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Chapter 14 The Mathematics Framework        

§ 1.  The Definitional Problem of Mathematics    

What is mathematics? This question echoes the question, "What is language?" from chapter 
13. Like language, the definition of mathematics is taken for granted by most people, including 
most mathematicians. And, as is usually the case for ideas we take for granted, the question goes 
deeper than one might think. Unlike 'language,' the term 'mathematics' has a technical dictionary 
definition accepted by the community of mathematicians. It is:  

mathematics The study of numbers, shapes, and other entities by logical means. It is 
divided into pure mathematics and applied mathematics, although the division is not a 
sharp one and the two branches are interdependent. Applied mathematics is the use of 
mathematics in studying natural phenomena. It includes such topics as statistics, 
probability, mechanics, relativity, and quantum mechanics. Pure mathematics is the study 
of relationships between abstract entities according to certain rules. It has various branches, 
including arithmetic, algebra, geometry, trigonometry, calculus, and topology. [Nelson 
(2003)]  

Insofar as the named topics are concerned, these are passively accepted in the American 
institution of education and in the institutions of other nations as well. However, it is important to 
recognize that merely naming a list of topics does not define what 'mathematics' is any more than 
'knowledge' can be defined by naming items of knowledge such as 'knowledge of shoemaking' or 
'knowledge of furniture making' [Plato (date uncertain), 146a-148c]. Only the first sentence above 
might be a definition of 'mathematics.' But is it?  

First, it says mathematics is the study of something. This means that balancing your check-
book is not mathematics. When a physicist studies some natural phenomenon, that is not mathe-
matics. When a civil engineer designs a bridge, that is not mathematics. In none of these cases is 
the doer "studying numbers, shapes, and other entities by logical means" unless we declare that 
whatever activity he is doing is 'mathematics' – a definition by fiat. One can argue that in cases 
like these and countless others the doer is "using" mathematics and that "using mathematics" 
means he is making use of knowledge from studies implied by the dictionary definition. This is 
not an unreasonable way to look at it and most people accept the "using" distinction. But "using 
knowledge" is not the same thing as studying something. Logically, it would have to be 
concluded that mathematics is done by almost no one except professional mathematicians, 
schoolchildren, and some college students – mathematicians because it is their job, children 
because our Society makes them do it, and collegians either because someone makes them do it 
or because they want to do it. But what about 'mathematics' makes it worthwhile for everyone to 
learn it? What is it we want schoolchildren to learn? What is "mathematical knowledge"?  

In my "mind's ear" I can hear complaints that I am quibbling about this, so let's move on to my 
second point. What makes 'numbers, shapes, and other entities' objects of mathematics? If you 
logically plan out how you are going to roll your bowling ball or select your golf club for your 
next shot, why aren't these "mathematics"? Or shall we say they are? If we did, my friends in the 
math department would be horrified, and I don't want to horrify them. They're good folks and 
really are "seekers of truth" provided the truth being sought is "mathematical truth." What, then, 
is an "object of mathematics" and, equally important, what is not? Is the study of what sorts of 
knots can be tied with a rope an object of mathematics? You might not think so, but that topic is 
called "knot theory" and is officially regarded as a branch of geometry. If he were a real person, 
presumably Popeye the Sailor would have been a mathematician specializing in knot theory. If 
your mother or grandmother knits, presumably she, too, would have been a mathematician at one 
time. Popeye, your mom, or your grandma would each have been an "applied" mathematician.  
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The plain fact is that any study of any "entity" that the mathematics community agrees to call 
an object of mathematics is ipso facto made to be "mathematics." The dictionary definition above, 
consequently, is one that is so open-ended that it cannot properly be called a definition at all.  

And that is my point regarding this 'official definition' of mathematics. It doesn't actually 
define anything. This won't do if we are to understand what to teach learners and how to instruct 
them within the mathematics framework of public education. The thing causing the problem is 
the way people "look at the world." The prevailing ways of looking, focused as they are on 
objects, are nothing else than divers species of ontology-centered metaphysics. The definitional 
problem of mathematics will not be solved until we take an epistemology-centered metaphysic as 
our "way of looking at the world." I will be presenting this way of looking at it shortly.  

To understand all these things, it helps to begin with a look back in history to find out where 
the notion of "mathematics" came from in the first place. Mathematics historians generally agree 
that mathematics properly so-called began with the Greeks around 600 BC and developed out of 
empirical ideas and practices known to the Phoenicians and the Egyptians [Ball (1908), pp. 1-10]. 
Math historian D.E. Smith tells us,  

 When we attempt to define "mathematics" we find ourselves encircled by unexpected 
limitations, and these limitations are still more in evidence when we change the term to 
"elementary mathematics." If mathematics means that "abstract science which investigates 
deductively the conclusions implicit in the elementary conceptions of spatial and numerical 
relations," as the Oxford Dictionary defines it, then the history of mathematics cannot, 
strictly speaking, go back much earlier than the time of Thales (c. 600 BC), a relatively 
modern writer if we consider the antiquity of the [human] race. Such a limitation, however, 
would not be a satisfactory one, for it would withdraw from our consideration those early 
steps in the development of the science which have great interest to the student and which 
are of value in considering the education of the individual.  

 It is well, therefore, to discard such niceties of definition and to take a broader view of 
the case, seeking to tell the story of the genesis of mathematics even before the period in 
which the science, as it was defined above, began to exist. [Smith (1923), pp. 1-2]  

Historians, as Smith illustrates here, are not immune to the definitional problem. What is usually 
done, as a result, is to try to draw a fine distinction between a "science" of mathematics and what 
is likely best called a "craft" of "the art of calculating" and a "craft" of land surveying. The former 
came to the Greeks mainly from the Phoenicians, the latter mainly from the Egyptians.  

Transformation of these ancient crafts into what would become "mathematics" coincided with 
the birth of philosophy and is historically credited to Thales of Miletus (c. 640-550 BC) and 
Pythagoras of Samos (c. 569-500 BC). What distinguishes Thales is that he was the first Greek 
thinker to reject mythology in explanations of the natural world and to introduce the use of formal 
deductive reasoning. Pythagoras is credited with founding the first "school" of philosophy and of 
what would become "mathematics." Our word "mathematics" derives from the Greek word 
mathema (µάθηµα), which itself derives from mathein (µαθεîν) or "that which is learned." In this 
Greek root we can draw the first contrast between the dictionary definitions above and what was 
the essential character of Greek mathematics. The modern definitions specialize the word to refer 
to objects such as numbers or shapes. It is true that the ancient Greek mathematicians did quickly 
come to use such objects as objects of mathematics, but note that coming to this usage followed 
their practice rather than defined it. To put this another way, the Greeks did not start out with 
numbers, shapes, etc. and invent a science (mathematics) for them; rather they started out with a 
practice for deducing truths about the physical world and found numbers, shapes, etc. to be the 
concepts that seemed to them most useful and fecund for doing so. Perhaps this is a gossamer 
distinction, but it is one that is fundamental to answering the question, "What is mathematics?"  
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There are two things I think are important in understanding the original idea of mathematikos 
(µαθηµατικος) held by the early Greek philosophers. The first is that the Greeks were meta-
physical realists in the way they looked at the world. The second is that they were pragmatic 
theorists in the "business" context of the word pragmatic. They were not motivated to explore 
geometry and numbers by idle curiosity but rather by desire and intent to put knowledge of these 
things to work. We are told by ancient authors that Thales made himself a rather wealthy man by 
putting his mathema ("lessons") to work for himself. Archytas the Pythagorean (c. 428-347 BC), a 
contemporary and friend of Plato, was reported by Porphyry to have written,  

 The mathematicians seem to me to have arrived at true knowledge, and it is not surprising 
that they rightly conceive the nature of each individual thing; for, having reached true 
knowledge about the nature of the universe as a whole, they were bound to see in its true 
light the nature of the parts as well. Thus they have handed down to us clear knowledge 
about the speed of the stars, and their risings and settings, and about geometry, arithmetic 
and sphaeric, and, not least, about music; for these studies appear to be sisters. [Thomas 
(1939), pg. 5]  

Archytas is famous today as an ancient mathematician but, like other ancient Greeks, he in no 
way fits the not-uncommon modern picture of a Greek philosopher as a couch potato spending his 
days lying about lost in dreamy contemplation. Diogenes Laertius tells us,  

 Aristoxenus says that [Archytas] was never defeated during his whole generalship, 
though he once resigned it owing to bad feeling against him, whereupon the army at once 
fell into the hands of the enemy.  

