch arousal A is activated, the reset block also sends a nonspecific 

inhibition signal to all the SNI nodes in F1. Because F1 does not contain any dipole fields, this 

inhibitory signal is a simple impulse activated whenever the mismatch arousal is active. The 

function of this reset is merely to clear layer F1 of the influence of the previous input pattern and 

top-down feedback signal Z ⋅ x2. 

§ 3.5 The Mismatch Arousal Function  
Different ART network models typically differ in the specific method by which a mismatch 

between bottom-up and top-down signals is determined. The specific way in which a mismatch is 

determined not only fundamentally affects the behavior of the network but also affects what the 

network will view as a feature to be matched.  

Generally, the afferent input pattern will be accompanied by "noise" variations. We can 

identify two general classes of such variations. The first is relatively uncorrelated noise that 

changes from time step to time step during simulation. Biologically, there is little significance to 

be attributed such variations and so we will call this type of variation background noise. The 

network in this chapter is relatively insensitive to background noise above some signal-to-noise 

ratio. The second class of "noise" is low frequency variation from one pattern presentation to the 

next in the values of the pattern elements. This is the type of "noise" we looked at in the previous 

chapters. Here these random fluctuations can persist unchanging so long as the presented input 

pattern lasts, and biologically these variations can carry significance (because they reflect a 

particular variation in the activity patterns of upstream network subsystems). We will call this 

type of "noise" pattern variation (PV).  

The mismatch arousal function for the example network is based in part on NICE-induced 

variations caused by top-down vs. bottom-up differences. However, pattern variation is also a 
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source of NICE in the contrast-enhancing vi layer. Therefore, it is likewise a source of mismatch 

arousal for this network even if the top-down expectation is perfectly matched to the statistical 

expected value of the input afferent pattern. The overall effect of this is that the network "prefers" 

input patterns where the non-zero signals (those not quenched by GN(2)) have equal amplitudes. 

Put another way, the network favors input patterns that produce a locally uniform distribution in 

x1 in the absence of top-down NICE. Thus, the network treats amplitude uniformity as a feature 

to be detected. Loosely speaking, the network is a kind of "binary input" network, although it 

does tolerate a very small amount of pattern amplitude non-uniformity and, owing to GN(2), 

allows for a relatively wide range of overall pattern input amplitudes.  

The top-down expectation signals are made explicitly available through the use of facilitating 

Outstars (f-Outstars). These f-Outstars use x1 in their f-OAR adaptation process and, thus, the 

matrix elements produced by adaptation in the f-Outstars match those of the direct feedback 

pathway from x2 to vk, i.e. both Z matrices depicted in the figure have identical values. However, 

the output signals from these f-Outstars cannot be used directly to compare with xi. This is 

because when the network initially starts up no x2 node is yet "committed" to any particular 

pattern classification (Z = 0) and so the initial top-down feedback never matches xi. It is 

necessary to sum x1 and Z ⋅ x2 before a mismatch comparison can be made. The mismatch 

comparand term is x1 + γs⋅Z⋅x2. The gain factor used in the simulations is γs = 10.0.  

A method not entirely dissimilar to this is used in Carpenter's and Grossberg's ART 2 network, 

although ART 2 is a very different anatomy than our example network and, it should be noted, 

generally has performance characteristics most researchers, including your author, would regard 

as superior to the example network. On the other hand, ART 2 is a step or two farther removed 

from biological signal processing tie-backs to physiology (owing to several abstractions and 

simplifications employed to produce superior computational performance). It is, in other words, a 

somewhat more abstract model and algorithm than is the example network used here. Your author 

thinks that to properly appreciate the thinking that went into ART 2, it is helpful and perhaps even 

necessary to see what dynamics develop in the network presented here.  

The mismatch arousal network forms the sum V = xi + x1 + γs⋅Z⋅x2 and passes this on to the 

mismatch calculation function (the lower right-hand block in figure 17.3). It also passes on two 

mathematical metrics of the constituent vector lengths, namely ||xi|| and || x1 + γs⋅Z⋅x2|| – the L2 or 

Euclidean norms of these two vectors. The mismatch calculation block first forms a reset vector 
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From this it forms an arousal signal α = 1 – ||Q||. If α > ρ the mismatch arousal signal A is 

generated. For all simulations shown later in this chapter, ρ = 0.02 is used.  

