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ART 2 
 

§ 1. Basic Anatomy of ART 2 

The example ART network of chapter 17 has a basic functional limitation, namely that this 

network is only capable of handling binary-valued input signals or, at most, input signals that are 

basically binary-valued with some limited amount of pattern variance and noise (corrupted binary 

valued input signals). ART 2 networks do not have this limitation. 

Like other published ART networks, ART 2 is primarily an algorithm in which many of the 

fine details of adaptive resonance dynamics are omitted for the purpose of achieving better 

computational efficiency. The designation "ART 2 network" refers to a family of different ART 

networks rather than one single network topology. In this chapter we look at one such example, 

namely the ART 2 network discussed in detail in [CARP3]. Two other instances of ART 2 are 

also qualitatively presented in [CARP3]. Figure 18.1 illustrates the basic anatomy of ART 2. Like 

other ART networks, it consists of two fields, F1 and F2, an attentional/orienting subsystem, and 

an onset/offset reset inhibition function.  

§ 1.1 The F2 Field 

In principle, the F2 field is a contrast-enhancing dipole network similar to the one used by the  

 
Figure 18.1: Basic ART 2 anatomy. 
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network of chapter 17. In practice, the simulation of the F2 field is greatly simplified. You will 

recall from the Grossberg theorems of chapter 15 that one key property of shunting node Instar 

(SNI) on-center/off-surround networks is the preservation of excitation order from the initial 

condition of the network to the final condition. Specifically, if a node x2j(0) has the largest input 

at time index t = 0, it will also have the largest final node value in steady state. The F2 layer is, in 

principle and in design, intended to operate in the 0-1 distribution. Thus, its mathematical 

description can be reduced to a simple switching logic representation subject to certain 

qualifications.  

Let t0 denote a time index at which a change of input vector I is first presented to the network 

and the accompanying onset/offset reset function has been effected. Let Tj = Wj
T Pi where Pi is the 

F1 output vector depicted in figure 18.1 at time index t0 and Wj is the Instar weight vector for the 

jth node of F2. Let us further assume that associated with each node of F2 there is a dipole vector 

Ψ with elements ψj such that ψj = 1 if the jth node is in a state of dipole reset and ψj = 0 

otherwise. Then for t ≥ t0 and until F2 undergoes either in input/offset reset or a mismatch reset 

from the orienting subsystem, 

   ( ) ( ) ( )jjj tTtx ψ−⋅= 12                   (18.1) 

where x2j is the excitation variable of the jth F2 node and j lies in the range from 1 to N for an N-

node F2 layer.  

The output activation vector Yj = g(x2) is governed by a special form of step-function 

activation function. What makes this function special is that it has three modes of operation: (1) If 

x2 = 0, Yj = 0; (2) If there is a unique nonzero x2j(t0) = max(x2), then yj = d and yk≠j = 0. Here d is a 

system parameter in the range 0 < d < 1; (3) If the maximum nonzero x2j(t0) is not unique – that is, 

if two or more x2j(t0) excitations are tied for the maximum value – then g implements a tie-

breaking rule which selects yj = d at one node and sets the other competitors to yk = 0.  

Case (3) deserves some additional commentary. The reason for having a case (3) is to ensure 

that F2 operates in a 0-1 distribution. The activation function g when operating in this mode is 

called a select-first-responder function in the language of computer engineers. It is a standard 

function commonly employed in content-addressable memories and in computers that use what is 

known as a content-addressable parallel processor. There are a number of ways to implement this 

function in logic, e.g. [LAVE], and from the viewpoint that digital logic circuits are merely neural 

networks using McCulloch-Pitts neuron models, the select-first-responder function is not 

biologically unreasonable. However, the select-first-responder function is not compatible with the 
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nature of a Grossberg contrast-enhancing on-center/off-surround network, which would produce a 

locally uniform output distribution under the condition in which case (3) arises. Therefore, we 

must view the select-first-responder function within g(x2) as implying the CE function in F2 feeds 

into an additional network layer prior to Yj being presented at the F2 output vector in figure 18.1. 

All this detail is, of course, subsumed under the simple input-output description of F2 used by the 

ART 2 algorithm.  