 He was the first to bring mechanics to a system by applying mathematical principles; he 
also first employed mechanical motion in a geometrical construction, namely, when he 
tried, by means of a section of a half-cylinder, to find two mean proportionals in order to 
duplicate the cube. In geometry, too, he was the first to discover the cube, as Plato says in 
Politeía. [Diogenes Laertius (c. 3rd century AD), vol. II, pp. 395-397]  

No contemporary mathematicians who are also generals leading armies come easily to mind. In 
like manner, if an ancient Roman general was still around we might ask him if he regarded 
Archimedes of Syracuse to be an idle or impractical speculator. He would answer, "No."  

Realism and scientific pragmatism characterized mathematics from its beginning and were 
held as tenets by mathematicians until the late 19th century. After Plato the view of "what 'reality' 
really is" took mathematicians down a trail leading to what would have to be called 'idea realism' 
or 'immaterialism.' For example, in c. 100 AD Nichomacus of Gerasa wrote,  

 The ancients, who under the leadership of Pythagoras first made science systematic, 
defined philosophy as the love of wisdom. Indeed, the name itself means this, and before 
Pythagoras all who had knowledge were called "wise" indiscriminately – a carpenter, for 
example, a cobbler, a helmsman, and in a word anyone who was versed in any art or handi-
craft. Pythagoras, however, restricting the title to apply to the knowledge and com-
prehension of reality, and calling the knowledge of the truth in this the only wisdom, 
naturally designated the desire and pursuit of this knowledge 'philosophy,' as being the 
desire for wisdom.  

 He is more worthy of credence than those who have given other definitions, since he 
makes clear the sense of the term and the thing defined. This "wisdom" he defined as the 
knowledge, or science, of the truth in real things, conceiving "science" to be a steadfast and 
firm apprehension of the underlying substance, and "real things" to be those which 
continue uniformly and the same in the universe and never depart even briefly from their 
existence; these real things would be things immaterial, by sharing in the substance of 
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which everything else that exists under the same name, and is so called, is said to be "this 
particular thing," and exists. [Nichomacus (c. 100 AD), pg. 811]  

By the time of the Enlightenment the community of philosophy and science had come to 
regard mathematics as the last bastion of rationalism and the sole bulwark resisting the rising tide 
of British empiricism. The practical successes of empiricism following Newton's Principia 
seemed to be sweeping over all of science, but the Principia itself relied upon mathematics for its 
deductive power. This put the philosophy of rationalism and that of empiricism at odds with one 
another in a pitched battle (and this despite the mortal wounds to both philosophies that the 
skepticism of Hume had inflicted; both camps answered Hume's criticisms by ignoring them). To 
the Enlightenment thinkers it did seem that mathematical rationalism was unassailable and that 
what Davis & Hersh call "the Euclid Myth" was not at all mythical. All this changed radically in 
the 19th century when mathematics was overtaken by what came to be called 'the crisis in the 
foundations' of mathematics. Davis & Hersh tell us,   

 There are two strands of history that should be followed. One is in the philosophy of 
mathematics; the other is in mathematics itself. For the crisis was a manifestation of a long-
standing discrepancy between the traditional ideal of mathematics, which we can call the 
Euclid Myth, and the reality of mathematics, the actual practice of mathematical activity at 
any particular time. . . .  

 What is the Euclid myth? It is the belief that the books of Euclid contain truths about the 
universe which are clear and indubitable. Starting from self-evident truths, and proceeding 
by rigorous proof, Euclid arrives at knowledge which is certain, objective, and eternal. 
Even now, it seems that most educated people believe in the Euclid myth. Up until the 
middle or late nineteenth century, the myth was unchallenged. Everyone believed it. It has 
been the major support for metaphysical philosophy, that is, for philosophy which sought 
to establish some a priori certainty about the nature of the universe1. . . .  

In [the battle between rationalism and empiricism] both sides took it for granted that geo-
metrical knowledge is not problematical, even if all other knowledge is. . . . For the 
rationalists mathematics was the best example to confirm their view of the world. For 
empiricists it was an embarrassing counterexample which had to be ignored or somehow 
explained away. . . . This embarrassment is still with us; it is a reason for our difficulties 
with the philosophy of mathematics. . . .  

 In the nineteenth century, several disasters took place. One disaster was the discovery of 
non-Euclidean geometries, which showed that there was more than one thinkable geo-
metry. A greater disaster was the development of analysis so that it overtook geometrical 
intuition, as in the discovery of space-filling curves and continuous nowhere-differentiable 
curves. These stunning surprises exposed the vulnerability of the one solid foundation – 
geometrical intuition – on which mathematics had been thought to rest. The loss of 
certainty in geometry was philosophically intolerable, because it implied the loss of all 
certainty in human knowledge. [Davis & Hersh (1981), pp. 323-331]  

Davis & Hersh go on to describe the desperate but all-in-vain efforts of mathematicians up 
through the first third of the twentieth century to fix 'the crisis in the foundations' and restore 
apodictic certainty to mathematics. Their strenuous efforts met their Waterloo with the discovery 
of Gödel's theorems, which put a stake through the heart of mathematicians' efforts to resolve 'the 
crisis in the foundations' and moved them to give up on it. This did not mean that empiricism won 
out. Empiricism had been dealt a deathblow by Hume, the Great Skeptic whose criticisms of 
empiricism's foundations are unanswerable by any ontology-centered metaphysic.  

This brings us to the Critical Philosophy and epistemology-centered metaphysics. Analyzed 
                                                 
1 This 'metaphysical philosophy' by another name is called 'rationalism.'  

434 



Chapter 14: The Mathematics Framework  Richard B. Wells 
© 2014 

from epistemology-centered grounds, the eventual failure of the ancient metaphysical position 
taken up by mathematics practitioners was inevitable and unsurprising because that metaphysic 
seeks to draw a real division between 'mathematics' and the mathematician who carries out the 
mathematical work. But there is no mathematics without the mathematician. Echoing Protagoras, 
Man is the measure of all things, including those things we call 'mathematical.' To find the real 
explanation (Realerklärung) of 'mathematics,' we must put the mathematician back in the picture 
because there is no knowledge without a knower and the mathematician is the knower who knows 
mathematics.  

§ 2.  What Mathematics Is     

§ 2.1 Mathematics in the Theoretical Standpoint of Critical Metaphysics    

Kant discussed mathematics in Critique of Pure Reason and in numerous other places within 
the Kantian corpus. Although he lived before the 'crisis in the foundations' of mathematics, Hume 
had raised some very serious fundamental questions about mathematical knowledge which, as a 
philosopher, Kant regarded himself as duty-bound to answer and thereby save mathematics from 
sinking into the pit of skepticism. This could not and cannot be done by any ontology-centered 
metaphysic, but it can be and is quite successfully done by his epistemology-centered metaphysic. 
To begin with, Kant tells us,  

 Philosophical knowledge is rational cognition from concepts, mathematical [knowledge] 
that from the construction of concepts. But to construct a concept means to present a priori 
the intuition corresponding to it. For the construction of a concept, therefore, a non-
empirical intuition is required, which consequently, as intuition, is an individual Object but 
that must, as the construction of a concept (of a general representation), nevertheless 
express in the representation general validity for all possible intuitions that belong under 
the same concept. [Kant (1787), B741]  

From this explanation of mathematical knowledge, the Realerklärung of mathematics follows in a 
straightforward way:  

 Mathematics is the science of the construction of concepts [Kant (1776-95), 18: 141].  