For all practical intents, this is the same mismatch function employed in ART 2. The basis of 

this method hinges on the fact that for any two vectors q1 and q2, ||q1|| + ||q2|| ≥ ||q1 + q2|| with 

equality if and only if q1 and q2 are co-linear (point in the same direction). This is a consequence 

of the triangle inequality for metric functions. When xi and x1 + γs⋅Z⋅x2 are co-linear (which 

happens when xi does not do too much contrast enhancement and the top-down expectation 

likewise is a match to xi), then Q is a unit vector and α = 0. Otherwise, α > 0.  

A principal criticism that can be leveled at this mismatch calculation is illustrated by the 

question, "What kind of neural structure produces L2 norms?" There is little doubt that such a 

function can be approximated to some degree of accuracy and within some limited range of 

variables by network structures such as feedforward neural network systems of Adaline-type 

Instars. But here the attending questions are: (1) what specific network does this take? (2) how 

accurate is the approximation? (3) over how wide a dynamic range does the approximation 

remain accurate? (4) is the accuracy sufficient to produce the results needed for ART network 

operation? and (5) are such structures actually present in biological systems? These are legitimate 

questions and until they are addressed a gap exists between ART network models that use the L2 

norm and the lower levels of neural network theory. At present, the strongest reason for regarding 

L2-norm-based models as legitimate is the indubitable success ART models have had in modeling 

a variety of large scale psychophysical phenomena. This is, of course, an empirical basis of trust 

and, at the end of the day, the only one that really counts for neuroscience. But it is 

understandable why not a few biological neuroscientists tend to be suspicious of purely 

mathematical arguments and why at present one cannot discard the suspicion that what we have 

here is merely a bit of convenient mathematical chicanery. This is an issue of science that ART 

models, and likewise most other models in computational neuroscience, must some day address.  

What is the advantage gained by use of this method of mismatch arousal and reset? Simply 

put, it is greater tolerance to amplitude variations among the elements of the input pattern vector. 

Layer vi still does contrast enhancement on afferent patterns containing significant pattern 

variation, and so the tolerance of the network to these variations is limited. However, when a 

mismatch occurs between the bottom-up signal and the top-down expectation in this network, the 

mismatch function response is generally larger and more dramatic than it is for mismatch due to 

low-level pattern variation. This gives the network more ability to handle "analog" input signals 

to a limited degree. It is to be noted in this context that ART 2 has a much better ability to handle 

analog inputs owing to its use of a different structure in the F1 network that is not as sensitive to 
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NICE as the example network presented in this chapter.  

§ 3.6 Reset Conditions 

Various constraints are placed on when mismatch arousal resets can occur, in accordance with 

principles 4 and 5 of §2.2. For the example network, mismatch reset is inhibited when the 

network is not in the resonant state (§3.2). This inhibition function is not shown explicitly in the 

block diagrams presented earlier, but it is an implicit function within the attentional/orienting 

subsystem of figure 17.1. The network in this chapter also employs a reset arousal hold-off 

interval following the generation of the reset pulse A. This is to allow a brief time for the layers of 

the network to undergo the transient response that follows dipole reset of the maximum-valued v2 

node. This is not a function particularly critical to the operations of the networks since 

immediately following a reset the networks are not in a resonance condition, but the network 

model of this chapter uses it and so it is mentioned here. The reset hold-off interval is twenty time 

steps in the simulator.  

Mismatch resets are also suppressed when the maximum activation in the v2 layer of F2 is 

below a critical activation level (0.15 for the example network). Biologically, this is tantamount 

to saying dipole Instar 3 (figure 17.4) must achieve some minimal level of activity before short 

term depression of z1 appears. Functionally this inhibition precludes nodes in F2 from being held 

in a dipole-reset state during or following a period where no significant afferent inputs are applied 

to the network and input signal activity ramps up at a rate slow enough to prevent the input 

onset/offset reset from being activated. This mode of mismatch arousal inhibition prevents 

spurious misclassifications as the network transitions from a "no input" to an "input presented" 

condition, and it guards against spurious re-coding of LTM. Like the other reset inhibition 

condition, the network structure for this inhibition mode is implicit in the attentional/orienting 

subsystem and is not explicitly shown in the previous diagrams.  