It was stipulated above that once the F2 layer has made a choice (0-1 distribution output), this 

choice is maintained until F2 undergoes a reset from either the orienting subsystem (whereby the 

currently selected node has its ψj state variable set to 1) or from the onset/offset reset function 

(whereby all F2 nodes are reset and Ψ is reset to Ψ = 0). This characteristic of the F2 function 

implicates an F2 on-center/off-surround network in which the short term memory STM2 is 

persistent, i.e. Yj does not respond to changes in input once the final distribution has been 

established unless a reset inhibition intervenes. Again, the details of an on-center/off-surround 

SNI network having this characteristic are suppressed in the ART 2 algorithm. This operational 

condition of stable choice until reset [CARP3] is a vital function in ART 2. If F2 is not given this 

functional characteristic, the effects on the system dynamics are quite interesting. During the 

learning mode – when LTM categories are being established – the absence of this operational 

characteristic of F2 leads to what can justly be called hallucinations. In a manner of speaking, the 

network "sees things that aren't there" or "hears voices" or "suffers from an over-active 

imagination." It thereafter often resets when presented input vectors it had previously "learned" – 

a sort of neural network version of autism.  

§ 1.2 The F1 Field 

Like the ART network presented in chapter 17, the F1 field of ART 2 is a contrast-enhancing 

field. However, the manner in which this field is implemented is quite different from our earlier 

example. Figure 18.2 illustrates the details of a single node in the F1 field. The node is comprised 

of a three-layer network structure consisting of network maps wi, vi, pi, xi, ui and qi. It also 

contains three nonspecific gain networks projecting into the F1 node from the other nodes in the 

F1 layer, and three nonspecific gain networks associated with the mismatch-reset function of the 

orienting subsystem. The nonspecific networks are shown in green in figure 18.2. For the F1 field 

as a whole, we refer to the vectors representing the various maps as Wi, Vi, Pi, Xi, Ui, and Qi. The 

"+" superscripts in figure 18.2 denote projections from the other nodes in F1. Maps wi, vi, and pi 

are shunting node Instars of type SNI(4). The other three are maps implement normalization. The 

figure also depicts the mismatch-reset operation of the orienting subsystem.  
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Figure 18.2: Details of the ART 2 F1 field. The F1 nodes do not have any immediate lateral connectivity to 

each other, although there is an indirect connection by means of the nonspecific gain nodes (shown in green 
in this figure). Each F1 node is comprised of a three-layer recurrent neural network of SNI(4)-type Instars. The 
figure also depicts the structure of the mismatch-reset function of the orienting subsystem (pink elements). 

The F1 nodes have no direct lateral interconnections. The only source of lateral connectivity in 

F1 is the indirect connection via the nonspecific gain maps. Thus each six-map F1 node operates 

independently of the others except for the normalization functions. SNI(4) parameters are chosen 

such that steady state is reached within one time step of the simulation and   
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Here a and b are network parameters. Typically a = b. In [CARP3] these parameters are set equal 

to 10; in the examples presented in this chapter, they are set equal to 5. Zi is, of course, the top-

down LTM vector for the ith node of F1 (a row vector in Z). The activation function f is not the 

typical activation function used in adaptive resonance theory. Instead, it is a form of thresholding 

Heaviside extractor with threshold parameter θ defined by 
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It is assumed that the gain networks (the three W, V, and P nodes in figure 18.2) project a 

nonspecific gain to the normalization maps xi, ui, and qi in each layer of F1. The details of this are 

left out of the ART 2 algorithm and merely the end result is reflected in the definition of the map 

functions. The algorithm uses the L2 norm for its normalization gain function so that  
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All maps in F1 are presumed to reach steady state (i.e. adaptive resonance) within one time 

step of the simulation. This means (18.2) gives the equations for the next values of the map 

variables and likewise for (18.4). This is the standard discrete-time state variable formulation for 

system models, i.e. the left-hand side of the equation is the next time step value and the right-

hand side is the current time step value.  