This is the real explanation from the theoretical Standpoint of Critical metaphysics. There is in 
this very brief statement a great deal for us to understand. First, every human being is engaged in 
the construction of concepts his entire life. It requires no training or instruction for a person to 
construct concepts. The capacity to do so is innate in the phenomenon of mind and is present in a 
newborn infant. However, the capacity to construct concepts and a science of the construction of 
concepts are two different things. A science is a doctrine constituting a system in accordance with 
a principle of a disciplined whole of knowledge that is understood by means of said science. Thus 
mathematics is, first of all, a science but not an empirical science. All mathematical objects are 
what Kant called "made objects" – objects that are what they are because we say they are this way 
and no other by definition. Mathematicians ought to be happy about this2; the fact mathematical 
objects are defined objects means that mathematical knowledge of them can be apodictically 
certain. What a mathematical object is not is an object of any possible empirical experience. Our 
knowledge of an object of this latter sort is contingent knowledge and so is never certain know-
ledge. The challenge for any natural science is to connect these two different types of objects.  

                                                 
2 They ought to be, but some of them will not be because mathematical objects are never objects of sensible 
physical Nature, and the Euclid Myth wishes them to be precisely that. Neither you nor I nor anyone else 
has ever had or will ever have a direct and immediate experience of, say, an irrational number per se.  
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If it was impossible to connect mathematical objects and physical objects then mathematics 
would have to be called an "unnatural" science. Fortunately, it is possible to forge connections 
between them [Wells (2006), chap. 23; (2009), chap. 1] and so it is correct to call mathematics a 
non-natural science. It is probably more important for other scientists to understand this than it is 
for mathematicians to understand this because: (i) if, e.g., a physicist or a psychologist wants to 
use mathematics in his science the burden is on him to make the corresponding connections 
between the phenomena he studies and the mathematical objects he uses to understand these 
phenomena; and (ii) there are mathematicians who could not care less whether or not anyone 
other than a few other mathematicians has any use for or interest in the objects he defines and 
studies; mathematicians who feel this way couldn't care less if mathematics is called an unnatural 
or a non-natural science.  

Second – and I think it likely there will be quite a few mathematicians who won't like this very 
much – the science of mathematics is inseparably tied to the mental processes of intuition, the 
free play of imagination and understanding, and the subjective processes of reflective judgment. 
There can be no mathematics without the mathematician, as I said before, and getting knowledge 
through the construction of concepts inevitably involves all these processes. All mathematics is 
the produce of human creativity. I will say more about this later in the discussion of mathematics 
from the judicial Standpoint of Critical metaphysics.  

But although all doing of mathematics is subjectively grounded, insofar as the real possibility 
of mathematics is concerned, mathematics as a science is not a subjective science. It is objective, 
and this because, as a science, mathematics is devoted to understanding mathematical objects. All 
one need do to see this is look at the way mathematicians go about their work. Kant noted,  

 Mathematics, as synthetic a priori knowledge, grounds its possibility on the fact that its 
concepts can be built up; for they have to do only with space and time3, in which Objects of 
intuition can be given a priori. These, however, are quanta, thus mathematics is a science 
of quantis. But it also considers quantity by means of number, by means of amount which 
can be built up in time by counting. [Kant (1776-95), 18: 240]  

To properly understand the point Kant is making here, one needs to know something about the 
character of mathematical structures. Probably the most important contribution the Bourbaki 
mathematicians of the 1940s and 50s made was the discovery that all of mathematics can be 
reduced to combinations of three so-called "mother structures": topological structure, order 
structure, and algebraic structure. Now, the process of the pure intuition of space in sensibility is 
a process of topological structuring; that of the pure intuition of time is a process of order 
structuring; and in the free play of imagination and understanding is the capacity for algebraic 
structuring. This means that the capability for human beings to create mathematical knowledge is 
grounded in mental processes inherent in human sensibility and the free play of imagination and 
understanding. What Kant tells us here boils down to, "Pure mathematics is possible because of 
the way sensibility works." It does not depend on Plato's "remembering of ideas" [Plato (c. 399-
387 BC)], divine revelation, or the "self-evident truth" of axioms. Mathematics is the way it is 
because, in a nutshell, it is a manifestation of homo noumenal human Nature.  

But Kant's deceptively brief little note has an implication that goes further. The possibility of 
pure mathematics is grounded in human intuition and imagination, but it doesn't stop at this. To 
construct mathematical knowledge requires reasoning and judgmentation and, for its concepts to 
exhibit objective validity, this reasoning process requires discipline – i.e. the reasoning must be 
scientific reasoning.  

                                                 
3 More precisely, the pure forms of outer and inner sense, i.e. the pure intuitions of subjective space and 
subjective time in the synthesis in sensibility [Wells (2009), chap. 3].  
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In the past, many mathematicians rejected what Kant tells us because of connotations the non-
technical use of the word "intuition" carries in everyday language. They presume that any 
practice that employs "intuition" must be the antithesis of the rigorous process of definition and 
proof that constitutes the core work of today's professional mathematician. The Bourbaki mathe-
maticians were inclined to think this way. Mathematical knowledge is indeed knowledge a priori 
but it is not innate knowledge. "Knowledge a priori" only means "knowledge prior to actual 
experience" and, because no mathematical object is an object of any possible human experience, 
mathematical knowledge is indeed knowledge a priori but it is constructed knowledge a priori. 
That it requires discipline and rigor to establish mathematical knowledge that is objectively valid 
is why mathematics is a science and not just "an intuition." Kant notes elsewhere,  

 Mathematical analysis is always a philosophical synthesis, only there I think the whole 
prior to thinking the parts; if, however, I think the parts prior to [thinking] the whole, then 
it is a mathematical synthesis. All synthesis rests on coordination and takes place through 
understanding. But analysis philosophica rests on subordination and takes place through 
reason. The ground is not part of the consequence, nor conversely. [Kant (1764-68), 17: 
261]  

Every science has developed principles of its practice and mathematics is no different. It is not 
incorrect to say that the developed principles of mathematical practice comprise what the ancient 
Greeks called ortho dóxa ("right opinion") in regard to the objects of mathematics because the 
objects of mathematics are not merely the way a mathematician defines them to be but are the 
way they are defined to be because they must be made this way to prevent contradictions from 
being built into the mathematical structures that mathematicians synthesize.  

This, then, is mathematics from the theoretical Standpoint. This Standpoint is the determining 
Standpoint for understanding what mathematics is, but to fully understand what mathematics is – 
and how to teach it – we must also consider mathematics from the other two Critical Standpoints.  

§ 2.2 Mathematics in the Judicial Standpoint of Critical Metaphysics    

The theoretical Standpoint is the Standpoint for objectivity in Critical metaphysics. In contrast 
the judicial Standpoint is the Standpoint for subjectivity. As an object, mathematics is a science, 
as just discussed. What, however, is mathematics regarded subjectively? To ask this is to ask if 
mathematics is in some way part of human Nature and, if so, what part? If the answer is yes – and 
I am about to explain that it is – then mathematics regarded subjectively vindicates a part of the 
philosophy of rationalism that nineteenth and twentieth century mathematicians worked so hard, 
albeit unsuccessfully, to try to establish.  