§ 4. Network Simulations 

In this section we look at some examples of the behavior and performance of the example 

network described above. Although input patterns P are vectors, we continue our practice of 

displaying these patterns in the form of a 5 × 5 retina in order to make it easier to discuss the 

results. The nine basic input patterns used in the simulations are illustrated in figure 17.5 below. 

The names given to these patterns are identified below each one in the figure. The base patterns 

are binary (except for the analog X pattern) with pixel values 0 and 1. During the performance 

tests, pattern variance noise (PV), that lasts throughout the dwell time of the input pattern, and 

random noise, that varies from step to step, are added to the patterns.  
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Each pattern presented to the network is given a dwell time of 2000 simulation time steps. The 

dwell time is the duration over which the pattern is presented. The simulations are broken into 

"runs" of groups of three patterns repeated three times (18,000 time steps per run). Except where 

noted otherwise, each new run is temporally continuous with the previous run and the network's 

initial conditions during any run are those established at the end of the previous run. 

  
A pattern             analog X pattern 

  
d pattern              fat J pattern 

  
J pattern              O pattern 
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T pattern              U pattern 

 
X pattern 

Figure 17.5: Patterns used for network simulations displayed in retina layout form. Names given to the 
patterns are identified below each pattern figure. 

§ 4.1 Training Sequences and LTM Stability 

The first series of simulation runs illustrates the learning dynamics and LTM stability of the 

network. For this series the network begins in a relaxed initial state with LTM matrix Z initialized 

to all-zeros and LTM matrix W initialized to small, uniformly distributed random values. The 

network is to "learn" input patterns T, J, and A (see figure 17.5). This is accomplished by 

presenting these patterns sequentially, i.e. T-J-A-T-J-A-etc. until LTM stabilizes. This constitutes 

a form of unsupervised "training" for the network, which is said to "practice" these patterns.  

The network required a total of three runs (nine presentations each of the T, J, and A patterns) 

to achieve solidly-established LTM values for each of its N = 3 available categories. The results 

of the first and third runs in this series are illustrated in figures 17.6 below.  

Figure 17.6(A) illustrates the response of the network to the first three presentations of each 

pattern. The pattern order of presentation does not matter, nor is it necessary for the order to 

remain the same throughout the training sequence.  Which particular node of F2 will learn a given 
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(A) Series 1 run 1: first 3 presentations of T, J, A pattern sequence 

 
(B) Series 1 run 3: 7th, 8th, and 9th presentations of T, J, A sequence 

Figure 17.6: Results of initial training sequence for T, J, and A patterns. Pattern input pixel amplitudes were 
0 and 1. Background noise uniformly distributed in the range (0, 0.01) was added to each pixel at each step 

in the simulation. 

pattern depends on the random initial settings of W. For this particular simulation run, node x21 

happened to encode the T pattern, x22 encoded the A pattern, and x23 encoded the J pattern. 

Referring to the center figures in (A) and (B), the red trace near the top of the figure (AR) 

displays when the network is in resonance (lower value) or not in resonance (higher value). 

Adaptation can only take place when this trace is "low" and the mismatch trace is below ρ = 0.02. 

As can be seen from the figures, adaptation is less frequent for the A pattern, which has the 

smaller total excitations for xi and x1 = xk in the figure. The reason the A pattern has the smaller 
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total excitation of the three, despite the fact that its Hamming weight wH (the number of nonzero 

pixels in P) is 8 (compared to wH = 6 for both T and J), is due to the actions of GN(2), which tends 

to penalize the pixel amplitudes of patterns with larger Hamming weights. The network actually 

succeeds in encoding the T and J patterns in Z and W after only three presentations of these 

patterns (i.e., by the end of run 1), whereas it was not until the end of run 3 that the A pattern was 

solidly encoded in Z and W.  

Comparing the center figure of 17.6(A) with that of 17.6(B), it is seen that the peak levels of 

the x2 = xj in (A) show an upward slope while those of (B) are relatively flat. The sloping action 

in the (A) figure is due to adaptation. As the network "learns" its categories, F2 supplies 

increasing amounts of feedback to F1, which raises the total network excitation to a steady-state 

peak value. By the end of run 3, the difference between the Wj, Zj, and x1 vectors is quite small, 

which is why the x2 excitations no longer show appreciable slopes in the (B) figure despite rather 

vigorous adaptation being signaled by the red "adaptive resonance state" indicator trace AR.  