An exception occurs when a mismatch-reset is generated by the orienting subsystem. Such a 

reset clears the currently-activated node of F2, and it is presumed that this clearing is reflected in 

the F1 layer within the current simulation time step. The way this is implemented is to set the 

presently active yj equal to zero and to re-compute (18.2) using Yj = 0. Specifically, (18.2) is 

computed as shown, the mismatch condition is calculated, and if mismatch occurs then the reset-

clear-compute again calculation is made. The algorithm presumes an adaptive resonance is 

always set up within a single time step in the simulation, and this is one of the reasons why the F2 

layer is computed in the way it is, and one of the reasons why the stable-choice-until-reset 

constraint is necessary.  

§ 1.3 Mismatch, Reset, and the Orienting Subsystem 

Other than for a few differences in detail, the mismatch-reset function in ART 2 is essentially 

the same as the one used for the example network in chapter 17. Each F1 node contributes to a 

pattern match vector r = [r1 ⋅ ⋅ ⋅ rn]. For the ith node, 

   
ii PU ⋅++

⋅+
=
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pcur ii

i ε
                  (18.5) 

where ε is any small positive constant and is used to prevent divide-by-zero errors. c is a network 

parameter, which is set to c = 0.1 for the example simulations of this chapter.  
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A mismatch is declared when the length of the r vector falls below a vigilance parameter, ρ. 

Specifically, F2 is reset whenever ρ > ||r|| and input pattern I has one or more elements Ii that 

exceed a "no pattern" threshold. (Resets are not enabled in the absence of an input I). As noted 

above, when an F2 reset is issued the F1 field is presumed to respond quickly enough to Yj = 0 so 

that the next state of F1 is determined from the original state with Yj = 0 in (18.2). Dipole resets in 

F2 are persistent, i.e. once an F2 node undergoes a mismatch reset, its dipole state remains in the 

reset condition until it is cleared by an onset/offset reset.  

The normalizations in (18.5) and in ρ > ||r|| are directly computed in the ART 2 algorithm and 

the details of the nonspecific gain networks associated with these operations in figure 18.2 are left 

unspecified. The comments made in chapter 17 regarding the use of the L2 norm in ART models 

apply as well to the ART 2 algorithm.  

§ 1.4 Adaptation 

Adaptation is carried out using the IAR for bottom-up weight matrix W and the OAR for top-

down weight matrix Z. (Note that the weight matrix symbol W is not the same as the F1 map 

vector Wi). In difference equation form,  
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Because it is assumed that F1 and F2 come to a state of adaptive resonance within one time step of 

the simulation, (18.6) is applied in each time step after (18.1)-(18.5) have been calculated and the 

mismatch reset operation has been determined. When a reset event is activated during a 

simulation step, (18.6) is not applied because Yj = 0 in this case. Likewise, adaptation is not 

applied if the input vector I is below the "no pattern" threshold. Note that (18.6) is a straight 

difference equation and contains no ∆t term. This is because F1 and F2 are modeled by the steady 

state expressions and the ART 2 algorithm involves no explicit numerical solution of any 

differential equation. Note also that g(x2j) equals either d or 0, depending on whether F2 node j is 

the selected node or one of the not-chosen or reset nodes.  

One computational advantage of this in the ART 2 algorithm is that so-called fast learning is 

possible. In the example network of chapter 17, where numerical solutions for differential 

equations were required, the learning rate constant η was limited to rather small values (η = 0.02 

in chapter 17). For ART 2, η can be set to considerably higher values, e.g. tenfold or so greater, 

without concern that this faster learning rate will lead to numerical errors. In this sense, the 

difference between ART 2 and the network of chapter 17 is similar to the difference between 
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Rulkov's map model and Izhikevich's differential equation model of the abstract neuron, and for 

the same reason. ART 2 begins in difference equation form, whereas the network of chapter 17 

begins in differential equation form and must be converted to difference equation form. The net 

practical result is that ART 2 is a much faster-to-compute model with more than an order of 

magnitude advantage in cost-of-computation over the lower-level model of chapter 17. Indeed, in 

overall speed and cost-of-computation terms, ART 2 outperforms most other neural network 

models, e.g. feedforward network models using the famous back-propagation algorithm, in 

learning problems of equal complexity. Other comparisons between ART and alternative models 

are discussed in [GROS10].  