It is not surprising that Kant did not devote any extensive coverage to mathematics in Critique 
of the Power of Judgment. The surprise is that he devoted to it any coverage at all. In it he tells us 
that  

mathematics certainly has not the least share in the charm and emotion that music 
produces; rather, it is only the indispensable condition (conditio sine qua non) of that pro-
portion of the impressions [of senses], in their combination as well as in their alteration, by 
means of which it becomes possible to grasp them [the data of sensations] together and to 
prevent them from destroying one another, so that they instead harmonize in a continuous 
movement and animation of mind by means of consonant affects and hereby in a 
comfortable self-enjoyment. [Kant (1790), 5: 329]  

Conditio sine qua non literally means "flavoring without which [there is] nothing." Our more 
usual interpretation of this Latin phrase, "condition without which [there is] nothing," i.e., 
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"indispensable," is a transference of contextual connotation. Because Kant brought up mathe-
matics in the context of judgments of taste, the notion of mathematics as some sort of "flavoring" 
seems to me a more insightful way to analyze this peculiar remark about mathematics. In the dis-
cussion wherein the paragraph quoted above occurs, Kant was tying the notion of mathematics to 
the notion of aesthetic Ideas (which I previously discussed in chapter 13).  

Kant's paragraph expresses a strange and vague notion of mathematics foreign to our modern 
ears. What he is describing in it is not mathematics as a science but, rather, mathematics as an a 
priori condition (i.e., "flavoring" or "giving flavor to") bringing about a harmony in aesthetic 
Ideas. Scientists and mathematicians often try to describe an aesthetic "sense" or "feeling" they 
have when they have come up with some important new understanding of something. Feynman 
said of the discovery of new physical laws of nature,  

 One of the most important things in the 'guess-compute consequences-compare with 
experiment' business is to know when you are right. It is possible to know when you are 
right way ahead of checking all the consequences. You can recognize truth by its beauty 
and simplicity. It is always easy when you have made a guess, and done two or three little 
calculations to make sure it is not obviously wrong, to know when it is right. [Feynman 
(1965), pg. 171]  

The renowned mathematician and polymath Henri Poincaré said of mathematical discovery,  

 Such are the facts of the case, and they suggest the following reflections. The result of all 
that precedes is to show that the unconscious ego or, as it is called, the subliminal ego, 
plays a most important part in mathematical discovery. . . . Now we have seen that mathe-
matical work is not a simple mechanical work, and that it could not be entrusted to any 
machine . . . It is not merely a question of applying certain rules, of manufacturing as many 
combinations [of ideas] as possible according to certain fixed laws. The combinations so 
obtained would be extremely numerous, useless, and encumbering. The real work of the 
discoverer consists in choosing between these combinations with a view to eliminating 
those that are useless, or rather not giving himself the trouble of making them at all. The 
rules which must guide this choice are extremely subtle and delicate, and it is practically 
impossible to state them in precise language; they must be felt rather than formulated. . . .  

 It is certain that the combinations which present themselves to the mind in a kind of 
sudden illumination after a somewhat prolonged period of unconscious work are generally 
useful and fruitful combinations which appear to be the result of a preliminary sifting. . . . 
More commonly the privileged unconscious phenomena, those that are capable of 
becoming conscious, are those which, directly or indirectly, most deeply affect our 
sensibility.  

 It may appear surprising that sensibility should be introduced in connection with mathe-
matical demonstrations, which, it would seem, can only interest the intellect. But not if we 
bear in mind the feeling of mathematical beauty, of the harmony of numbers and forms, 
and of geometric elegance. It is a real aesthetic feeling that all true mathematicians 
recognize, and this is truly sensibility. [Poincaré (1914), pp. 56-59]  

I can attest to you that I have personally experienced the sort of 'real aesthetic feeling' that 
Feynman and Poincaré try to describe here. Somewhere in these descriptions do we perhaps find 
the quintessence of mathematics as a human faculty? In Critical terminology, a faculty is the 
form of an ability insofar as the ability is represented in an idea of organization. 'Faculty' is a term 
that denotes a representing of how that ability is exhibited in experience. As a science, 
mathematics is a systematic doctrine for constructing concepts, in many ways akin to formal 
logic, and this is an idea of objective organization. But subjectively mathematics is the form of the 
ability to make objective organizations out of manifold presentations in sensibility. This, then, is 
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what mathematics is when viewed from the judicial Standpoint.  

We would have to mark this down as merely an interesting psychological speculation if it 
were not for the fact of an unexpected discovery of an immediate relationship between the mental 
development of children and the discovery by the Bourbaki mathematicians that all mathematics 
can be expressed as combinations of the three Bourbaki "mother structures." Piaget informs us,  

 A number of years ago I attended a conference outside Paris entitled "Mental Structures 
and Mathematical Structures." This conference brought together psychologists and mathe-
maticians for discussion of these problems. For my part, my ignorance of mathematics then 
was even greater than what I admit to today. On the other hand, the mathematician 
Dieudonne4, who was representing the Bourbaki mathematicians, totally mistrusted any-
thing that had to do with psychology. Dieudonne gave a talk in which he described the 
three mother structures. Then I gave a talk in which I described the structures I had found 
in children's thinking, and to the great astonishment of us both we saw that there was a very 
direct relationship between these three mathematical structures and the three structures of 
children's thinking. We were, of course, impressed with each other, and Dieudonne went so 
far as to say to me: "This is the first time that I have taken psychology seriously. It may 
also be the last, but at any rate it's the first." [Piaget (1970), pg. 26]  

I previously mentioned that the capacity for constructing two of the three Bourbaki mother 
structures are found in the pure intuition of space (topological structuring) and the pure intuition 
of subjective time (order structuring) in the synthesis of sensibility. The capacity for constructing 
the third mother structure (algebraic structure) is found in the free play of imagination and under-
standing in the synthesis of judgmentation. That the three mother structures are known to be 
sufficient for the possibility of mathematics-as-a-science has been rigorously established by the 
work of the Bourbaki. However, because all of the objects of mathematics-science are objects 
that lie beyond the horizon of possible human experience, the marvel and wonder of mathematics 
per se has always been that it is possible at all. The number mysticism of the Pythagoreans and 
the speculations of philosophical rationalism were both attempts to explain this marvelous human 
capacity. Mathematics as the form of a capacity for the construction of concepts (by means of the 
synthesis of aesthetic Ideas) is the real explanation for the possibility of mathematics-science.  

An immediate implication of this is that all human beings have the potential ability to learn 
and practice mathematics as a science. Mathematical ability is not a special gift possessed only 
by a few people. In its objective character, it is also not 'preformed' innate knowledge a priori – 
and this is why mathematics as a science, and even as a craft, must be learned. In principle there 
is no impediment to any person learning and becoming skilled in mathematics-as-science. 
Perhaps you might feel, as I do, that this is one of the many sublime aspects of being-a-human-
being. Shakespeare, I think, said it best:  

What a piece of work is a man! how noble in reason! how infinite in faculty! in form and 
moving how express and admirable! in action how like an angel! in apprehension how like 
a god! the beauty of the world! the paragon of animals! [Shakespeare (1600-01), Act II, 
Scene II]  

But while there is theoretically no principle hindering any person from becoming a skilled 
mathematician, there are practical considerations of circumstances that, I think quite obviously, 
deserve and even command our attention as teachers. This brings me to mathematics regarded 
from the practical Standpoint of Critical epistemology.  