The xi trace in the top figures of (A) and (B) is the total excitation for the nodes of layer vi. 

This trace is relatively flat throughout the entire simulation, which indicates that contrast 

enhancing layer vi is performing no significant contrast enhancement on P even after feedback 

from F2 (acting on vi indirectly through v1) becomes appreciable. The absence of contrast 

enhancement is due in part to the settings of the network parameters (which were designed to put 

the T and J patterns within the non-enhancing dynamic range of the network) and in part due to 

the absence of pattern variance PV in the input patterns P. The actions of GN(2) produce larger 

individual amplitudes in I for patterns with lower Hamming weights, and larger amplitudes tend 

to bring vi closer to its contrast-enhancing threshold.  

After the network had encoded the T, J, and A patterns at the end of run 3, a pattern sequence 

O, X, U was applied for run 4. The purpose of this simulation is to test the stability of the LTM 

encoding. As can be seen from figures 17.5, the U pattern overlaps the A pattern, while the O 

pattern overlaps with both A and J. The X pattern overlaps all five other patterns. Thus, the 

network is being presented with patterns for which F2 must respond (since it has nonzero W and 

Z elements corresponding to some of the pixel elements in O, X, and U). The response of the 

network to this sequence is illustrated in figure 17.7 below.  

The network LTM encoding was unchanged by this pattern sequence. Referring to the center 

figure in 17.7, application of the O pattern resulted first in a trial classification of the pattern as a 

J pattern. However, this classification was reset as soon as resonance was established and the 

network searched for a better match. Its second attempt was to classify O as the A pattern, but 

this, too, was reset as soon as resonance was established. Finally, the network classified pattern O 
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Figure 17.7: Run 4 response of the trained network to pattern sequence O, X, U. 

as the T pattern. Note, however, the large mismatch arousal for this classification, which is well 

above the ρ = 0.02 threshold. The large arousal suppressed adaptation, and this is why the LTM 

encoding of T was unaffected by the O pattern. The network did not issue a reset during this 

classification because the amplitude of x21 falls below the "no pattern" threshold level of 0.15. 

Otherwise a reset would have taken place and, because the capacity of F2 is only three nodes, this 

would have left the system with an all-zero output x2. As noted earlier in this chapter, the use of a 

"no pattern" threshold on x2 = xj serves physiologically to model the threshold effect in synaptic 

short-term depression and functionally to prevent spurious resets from occurring when the P input 

to the network is quiescent.  

Results are analogous for the O pattern input. The network initially attempts to classify this 

pattern as T, undergoes as reset search as soon as resonance is established, and ends up 

classifying this input as a J. Again, the mismatch arousal is above threshold (suppressing LTM 

adaptation) but the reset itself is suppressed by the low magnitude of x23. Finally, the U pattern is 

classified as an A pattern but, again, mismatch arousal is well above the vigilance threshold and 

x22 falls below the "no pattern" threshold. Thus, no recoding takes place here either. Note that 

despite the fact the network "classifies" these input patterns, the fact that these patterns are 

different from T, J, and A is signaled by the level of the mismatch arousal signal.  

Following run 4, a long-dwelling "fat J" pattern (figure 17.5) with a dwell of 18,000 time steps 

was applied to the network. This pattern is a superset of the encoded J pattern, as can be seen 

from the figure 17.5 figure patterns. It also has a one-pixel overlap with the A pattern. The 

simulation results are shown in figure 17.8 below.  
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Figure 17.8: Response of the network to a long-dwell "fat J" input pattern. 

Not surprisingly, the network initially attempts to classify this pattern as a J. However, the 

large mismatch between the top-down expectation and the "fat J" pattern causes a reset search as 

soon as resonance is established. The network then classifies the pattern as an A pattern, this 

being the only other pattern with which "fat J" shares a common feature. However, the arousal is 

still above threshold and so the LTM for A is protected from recoding. x22 is below the "no 

pattern" threshold, so a reset does not ensue. Starting at around time step 10,000 of this run, x23 

comes out of its dipole-reset condition and quickly re-establishes itself as the classification for the 

input pattern. Again, however, the mismatch is too great and another reset ensues as soon as the 

network reaches the resonant state.  