§ 2. ART 2 Simulation Examples 

As illustrations of the behavior of ART 2, we will look at several simulation examples for an 

ART 2 network with n = 25 nodes in F1 and N = 3 nodes in F2 (the same basic widths as used in 

the example network of chapter 17). In all cases, the network parameters are a = b = 5, c = 0.10, 

and d = 0.90. We will also use η = 0.2, ten times faster than the value used in the network of 

chapter 17. ART 2 is capable of faster learning performance, as we will show here. For our test 

cases we will use the same input patterns from chapter 17 shown in figure 16.5.  

§ 2.1 Initial Pattern Classification 

LTM matrices Z and W must always be initialized to some starting values. For ART 2, as for 

the network of chapter 17, the initial setting for the top-down weights is Z = 0. For the bottom-up 

weights, we will initialize W to random settings with a uniform distribution. One requirement of 

ART 2 is that initial weight values satisfy the constraint ( )( )ndwij ⋅−≤ 11 . Strictly speaking, 

this constraint applies when the initial weight distribution is uniform (all wij(0) values equal), but 

it is a sufficient condition in any case for ensuring reliable initial learning behavior in the 

network. However, it remains necessary to enforce the stable-choice-until-reset constraint on the 

network even if wij(0) values all satisfy this constraint. This is because the magnitude of Pi 

increases as learning progresses and it can be empirically observed that "node switching" in F2 

(i.e., changes in which node has the maximum x2j value) can occur during the network's initial 

pattern presentations if the stable-choice-until-reset constraint is not applied. This mechanism can 

and often does lead to the network suffering from "hallucinations" in its initial learning phase.  

For our initial-learning example we present the network with the pattern sequence aX ("analog 

X"), d, and J (see figure 16.5). This sequence is chosen because this pattern set has overlapping 

"pixels" between each pair of input patterns. It is therefore a more challenging learning problem 
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for the network than is the case when the initial categories are established for input patterns that 

share no common features. The reader is also reminded that the network of chapter 17 was 

incapable of learning the aX pattern because of that network's contrast-enhancing properties in its 

F1 field. As we will see shortly, ART 2 has no difficulty categorizing this pattern.  

Figure 18.3 illustrates the initial learning sequence. Each pattern is learned upon first 

presentation within the dwell time of the pattern application. The F2 node categories assigned are 

shown in the figure. LTM is completed within the first presentations, so upon the second 

presentation of the aX-d-J sequence, the network directly accesses the correct categories for each 

pattern. No mismatch resets occur at any time during this run.  

The robustness of the learned categories are tested by applying an A-O-T-fJ-sJ-X pattern 

sequence. (fJ = "fat J"; sJ = "shifted J"). All but the sJ pattern are defined in figure 16.5. The sJ 

pattern is identical to the J pattern except for being shifted one pixel column to the left in the 

retina (see figure 18.5). In this position, the sJ pattern is actually a subset of the d pattern, being 

identical to it except for four zero-valued pixels.  

 
Figure 18.3: Response of ART 2 network to analog X, d, J pattern sequence. The sequence is presented to 
the network twice in this simulation. The input patterns are effectively stored in LTM after one presentation 

and properly classified when they are repeated in the latter half of the run. 

583 



Chapter 18: ART 2 

 
Figure 18.4: Response of the trained network to the pattern sequence A, O, T, fJ, sJ, and X. The network 

undergoes mismatch resets for the A, O, T, and fJ patterns, resulting in x2 = 0 responses (no classification). 
The sJ pattern is a subset of the d pattern, and the network recodes its LTM for d to match the sJ pattern. 

However, upon subsequent re-presentation of d, the network correctly classifies the d pattern into F2 node 3 
(its original classification category). The network recognizes the X pattern as the same category as the 

analog X. Alternating presentations will recode this category between analog X and X but without 
misclassifying either pattern. 