                                                 
4 Jean Dieudonne (1906-1992) was one of the founders of the Bourbaki movement and perhaps its most 
well known member and spokesman.  
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§ 2.3 Mathematics in the Practical Standpoint of Critical Metaphysics   

The Kantian corpus is almost silent in regard to mathematics from the practical Standpoint 
and most of what it does contain is not pertinent to purposes of this treatise. Kant tells us in many 
places that mathematics is an instrument of philosophy and natural science but says little about 
what makes it instrumental. What Kant's idea of mathematics from the practical Standpoint was 
can be gleaned from examining how he uses the idea en passant as he speaks of other things. One 
remark he recorded that is useful for this purpose is,  

 A philosophy exists (and this is metaphysics) which employs mathematics merely as an 
instrument in order to organize empirical representations of sense according to an a priori 
principle . . . and which classifies a priori pure intuitions according to their form in order to 
present the schematism of concepts of reflection in a system. [Kant (1804), 22: 490]  

Kant uses the word "instrument" in its connotation as a tool that can be applied to understand 
metaphysics systematically. He elsewhere states a similar relationship between mathematics and 
natural science and he expressly states that mathematics is not part of philosophy. Indeed, Kant 
strongly criticized Newton's Principia for holding that mathematics was part of philosophy. His 
position on this is similar to saying a hammer is not part of the house it is used to build.  

What sort of "tool" is mathematics? Because mathematics is not any sort of corporeal object, 
the only answer that suffices for this question is that mathematics as a "tool" is a skill, specifically 
a skill that is used to construct systematic schematisms of concepts. These schematisms are 
constructed a priori (prior to objective experience), and this assigns mathematics-as-a-tool to one 
place only: the manifold of rules in practical Reason. That means mathematics from the practical 
Standpoint is viewed as the developed maxims by means of which Reason carries out (by ratio-
expression) its regulation of constructions of topological and order structures in intuition as well 
as its regulation of constructions of algebraic structures in the free play of imagination and 
understanding. However, practical maxims are themselves empirical constructs – and for that 
reason contingent constructs – and so an understanding of mathematics from the practical 
Standpoint is an understanding that is concerned with how ratio-expressions of pure Reason 
effect systematic construction of concepts. To understand this requires a synthesis of the 
theoretical and judicial Standpoints of mathematics.  

Let me denote mathematics from the theoretical Standpoint as "theoretical math." Let me like-
wise denote mathematics from the judicial Standpoint as "judicial math." The synthesis of the two 
Standpoints (which produces the practical Standpoint according to the Critical Logic of Kantian 
metaphysics) then yields mathematics from the practical Standpoint, and I will denote this by 
calling it "practical math." Symbolically,  

theoretical math + judicial math →  practical math.  

Properly, this synthesis merits a full treatment of its thorough deduction in its own right. How-
ever, I think this treatise is not the appropriate place to present this and it should be relegated to a 
paper devoted exclusively to this purpose. For what is pertinent to present purposes, a summary 
of the results of this synthesis suffices.  

First, consider what the role of the objects of mathematics is in the theoretical Standpoint. 
These objects are all, without exception, noumena of ideas in the manifold of concepts that stand 
at or beyond the horizon of possible human experience. This is to say that mathematical objects 
are placed at and beyond the frontiers of knowledge in the structure of Critical ontology. Figure 1 
illustrates the Critical structure of ontology. I have previously provided a short discussion of this 
structure in Wells (2011) but a brief explanation of what the figure represents is appropriate here.  
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Figure 1: Illustration of the structure of Critical ontology in science. 

Each successively higher concept in the manifold of concepts is abstracted from the lower 
concepts it coordinates, and this means that at each successively higher level the concept contains 
less sensuous matter in its representation. When the point is first reached where all sensuous 
matter has been removed by abstraction, the concept is called an idea and the object of that idea is 
called a noumenon. All lower concepts standing under this idea are concepts of phenomenal 
objects that Slepian described as "belonging to the real world" [Wells (2009), chap. 1]. The ideas 
standing at the horizon of possible experience have their objects denoted mathematical objects. 
Those objects corresponding to coordinations of phenomena are called principal quantities of 
mathematics. Those which coordinate mathematical noumena with one another and are also 
placed in a relationship with a phenomenon are called coordinating noumena.  

It remains possible for higher concepts, beyond the horizon of possible experience, to be syn-
thesized as abstractions from principal quantities, and these are called secondary quantities of 
pure mathematics. Because their objects are beyond this horizon, objects of secondary quantities 
have no ontological significance whatsoever. (This is why figure 1 does not display them). They 
do, however, have epistemological significance in the "mathematical world" beyond the horizon 
of possible human experience. Their function is to provide relationships among principal 
quantities through inferences of Reason. Most theoretical mathematics is concerned with the 
construction of concepts of secondary quantities and these quantities constitute the bulk of 
ordinary mathematical theory. The secondary quantities of pure mathematics are indicated by the 
red lines in figure 1 that supply connections among the principal quantities. They have no 
connection whatsoever with phenomena. Secondary quantities must be mathematically valid, but 
they never have objective validity for sensuous phenomena of real experience.  

The process of pure Reason is the master regulator of all non-autonomic human activity, both 
mental and physical. The synthesis of understanding in the process of determining judgment falls 
immediately under regulation by speculative Reason (because determining judgment does not 
determine its own employment), while the synthesis in sensibility and in reflective judgment are 
indirectly regulated by Reason via the free play of imagination and understanding. Corresponding  
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Figure 2: Partial manifold of concepts illustrating Slepian's facet division of knowledge into dimensions of 

the world of real phenomena (facet A) and the world of mathematical noumena (facet B). 

to the structure of Critical ontology in figure 1 there is a logical structure in the manifold of 
concepts in which are found both concepts of sensible phenomena and concepts of pure form that 
have no immediate connection to phenomena and are ideas of pure noumena. The latter concepts 
are the secondary quantities and they are concepts of pure mathematics. Figure 2 is an illustration 
of a partial manifold of concepts detailing the distinction between concepts within the horizon of 
possible human experience and those that go beyond this horizon. The concepts of secondary 
quantities are those beyond this horizon. Slepian described the logic of this structure by defining 
two orthogonal "dimensions" of understanding, viz., the "real world" of physical phenomena and 
the "mathematical world" of supersensible noumena [Slepian (1976)].  

Slepian's dimensioning of understanding somewhat parallels ancient Greek divisions dating 
back to Parmenides ('the way of what is, what is-not, and what is-and-is-not') and Plato (the 
'world of the senses' and the 'world of the mind') [Marías (1956), pp. 19-25, 43-51] but it does so 
without the omnipresent realism that characterized all of ancient Greek philosophy. The Slepian 
model reflects the effect of what Kant called the transcendental dialectic of pure Reason. The 
process of Reason knows no objects and in its regulating drive for the perfection of equilibrium it 
makes transcendent uses of the process of determining judgment that enable human beings to pass 
beyond the dabile of the senses to unify the manifold of concepts with mathematical ideals.  

Figure 2 illustrates the transcendental place of mathematical Objects in understanding. This 
place tells us where the regulations of practical mathematics lead to as teleological ends. Next we 
must explore how maxims in the manifold of practical rules combine this endpoint with the 
reflecting Subject who conceptualizes knowledge by means of mathematics. To do this, it is 
useful to classify theoretical, judicial, and practical math structure in terms of the general ideas of 
representation [Wells (2009), chap. 2].  
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Figure 3: The 2LAR structure of mathematics' Standpoints in relationship to the general ideas of 

representation in Critical metaphysics. 

Figure 3 illustrates this structure in 2LAR form and shows the correspondences between the 
three Standpoints of mathematics and the ideas of representation in general of Critical meta-
physics. The object-oriented headings (Quantity, Quality, and Relation) pertain to the object 
being represented ('mathematics' in this case). The Subject-oriented heading (Modality) pertains 
to the relationship between object representation and the person (the Subject) who does the 
representing.  