The outcomes of these simulations would have been analogous had other initial training 

patterns been used or other possible untrained patterns been applied. Put in other words, the 

results obtained here do not depend on special properties of any of the input patterns other than 

the fact that pattern variance PV was zero in this series. The simulations presented here illustrate 

that the network successfully accomplishes resolution of the stability-plasticity dilemma in the 

absence of pattern variance and in the presence of low levels of random background noise. 

§ 4.2 Network Response to Pattern Variance 

To a limited degree, afferents P containing pattern variance – unequal pixel amplitudes from 

one presentation to another – can be regarded as "analog" patterns, although "corrupted binary 

patterns" is probably a better description. With its high degree of contrast-enhancing built into the 

F1 layer, the example network can be said to "prefer" or "be tuned" to binary patterns. However, a 
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Figure 17.9: Series 2 run 1 with pattern variance in the T, J, A sequence. PV is randomly varied with each 
new pattern presentation in this run. The PV distribution is uniform over the range (0, 0.05), a 5% variation. 

certain amount of robustness in the presence of pattern variance is important even for "binary" 

networks if only because one must assume a certain amount of PV is likely to be present in 

biological signaling. Such would be a reasonable interpretation of PET or fMRI scan 

measurements. The second series of demonstrations illustrates how the example network 

responds to pattern variance. In this series the afferent patterns were applied in the T, J, A 

sequence once again, this time with random pattern variance uniformly distributed in the range 

PV = (0, 0.05) – a range similar to our earlier discussion of NICE in chapter 16. The network's 

initial state at the beginning of the first run in the series was set by the final run results from the 

first series. 

Figure 17.9 above illustrates the outcome of the first simulation run in this series. The three 

patterns are properly classified during each presentation, and weight adaptation is active in each 

presentation. Here the first presentation of the T pattern is interesting. After a few adaptation 

adjustments made by the network, the F1 layer begins to contrast enhance the pattern. This is 

shown by the downward slope suddenly taken on by the xk total excitation in the topmost figure 

and by the rise of the mismatch arousal signal in the bottom. As soon as contrast enhancement is 

underway, the system drops out of the resonance condition and further adaptation is disabled. If 

the T pattern had been given a longer dwell time, F1 would have eventually contrast enhanced 

toward a 0-1 distribution until the mismatch reset kicked in.  

A lesser amount of contrast enhancement can also be discerned in the third presentation of the 

J pattern in this run. This is evidenced by the visible rise in the level of the mismatch arousal 

signal. The contrast enhancement is sufficient to slow and finally halt adaptation through loss of a 
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Figure 17.10: 4th run in the second (pattern variance) series. This run is noteworthy for the large amount of 

contrast enhancement in the third presentation of the J pattern. The CE is large enough in this case to 
trigger a mismatch reset of x2. No adaptation took place at all during this J presentation. 

state of resonance in the system. Results from a second and third run, each continuations of the 

run immediately preceding it, showed very similar responses. In all three runs (nine presentations 

of each pattern), no sign of contrast enhancement shows up in the A pattern. The reason for the 

relative immunity of pattern A is its relatively lower level of overall excitation. This, in turn, is a 

consequence of the actions of GN(2), which penalizes the pixel amplitudes of higher Hamming 

weight patterns, and the normalizing action of the vi layer of F1, which produces a similar effect. 

This does not mean that PV at this level is entirely benign. The fourth run, illustrated in figure 

17.10, shows that PV enhancement, even at this 5% level, is capable of producing enough 

contrast enhancement to trigger mismatches with reset. This occurs in the third presentation of the 

J pattern in figure 17.10. Note, however, that no adaptation takes place during this presentation 

because the network never achieves resonance. 

Adaptation does take place during most of the pattern presentations in this series. In effect, the 

network views the PV-altered presentations as somewhat different patterns, although not different 

enough for them to be classified differently in most cases. The onset of contrast enhancement in 

the lower Hamming weight patterns (T and J) limits the amount of total adaptation taking place. 