Figure 18.4 illustrates the response of the network to this sequence. The A, O, T, and fJ 

patterns all produce mismatch resets for each category in F2, thus indicating a "no classification" 

response with x2 = 0 for all four patterns. If F2 had more than N = 3 nodes, it would have learned 

new classification codes for these patterns. The sJ pattern is recognized by the classification 

category established for the d pattern. However, because the d is a superset pattern of the sJ, the 

LTM for category 3 (originally the category for the d pattern) is re-coded to represent the sJ. A 

subsequent presentation of the d pattern (not shown in the figure) results in d still being properly 

classified as category 3; in other words, the superset pattern is subsumed under the subset 

category. This, however, did not happen in the case of the fJ pattern; the network's vigilance 

setting results in fJ being distinguishable from the normal J pattern.  

The X pattern is identical to the analog X pattern except for its pixel amplitudes. The network 

recognizes X using the analog X category. However, it also adapts the LTM weights for this 
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category, resulting in a weight encoding roughly midway between the weight magnitudes for the 

two patterns. Continued re-presentation of X will result in a re-coding of category 2 to represent 

the X pixel amplitudes. Nonetheless, re-presentation of analog X is properly classified into this 

category (and, indeed, LTM will be adapted back toward the original analog X settings).  

Categories, once learned, are not absolutely robust. As was just illustrated, the subsequent 

application of a pattern that is a subset of a learned pattern can result in re-coding of LTM to 

represent the subset pattern, depending on the setting of the vigilance parameter. The sJ vs. d 

pattern is an example of this. There are, however, other patterns that are subsets of the sJ. One of 

these is the "I" pattern illustrated in figure 18.5. 

Just as the network recoded the LTM for the d-pattern into an LTM for the sJ pattern, so too 

will it recode the LTM for the sJ into an LTM encoding for the I pattern if this pattern is 

presented. Figure 18.6 illustrates the outcome of a sequence I-I-I-d-sJ-d applied to the network 

after it had recoded the LTM for category 3 (formerly d, now sJ). The network classifies the first 

presentation of the I pattern under its category for sJ/d (category 3). However, it also adapts its 

LTM to this new input pattern, resulting in an LTM weight distribution that matches the I pattern. 

The network still recognizes the sJ pattern under this category, but now fails to recognize the 

original d pattern. Instead, upon presentation of the d pattern, the network generates mismatch 

resets which result in the d pattern becoming unclassified. Thus, at high vigilance the network 

"prefers" subset patterns. This behavior is in keeping with the ART network property that 

subsets should not be re-classified by superset patterns. But, as we can easily see, there is no 

similar restriction that says supersets cannot be recoded by subsets.  

This particular situation arises from the use of high vigilance (ρ = 0.95) in the simulation runs 

  
shifted J (sJ) pattern          I pattern 

Figure 18.5: Illustrations of the sJ and I patterns. The I pattern is a subset pattern of the sJ, which is itself a 
subset pattern of the d pattern. 
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Figure 18.6: Response of the network to an I-I-I-d-sJ-d pattern. The network learns the new subset pattern 

(I) and recognizes the sJ in this new classification. However, it now fails to recognize the d pattern with 
which it was originally trained. Application of the d pattern produces mismatch resets. 

for the network. Lowering the vigilance parameter will allow the supersets sJ and d to both be 

classified under the LTM encoding for the I pattern. This is illustrated in figure 18.7 for the case 

where ρ = 0.90. Here the I, d, and sJ pattern are all classified under the category the network 

establishes for the I pattern.  

The ART network literature often makes it a point to stress how LTM pattern classifications 

are robust and immune from being recoded by later patterns. As this example illustrates, this 

claim is a bit too broad in networks where the vigilance parameter is set to a high value for 

making fine discriminations among pattern differences. It is the nature of ART 2 to "prefer" 

subset patterns to superset patterns in its adaptation responses when vigilance is set high. Since 

the number of nodes in F2 is always limited, it is simply a matter of time before all category nodes 

are committed and the recoding issue just demonstrated surfaces. LTM robustness to recoding is 

not absolute nor absolutely independent of pattern presentation order. One method of dealing with 

this issue is to place the vigilance parameter under the control of a second ART 2 network. When 

this is done, the resulting overall structure is called an ARTMAP [CARP5]. 
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Figure 18.7: Network response to the I-I-I-d-sJ-d sequence with the vigilance parameter lowered from 0.95 

to 0.90. The network now classifies all three patterns under the same category. 