Judicial math stands with the general idea of identification in Quantity because the represent-
ations of judicial math are consequences of aesthetic Ideas (representations in sensibility from the 
synthesis in continuity of the aesthetic Idea [Wells (2009), chap. 7]). Kant described an aesthetic 
Idea as "that representation of imagination that occasions much thinking without it being possible 
for any determinant thought, i.e., concept, to be adequate to it" [Kant (1790), 5: 314]. Judicial 
math is not itself an aesthetic Idea, but is rather its consequence for reflective judgments of the 
manifold in sensibility. Aesthetic Ideas have a Quality of something sublime, which is an 
energizing Quality, but the uncontainable character of an aesthetic Idea means aesthetical 
expedience in sensibility cannot be judged without "singling out" some part of the manifold in 
sensibility. To single out a part of the manifold in sensibility is to make a judgment of taste. Kant 
tells us that judgments of taste are logically singular [Kant (1790), 5: 215], and the logically 
singular corresponds to the general idea of identification in Quantity.  

Judicial math stands with the general idea of agreement in Quality because of its character of 
harmonizing the data of sensation (as Kant explicitly stated in the earlier quote given in § 2.2). A 
representation of judicial math can in this context be said to be a coalescing function.  

Judicial math stands with the general idea of internal representation in Relation because its 
placement in affectivity makes representations of judicial math entirely subjective, and thus the 
making of these representations is entirely bound up with the Subject himself. This is Relation 
internal to the Subject unconnected with any external object. Finally, judicial math stands with 
the general idea of the determining factor in Modality because its representations are subjectively 
sufficient and necessitated for the possibility of object-oriented mathematical representations.  

Theoretical math stands with the general idea of integration in Quantity because mathematics 
from the theoretical Standpoint is a science of constructing concepts out of the manifold in sensi-
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bility. A construct is a whole comprised of parts, and synthesizing parts to make a whole of repre-
sentation is an act of integration by the technical definition (Realerklärung) of that term. 
Theoretical math stands with the general idea of subcontrarity in Quality because it always 
follows a fundamental principle of non-contradiction, i.e., within the system of a mathematical 
structure no part of that system can contradict another part of it. Indeed, non-contradiction is the 
basis of the idea of mathematical truth. Removal of contradiction is an act of subcontrarity in 
synthesis.  

Theoretical math stands with the general idea of transitive representation in Relation because 
as the doctrine of a science theoretical math must effect a Relation of community between know-
ledge of mathematical objects and what the mathematician holds-to-be-true. It is, in other words, 
a relationship between objects external to the mathematician and judgments internal to the mathe-
matician himself. This, however, is the technical condition for the transitive form of connection in 
Relation. Finally, theoretical math is the outcome of mathematical reasoning, i.e., it is a determin-
ation and so stands with the general idea of the determination in Modality.  

We get the idea of practical math from synthesis of the ideas of judicial and theoretical math. 
In Quantity, practical math stands with the general idea of differentiation. Maxims of practical 
math (in the manifold of rules) must pick out how concepts are to go into the construction of 
knowledge but must do so without knowing what these concepts are. This is because Reason is 
objectively blind but a concept is an objective representation. It is, in other words, a practical 
functional skill for directing the employment of determining judgment in the synthesis of 
understanding rather than being the employment itself. Practical maxims exercised through ratio-
expression can do this only by differentiations among the regulative principles of speculative 
Reason, i.e., by differentiations among the transcendental Ideas. These principles are:  

(a) the principle of unity in the synthesis of appearances; 

(b) the principle of absolute unity in the thinking Subject; 

(c) the principle of absolute completion in the series of conditions; and 

(d) the principle of absolute unity of the condition of all objects of thinking in 
general [Wells (2009), chap. 2]. 

In Quality, practical math stands with the general idea of opposition (Widerstreit). New 
practical maxims are never constructed in the manifold of rules unless the person experiences a 
disturbance to equilibrium that he cannot bring to reequilibration by means of type-α compensa-
tion behaviors. Furthermore, practical judgments in pure practical Reason are fundamentally 
negative judgments because what Reason is able to judge is incompatibility of the existing 
manifold of rules with the formula of the categorical imperative of practical Reason. Indeed, this 
is the character of pure Reason that underlies saying that human beings exhibit "free won't" rather 
than "free will." The constructs of practical rules are, consequently, the outcomes of opposition 
between the condition of the Subject and the dictate of the formula of the Reason's categorical 
imperative. Gainsaying (failure) of anticipated expectations provokes new rule construction.  

Practical math stands with the general idea of the external Relation because practical rules in 
the manifold of rules are constructed to connect the Subject with the 'not-me' of external Nature. 
The notion of such a connection is not contained in the idea of the Subject himself or in the idea 
of the environment in which he lives. Consequently, the form of connection comes under the 
logical idea of hypothetical Relation and the notion of causality-and-dependency in under-
standing. This understanding of Relation in practical math is consistent with Piaget's empirical 
finding that cognizance begins "at the periphery" (goals and results) [Piaget (1974), pp. 333-337].  

Finally, practical math stands with the general idea of the determinable in Modality. The 
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manifold of rules is a constructed manifold, hence all of its maxims are undetermined prior to the 
Subject undergoing disturbances to equilibrium gainsaying impetuous judgments of expedience 
made by the process of reflective judgment. New maxims that are formed in the manifold of rules 
are formed if and only if the accommodations they make to the manifold restores agreement of 
the manifold with the dictate of the categorical imperative. But because this restoration can again 
be upset by future experiences, congruence of the accommodated manifold with the dictate of the 
categorical imperative is only a possible congruence, and this places it with the general idea of 
the determinable in Modality.  

The constructions of practical math lead to cognition of "how to" practices (algorithms and 
heuristics) in the manifold of concepts. Practical math is, as Kant indicated, mathematics regarded 
as a tool for constructing empirical knowledge, and this is its Realerklärung from the practical 
Standpoint of Critical metaphysics. Mathematics instruction has for its aim the cultivating of the 
development of this tool. This brings us to the next issue, namely, how can instruction do this?  

§ 3.  Real Mathematical Skill is Cultivated By Cultivation of Taste    

The intended outcome for all instruction in mathematics is to cultivate in the learner skills in 
doing mathematics and understanding the objects of mathematics. Thus these outcomes target the 
learner's practical manifold of rules and his theoretical manifold of concepts. Teachers, however, 
are confronted by a formidable challenge: Nothing that a teacher can do can immediately effect 
structures in either the manifold of rules or the manifold of concepts. Only the learner can do that 
and, in a manner of speaking, the teacher finds the doors to these manifolds closed to him and 
locked from the inside. The human Nature of "the gatehouse to the citadel of mind" is grasped by 
examining the thinking and judgmentation structure of the phenomenon of mind. Figure 4 re-
depicts this structure here for your convenience. The only access a teacher has to "the citadel of 
mind" is through the learner's synthesis in sensibility via receptivity. A teacher's access to the 
learner is effected through his actions that provide environmental stimulation to the learner and 
evoke reflective judgments. A teacher's actions can immediately reach sensibility and affect the 
manifold of Desires but can never immediately touch determining judgment or appetition.  

Because a learner's practical and theoretical math skills are his alone to develop, a teacher's 
ability to cultivate them is restricted to his ability to influence and cultivate the learner's faculty of 
judicial math. This is as much as to say that mathematics instruction must take direct aim at 
learner affectivity. Instruction téchne peculiar to mathematics education must be given its particu-
lar specialization from the practical and theoretical goals being sought. This is, of course, true of 
every kind of instruction; but it begs for especial emphasis in the case of mathematics instruction 
because of a modern peculiarity in mathematics pedagogy for which it is not unfair to blame the 
Bourbaki mathematicians. Mathematics is often viewed as the most objective and quantitative of 
topics – and I do not fundamentally disagree with this viewpoint – but that does not change the 
fact that all effective mathematics instruction begins by appeal to learner affectivity. There is 
more truth than one might suspect contained in saying of some particular learner "he has a feel for 
math." But it is important to understand that this is a cultivated feeling and not an innate talent.  