The effects of the pattern variance does show up in LTM in the form of random variations in the 

weight settings (driven by the random variations in P due to pattern variance). In adaptive signal 

processing, this random "jiggling" of W and Z is commonly termed weight noise. This "random 

walk" or "Brownian-motion-like" variability in the weight settings is self-limiting through the 

mechanism of resonance loss from contrast enhancement. The result is the W and Z matrices drift  
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Figure 17.11: First run in series three, PV range = (0, 0.10). This run is a direct continuation from series 2 

run 4 in figure 17.10.  

about, centered on the statistical average of the P presentations for each F2 node partition. 

The conclusion to be drawn from the series 2 simulations is the following. At low (5%) levels 

of pattern variance, low Hamming weight afferent patterns are more susceptible to NICE brought 

about by the pattern variance. The onset of large contrast enhancement events abolishes the state 

of adaptive resonance, thereby shutting down adaptation and protecting LTM encoding. Smaller 

PV situations – those not productive of NICE – produce random walks in the LTM weight 

settings, but these variations remain centered about the expected value of the presented patterns 

within the particular partitions defined by the nodes of F2.  

Not surprisingly, larger amounts of PV exacerbate the effects just noted. Series 3 in the 

simulations carries on continuously from the end of series 2, but with the PV range increased to 

10% of the base pixel amplitudes. Figure 17.11 illustrates the first run in series 3. Contrast 

enhancement can be noted in all three presentations of the T pattern and in the second and third 

presentations of the J pattern. In the first T and third J, the contrast enhancement is large enough 

to trigger mismatch resets (which would be a form of classification failure). Again, however, the 

misadaptation of the LTM encoding is self-limiting due to loss of resonance during contrast 

enhancing. Once again, the higher Hamming weight pattern (A) was more or less immune to 

NICE. Additional runs in series 3 produced similar network responses. Resets were not always 

produced during each run, but the rate of reset incidents does significantly increase.  

The general conclusions drawn from series three, in addition to those drawn from series 2, are 

the following: (1) larger PV produces more NICE and more frequent mismatch resets in the lower 

Hamming weight patterns; (2) LTM encoding is not seriously compromised; and (3) larger levels 
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Figure 17.12: Series 4 run 1. Pattern pixel amplitudes here are reduced to 0.75 and pattern variance is set 

to zero. Background noise continues to be applied in the range (0, 0.01).  

of PV produce a greater range of "weight walk" in W and Z, but the ability of the network to 

classify patterns is not seriously compromised inasmuch as those patterns with extreme amounts 

of PV can be regarded as significantly different from the low-PV patterns encoded in LTM. 

§ 4.3 Network Sensitivity to Pattern Amplitude 

Pattern variance is pixel-to-pixel amplitude variation that persists throughout the time a 

pattern is presented to the network. The final series of simulations in demonstrating the behavior 

of the network tests for the effects of flat-loss in amplitude, i.e. the reduction of all pixel 

amplitudes in a pattern by a fixed gain factor. This series is series 4 of the simulation.  

Again, the patterns presented are the T, J, and A sequence. The first run of series 4 presents 

these patterns without PV but with nonzero pixel amplitudes reduced to 0.75. Figure 17.12 

illustrates run 1. The network response is more or less indistinguishable from the series 1 

(amplitude = 1.0) cases seen after the network is trained. The network is robust to flat pattern 

amplitude reductions to 75% of the original level. This is due in part to the actions of the GN(2) 

stage and in part to the normalizing actions of the vi stage of F1.  

Run 2 of this series further reduced the nonzero pattern pixel amplitudes down to 0.20, i.e. 

20% of their original values. The results of this run are illustrated in figure 17.13. Here all 

patterns were correctly classified, but we can observe that no adaptation ever took place at all. 

What has happened is that the high-frequency noise terms are now large enough, relative to the 

pixel amplitudes, to prevent the network from detecting a resonance state. (Note how AR always 

remains in the high state during this run). Evidence of the high-frequency noise can be seen riding 
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Figure 17.13: Series 4 run 2. Here the pattern amplitude is reduced to only 0.20. Pattern variance is set to 

zero, but the background noise continues to be applied in the uniform distribution from (0, 0.01). 

 
Figure 17.14: Training attempt for pattern sequence T, J, analog X. 

atop the xi total excitation in the top-most figure. Only at one point, in the third presentation of J, 

does the network briefly detect resonance and undertake a single adaptation step. The conclusion 

that can be reached from this analysis is that the LTM coding is stable in the face of flat-gain 

amplitude variation, but that low-level signals applied to an untrained network will not be learned 

and classified when accompanied by a sufficient level of background noise.  