ARTMAP networks were first introduced as supervised learning networks, which at face value 

would seem to go against Grossberg's oft-repeated objections to the biological realism of 

networks that rely on a "teacher." However, as was noted earlier in this text, supervised does not 

necessarily imply teacher because systems with an actor-critic organization are, in a sense, self-

supervised. Indeed, another name for ARTMAP networks is predictive ART, which is a 

functional behavior that advanced actor-critic systems are known for.  

Piaget's many years of research revealed that the child in the sensorimotor stage of 

development does not adapt his sensorimotor schemes unless the scheme is frustrated (fails to 

produce the anticipated outcome) [PIAG8]. This, as it turns out, is one of the key ideas in 

ARTMAP as well. The vigilance parameter is made elastic and is adjusted by a second ART 

network, using the minimal amount of adjustment needed to satisfy the comparison of the actual 

to predicted outcomes. This behavior is consistent with what the infant does in the early stages of 

sensorimotor development.  

Generally speaking, high vigilance promotes fine discrimination of differences between input 

patterns, while low vigilance tends to promote grosser classifications. There are tradeoffs 
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involved in the vigilance parameter setting. As the examples above illustrate, whether a superset 

pattern is classified in a subset category (sJ into I, for example) or is rejected by mismatch resets 

(fJ vs. J, for example) depends on both the vigilance setting and on the degree of difference 

between input patterns.  

§ 3. Systematic ART 

For many years now a great many neural network theorists – especially those who subscribe to 

what is known as the "parallel distributed processing" or PDP school of thought – have promoted 

the idea of a universal function approximator network. The UFA might be described as a "one 

anatomy fits all" network architecture. Critics of this idea – your author is one of them – tend to 

regard the UFA as a fantastic idea, i.e. as an idea that in practice is the idea of a fantasy.  

In principle, connectionist networks offer all the potential of universal computing devices. 
However, our examples of order and coefficient size suggests that various kinds of scaling 
problems are likely to become obstacles to attempts to exploit that potential. Fortunately, our 
analysis of perceptrons does not suggest that connectionist networks need always encounter 
these obstacles. Indeed, our book is rich in surprising examples of tasks that simple perceptrons 
can perform using relatively low-order units and small coefficients. However, our analysis does 
show that parallel networks are, in general, subject to serious scaling phenomena. Consequently, 
researchers who propose such models must show that, in their context, those phenomena do not 
occur. 

The authors of PDP seem disinclined to face such problems. They seem content to argue 
that, although we showed that single-layer networks cannot solve certain problems, we did not 
know that there could exist a powerful learning procedure for multilayer networks – to which 
our theorems no longer apply. However, strictly speaking, it is wrong to formulate our findings 
in terms of what perceptrons can and cannot do. As we pointed out above, perceptrons of 
sufficiently large order can represent any finite predicate. A better description of what we did is 
that, in certain cases, we established the computational costs of what perceptrons can do as a 
function of increasing problem size. The authors of PDP show little concern for such issues, and 
usually seem content with experiments in which small multilayer networks solve particular 
instances of small problems. 

What should one conclude from such examples? A person who thinks in terms of can vs. 
can't will be tempted to suppose that if toy machines can do something, then larger machines 
may well do it better. One must always probe into the practicality of a proposed learning 
algorithm. It is no use to say that "procedure P is capable of learning to recognize pattern X" 
unless one can show that this can be done in less time and at less cost than with exhaustive 
search [MINS: 264-265]. 

Small neural network systems are adequate for a great many engineering tasks, but our object 

of study in computational neuroscience is the central nervous system. It is here where issues of 

"problem size, scaling, and learning procedures" on the large scale are unavoidable. Furthermore, 

the most rudimentary examination of anatomical and physiological organization in the brain tends 

to implicate neural structure as being comprised of a large number of different network anatomies 

rather than a single one-anatomy-fits-all schema of nature.  