Instruction traditions down through the centuries have always, at least until relatively recently, 
recognized at some level that effective instruction depends on subjective appeals. How it depends 
on this was not particularly well understood by teachers from antiquity to the 19th century. Prior 
to Pestalozzi, this understanding was simplemindedly brutish. Marrou tells us,  

 There were schools for the training of the scribe . . . the ruins of which Mesopotamian 
archaeologists claim to have discovered here and there – as, for example, in recent times at 
Mari on the Euphrates. There, in the ruins of the palace destroyed by fire at the end of the 
second millennium, A. Parrot unearthed two classrooms . . .  
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Figure 4: Thinking and judgmentation structure of the phenomenon of mind. 

 The method of instruction was very elementary, and called for no initiative in the pupil; it 
depended for its effectiveness on his docility and therefore, as we might expect, made use 
of the most drastic corporal punishment, as did the classical education of a later date. The 
Hebrew word musar means both instruction and correction or chastisement. Here again the 
most vivid descriptions come from Egypt. "The ears of the stripling are on his back. He 
hears when he is being beaten." "You brought me up when I was a child," declares a grate-
ful pupil to his master; "you beat me on the back and your teaching penetrated my ears." 
[Marrou (1948), pg. xvi]  

I have a hunch you and I would agree that a desire to avoid taking a beating is an affective portal. 
But what sort of learning does it produce? Etch A Sketch® learning? That is not unlikely. Our 
modern Taylorite institution is more genteel: we use grades to beat the pupil psychologically; it 
leaves fewer visible bruises and scars. We have even simplified our simplemindedness in 21st 
century America by using pupils' performances on standardized tests to beat, or threaten to beat, 
their teachers economically. Such is the boundless wisdom of institutionalized Taylorism. It 
would be called child abuse if Taylorism did not regularly abuse adults psychologically too.  

A special peculiarity of mathematics instruction since the mid-20th century has been a gradual 
but persistent effort to ignore affectivity and focus instead on features of formalism. Attempts to 
make mathematics interesting or otherwise positively appealing to learner affectivity are kept to a 
minimum if they are kept at all. Formalism began as a mathematician's method motivated by the 
"disasters" of 19th century mathematics and the attending "crisis in the foundations." From there 
it hardened into a pseudo-philosophical attitude and gradually seeped out from institutionalized 
professional method in mathematics and into mathematics instruction. The historical route it took 
started with the logicians (e.g. Bertrand Russell), traveled to David Hilbert, died briefly from a 
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severe case of Gödel's theorems, and was resurrected by the Bourbaki. Davis & Hersh tell us,  

 In the mid-twentieth century, formalism became the predominant philosophical attitude 
in textbooks and other "official" writing on mathematics. . . . Contemporary formalism is 
descended from Hilbert's formalism, but it is not the same thing. Hilbert believed in the 
reality of finite mathematics. He invented metamathematics in order to justify the mathe-
matics of the infinite. This realism-of-the-finite with formalism for the infinite is still 
advocated by some writers. But more often the formalist doesn't bother with this 
distinction. For him, mathematics, from arithmetic on up, is just a game of logical 
deduction.  

 The formalist defines mathematics as the science of rigorous proof. In other fields some 
theory may be advocated on the basis of experience or plausibility, but in mathematics, he 
says, either we have a proof or we have nothing. . . . In brief, to the formalist mathematics 
is the science of formal deductions, from axioms to theorems. Its primitive terms are 
undefined. Its statements have no content until they are supplied with an interpretation. . . . 
Indeed, brief reflection shows that the formalist view is not plausible according to ordinary 
mathematical experience. . . .  

 The most influential example of formalism as a style in mathematical exposition was the 
writing of the group known collectively as Nicolas Bourbaki. Under this pseudonym, a 
series of basic graduate texts in set theory, algebra and analysis was produced which had a 
tremendous influence all over the world in the 1950s and 1960s. [Davis & Hersch (1981), 
pp. 339-344]  

Hilbert's formalism was, in part, a response to the collapse of the efforts of Russell and others 
to restore "mathematical certainty" (rationalism) by means of the "logicians' program" of the late 
19th and early 20th centuries. This effort collapsed, ironically enough, because of the discovery 
of the Russell Paradox. As a mathematics philosophy, the logicians' program and formalism are 
both bankrupt pseudo-metaphysics. As teaching philosophies they are unmitigated disasters. 
Poincaré was extremely critical of both the logicians' movement and of Hilbert's formalism:  

[Many mathematicians] have become so familiar with transfinite numbers that they have 
reached the point of making the theory of finite numbers depend on that of Cantor's 
cardinal numbers5. In their opinion, if we wish to teach arithmetic in a truly logical way, 
we ought to begin by establishing the general properties of the transfinite cardinal numbers 
and then distinguish from among them quite a small class, that of the ordinary whole 
numbers. Thanks to this roundabout proceeding, we might succeed in proving all the 
properties relating to this small class (that is to say, our whole arithmetic and algebra) with-
out making use of a single principle foreign to logic.  

 This method is evidently contrary to all healthy psychology. It is certainly not in this 
manner that the human mind proceeded to construct mathematics, and I imagine, too, the 
authors do not dream of introducing it into secondary education. But is it at least logical, 
or, more properly speaking, is it accurate? We may well doubt it. [Poincaré (1914), pp. 
144-145]  

Poincaré (1914) is a book6 that launches an all out attack on the entire direction mathematics 

                                                 
5 Cantor's cardinal number is "a cardinal number greater than all ordinary cardinal numbers." The most 
popular symbol for it seen in textbooks is ∞ but technically the approved symbol is ℵ0 (pronounced "aleph 
naught"). When you see a series of cardinal numbers written in a form like 1, 2, 3, . . ., Cantor's 'number' is 
supposed to somehow stand at the end of the continuation denoted by the " . . . " notation. To add juice to 
the cocktail, Cantor had another infinite ('transfinite') number as well, the "infinity" of the real numbers. 
Cantor's cardinal numbers utterly lack real objective validity.  
6 Poincaré died in 1912. The book I cite is the 1914 edition reprinted in 1996.  
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was taking in responding to the "crisis in the foundations." Whether or not the formalists dreamed 
of introducing it into secondary education, teachers did not. Mathematics education retained its 
old flavor – which I will call "Old Math" – until the 1950s and 1960s when, under the influence 
of the Bourbaki, formalism was introduced not only into college mathematics instruction but – 
under the name 'New Math' – into primary school mathematics instruction as well.  

The Bourbaki movement began with a group of young, mostly French, mathematics graduate 
students who were, more or less, rebelling against the mathematics philosophy of their professors. 
That philosophy was basically the same philosophy as that of Poincaré. According to the folklore, 
what they found most objectionable about Old Math was its "intuitive" character. The young 
Bourbaki were very taken with Hilbert and formalism. They sought to have this view become the 
dominant view of mathematics. Bourbaki formalism was adhered to in the writing of their text-
books and this formalism is the principal reason why almost all advanced mathematics books are 
opaque to those readers who have not been schooled in the ways of the Bourbaki. If a person set 
out to deliberately propagate ignorance of mathematics, he could likely find no way to do it more 
effectively than the way Bourbaki literature accomplishes it.  

In the late 1950s, primarily as a result of the panic caused in the United States by the launch of 
Sputnik in 1957, an attempt was made to reform mathematics education. This was the New Math 
movement, which enjoyed a brief period of institutionalization from the 1960s to the mid-1970s. 
New books and teaching methods were developed primarily by mathematics professors without 
much influence by or advice from teachers. As Klein points out [Klein (2003)], the movement did 
not spread uniformly to all schools and, as early as 1962, it was even being criticized by some 
college mathematics professors. It was strongly opposed by teachers in the public school system. 
Dr. Ginger Warfield, Emeritus Principal Lecturer with the University of Washington Department 
of Mathematics, commented on her impressions of the relationship between the educator 
community and the mathematics community. She wrote that educologists tended to regard the 
mathematicians who produced the New Math program as  

arrogant clods trampling in where they had no business to be [Warfield (2007)], 

and that the educator community at large  

regards mathematics as obscure and frightening and best left in the hands of the severely 
gifted. For the average teacher, the important thing was to protect children from it. [ibid.]  