Run 3 of this series tests the network's response to more explicitly "analog" input patterns. 

Figure 17.14 illustrates the run. Here the applied sequence is T, J, and then the "analog X" pattern 

of figure 17.5. The network's initial state is untrained with randomized W and Z = 0.  
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Figure 17.15: Continuation of the run of figure 17.14. Encoding for T and J is completed at the conclusion of 
the previous run, but the encoding for the contrast-enhanced analog X pattern does not come to completion 

until its third presentation in this run. 

The network begins encoding the T and J patterns in the usual manner. However, the analog X 

pattern produces a quite different response. The F1 layer quickly contrast-enhances the analog X 

pattern to a 0-1 distribution even before layer F2 can begin to encode a pattern. The indicator for 

this is the rise, dip, and recovery of the total excitation of xk in the top figure of 17.14 early on in 

the presentation of "analog X."  

LTM encoding of the T and J patterns is essentially completed by the end of the run in figure 

17.14. LTM encoding of the 0-1 distribution, which is all that remains of "analog X" after F1 

carries out its contrast enhancement, takes longer. Figure 17.15 shows the continuation of the 

sequence immediately following the figure 17.14 run. Note how with each successive 

presentation of analog X the amount of time the network spends in a resonance state increases. 

LTM encoding of analog X (as a single non-zero weight in Wj and a corresponding single non-

zero weight in Zj) completed in the next presentation of analog X following the completion of the 

figure 17.15 run.  

In one sense, the network does succeed in encoding and classifying the patterns it is presented. 

However, in the case of the analog X pattern, only the single largest-amplitude pixel from figure 

17.5 is encoded. In a broader sense, it can be rightly said the network fails to classify analog X as 

an analog pattern. As was observed earlier, this network is essentially a binary-input ART 

network with a limited ability to handle pattern amplitude spreads within P.  

This, of course, brings up the question of how this network, once trained on T, J, and analog 

X, will respond to other patterns that share the single encoded pixel from analog X. Figure 17.16 
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Figure 17.16: Response of the network trained on T, J, and analog X to the sequence A, d, X. 

illustrates the response of the trained network to the sequence A, d, X (see figure 17.5). Here we 

can note that both the d and X patterns share the common pixel encoded by LTM from the analog 

X pattern.  

The network first attempts to classify the A pattern as a J, suffers a mismatch reset, and then 

classifies it as a T pattern. There is no recoding of either the J or T LTM due to the mismatch 

arousal level. The d pattern becomes contrast-enhanced to a 0-1 distribution shortly after F2 

becomes active and provides its Z⋅x2 feedback to the v1 layer of F1. The same thing happens to 

the X pattern. This is revealed by the total excitation patterns for xi and xk in the topmost part of 

the figure. No new non-zero weights were produced in either W or Z during this process, i.e. the 

LTM encoding was stable. This run illustrates that there is indeed no recoding of subset patterns 

by superset patterns in this network. Contrast enhancement in F1 is one mechanism for this, and 

mismatch arousal is the other protection mechanism.  

§ 5. Summary 

In this chapter we have introduced the basic concepts of the ART network and demonstrated 

them by means of an example network. Except for the use of the L2 norm in the mismatch detect 

function and the introduction of embedding field dipoles, all the components of this example 

network are those developed in the previous chapters. However, it will not have escaped the 

notice of the reader that the simulations took a somewhat large number of time steps. Since the 

actions of classification and adaptation occur only in the resonant state, considerations of 

computational cost reduction push us to ask: Is there no more efficient way to implement an ART 
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network? 

The answer to this question, as you might guess, is "yes." This is done by making further 

abstractions, not on the putative biological organization of the system but upon what is to be 

regarded as the "key" or "essential" outcomes of all these calculations. In other words, the next 

step in ART network modeling is algorithm development for more efficiently approximating the 

behaviors of networks such as the one demonstrated here. This brings us to the realm of the 

published ART network algorithms. We will take this up in more detail in the next chapter, where 

we will examine what is probably the most famous published ART network algorithm: ART 2.  
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