Is ART guilty of the UFA fantasy? Certainly at times it is easy to get the idea from published 
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papers that the UFA is what is being pursued by ART theorists. But, on the other hand, most of 

the interesting mainstream ART research involves the application of ART (which, the reader is 

reminded, is a theory and not just a network) in the context of larger scale systems. Within these 

larger scale systems one finds a number of different anatomies presented.  

It is true enough that the on-center/off-surround anatomy is of central importance in ART. It is 

likewise true that this anatomy is employed over and over again in a great many central systems. 

But one should not over-generalize this and say that only network-systems-of-network-systems 

comprised of this anatomy are needed to represent brain function. It is true enough that many of 

the ideas contained in embedding field theory no longer seem to get much print in the literature. 

But, as Grossberg has pointed out, there are numerous instances where other network structures 

play an important role. This is especially the case when one is dealing, not merely with atomized 

"patterns" at a snapshot moment in time, but with pattern sequences – what Damasio has termed 

"type II binding codes." One of the early fruits of embedding field theory research was the 

Outstar avalanche [GROS11-12], depicted in simplified form in figure 18.8.  

Grossberg was able to show that adaptation rules exist for networks such as the one depicted 

in the example figure, and that such networks are capable of producing arbitrary spatio-temporal 

patterns. Other ART research publications present systematic anatomies in which are found ART 

cascades [CARP4], various recurrently-linked ART networks [CARP5], and, more recently, very 

elegant large-scale models organized into networks of ART networks [LEVId]. Although such 

model architectures are as different as can be from the idea of a UFA, these models do appear to 

be more "brain-like" than any single UFA architecture could claim to be. Minsky and Papert 

remarked, 

 
Figure 18.8: Simplified illustration of an Outstar avalanche network. An originating signal from a source 

network passes through a sequence of delays to activate a sequence of Outstar maps. These project to a 
target network to produce a time sequence of activation patterns. This particular example is a simple one 
and more complex cases, including those with retrograde feedback from the target network to the source 

network, are also possible. 
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We think that the difference in abilities comes from the fact that a brain is not a single, 
uniformly structured network. Instead, each brain contains hundreds of different types of 
machines, interconnected in specific ways which predestine that brain to become a large, diverse 
society of partially specialized agencies. . .  

Why did our brains evolve so as to contain so many specialized parts? Could not a single, 
uniform network learn to structure itself into divisions with appropriate architectures and 
processes? We think this would be impractical because of the problem of representing 
knowledge. . . It makes no sense to seek the "best" network architecture or learning procedure 
because it makes no sense to say that any network is efficient by itself: that makes sense only in 
the context of some class of problems to be solved. . . This means that the study of networks in 
general must include attempts, like those in this book, to classify problems and learning 
processes; but it must also include attempts to classify network architectures [MINS: 273-274]. 

A computer engineer – especially an older one – might look at the systematic models in the 

ART literature and be reminded of a great many digital networks that have come and gone over 

the years in computer design. Indeed, prior to the 1970s most computer designs even included 

digital networks that were nothing less than Outstar avalanche networks in everything but name! 

That most of these older design methods passed out of favor is due principally to advances in 

technology that made different design approaches more economical and profitable, not to 

particular shortcomings in the older designs.  

In neuroscience we have a specific object of interest – namely the human brain – and this 

object provides the central focus for all our research. Systematic ART is the name your author 

gives to large-scale ART-based brain modeling research aimed at discovering functional network 

system and large scale network-of-networks anatomies capable of explaining psychophysical 

phenomena while, at the same time, also possessing the quality of linkage to biological findings 

and models at the lower levels in the hierarchy of scientific reduction. To carry out such a 

research program requires one to have knowledge of both psychology (the objects of which are 

supersensible) and biology (the objects of which are sensible objects accessible to physical 

measurements).  

There is a great deal more that can and should be said about this subject. This, however, would 

carry us past the introductory level to computational neuroscience, this fascinating young science 

many of us feel holds the key to one day achieving a complete understanding of the human brain 

and the phenomenon of mind. Many of us, including your author, think neuroscience is destined 

to be the science of the twenty-first century. But as an introduction to the subject, the objective of 

this book has now been met and so the time has now arrived to bring this work to a close and say 

 

           finis. 
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