To the degree Warfield's personal impressions are accurate, this situation bodes ill for education. 
It is one of the profound ill effects of long-standing institutional isolation of colleges of education 
from the other isolated silos within American universities [Farkas & Johnson (1997); Mirel 
(2011)]. The notion that mathematics is suitable only for 'the severely gifted' is another of the 
educology establishment's many bigotries infecting public education in America.  

By the mid-1970s almost everyone had abandoned the New Math program. After a brief 'back 
to basics' or Old Math interregnum in mathematics education, a new reform movement in 
mathematics education began. This one was prompted in large measure by publication of A 
Nation at Risk [Gardner et al. (1983)]. Educologists working through the National Council of 
Teachers of Mathematics (NCTM) put together this new reform movement, officially called the 
NCTM Standards and unofficially called Reform Math. Reform Math went into effect in 1989.  

While it does keep some algorithms-and-heuristics features of Old Math, Reform Math is a 
reversion to the "projects method" idea of the Progressive Education Movement (PEM) in the 
20th century [Klein (2003)]. This time it is presented under the label "constructivist math." The 
label vaguely refers to any of several mini-theories of education. Some of these mini-theories are 
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based on reasonable psychology research. Jeremy Bruner's mini-theory is one example of these. 
Others of them are raised up on flimsy psychological pretexts with very dubious grounding. 
Papert's mini-theory of "constructionism" is an example belonging to this class. Most claim to be 
"based" on research by Piaget or Vygotsky but these claims seem to be of the same sort as we see 
when a Hollywood movie claims to be "based" on true events. More often than not the claim is 
like claiming the legends of Charlemagne are based on Charlemagne himself [Bulfinch (1863)].  

The "projects" feature of Reform Math tends to arouse the passionate ire of back-to-basics 
partisans. Their opposition is not unjustified. Like the PEM projects movement, it suffers from a 
number of fundamental shortcomings, many of which were correctly criticized by one of the most 
prominent members of the Progressive Education Movement, Boyd Bode:  

 It does not follow . . . that the projects method . . . can be made to cover the whole field. 
However cordially its merits may be recognized, as a universal method it suffers from 
certain obvious defects. By definition it takes no account of either logical organization or 
"social insight." Its spirit is the spirit of immediate practicality, which is the spirit of an 
exclusive vocationalism. This is no objection to the method unless we apply it too widely. 
If we do so, we find that our practicality overreaches itself. Learning that is limited to this 
method is too discontinuous, too random and haphazard, too immediate in its function, 
unless we supplement it with something else. Perhaps children may learn a great deal about 
numbers from running a play store or bank, but this alone does not give them the insight 
into mathematics they need to have. . . .  

 This is not a criticism of the project method, but an attempt to show its limitations. Since 
the principle is limited to its application, it does not fully meet the demand for a kind of 
education that is not tied up so closely with immediate demands. So the idea naturally 
suggested itself that the method might be extended, that it might be possible to retain the 
virtues of the project method without this limitation. This has been attempted by various 
writers. It has proved a difficult undertaking, which is not surprising since it is not easy to 
discover anything that is distinctive about the method if we take away the feature of 
learning for the purpose of meeting an immediate practical need. In order to make the 
method cover other kinds of learning, which are not dominated by the idea of immediate 
practicality, it became necessary to change the meaning of the project method by 
identifying its essential nature with something other than this type of learning. The attempt 
to do this has introduced considerable confusion, so that the term project method had 
tended to become a name for a conglomeration of ideas and not for a definite guiding 
principle. [Bode (1927), pp. 150-151]  

Changing the name to "constructivist math" does nothing to cure the ills Bode pointed out. Was 
Reform Math really a reform or is it just an repetition of an old PEM reform and therefore no 
reform at all? Or is it some of each? Whatever it is, it does not ask "what is math?" and sticks 
with traditional prejudices about the topic that date back to the ancient Greeks. The institution of 
Reform Math was the occasion for a raucous and largely propaganda-based national controversy 
that came to be called the Math Wars. Along with other education controversies, the Math Wars 
was a factor that motivated the still evolving reforms of the Common Core State Standards 
Initiative (CCSSI). I see no evidence that the CCSSI will turn out to be different. At the same 
time, though, "back to basics math" likewise does not escape Bode's vocationalism indictment.  

The principal shortcoming exhibited by all the conflicting opinions on mathematics education 
is that they are not based on an epistemologically sound understanding of "what math is," namely, 
knowledge through construction of concepts. The essential task for mathematics instruction is to 
cultivate in the learner a capacity for knowledge-construction, and to do this the téchne must 
appeal to learner affectivity and not to the object-oriented symptoms of "doing math." Mathe-
matics, as judicial math, is not the subjective capacity for aesthetical taste but it is grounded in 
that human capacity. Inasmuch as judicial math is manifested by approvals of taste, it can be 
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called the faculty of knowledge that is exhibited by judgments of taste. By examining properties 
of the approvals of taste, the properties of how mathematical skill is cultivated are revealed.  

§ 4.  The Approvals of Taste and Properties of Judicial Math     

Taste is the aesthetical capacity for judgmentation of an object or mode of representation 
through a subjective satisfaction or dissatisfaction in which there is no objective interest. Taste is 
a selection of that which is generally engaging according to the laws of sensibility. The approvals 
of taste are the synthetic functions for judgments of taste: patterning, coalescing, conceptualizing, 
and precisioning. These functions correspond, respectively, to Quantity, Quality, Relation, and 
Modality of approval. As Kant expressed it,  

 In everything that is to be approved in accordance with taste there must be something that 
facilitates the differentiation of the manifold (patterning); something that promotes 
intelligibility (relationships, proportions); something that makes the pulling of it together 
possible (unity); and finally, something that promotes its distinction from all other 
possibilities (precisioning). [Kant (c. 1773-79), 15: 271]  

The "something that promotes intelligibility" function is the conceptualizing function. The "some-
thing that makes the pulling together possible" is the coalescing function. The other two functions 
are expressly named in this quotation.  

Taste plays the role of an optimizing function in reflective judgment and is an outgrowth of an 
on-going process by which a person makes his intellectual development more perfect:  

 The perfection of a cognition in consideration of an object is logical, in consideration of 
the subject it is aesthetical. The latter magnifies the consciousness of life, since it magnifies 
the consciousness of one's state through the relationship in which one's senses are placed 
toward the object and through dedication, and is therefore called lively. Abstract 
representation practically cancels the consciousness of life. [ibid., 15: 299-300]  

 All perfection seems to subsist in the harmonization of a thing with freedom, hence in 
expedience, general usefulness, etc. Since all things in empirical understanding are 
properly only that which they are taken to be in way of relationship to the law of 
sensibility, the perfection of objects of experience is a congruence with the law of the 
senses and this, as appearance, is called beauty; it is, so to speak, the outer side of 
perfection. [ibid., 15: 309]  

While an aesthetic Idea is an energizing representation, a judgment of taste is a terminating one. 
This is to say that the activity sparked by an aesthetic Idea is concluded by a judgment of taste. In 
this context, taste is a mathematical grounding condition for developing "emotional intelligence" 
[Salovey, et al. (2000)]. Opinions and beliefs are grounded in judgments of taste but only on 
grounds that are subjectively sufficient conditions and are never objectively sufficient:  

Taste liberates from mere senses and makes a recommendation to understanding. Thus all 
that furthers the life of our knowledge pleases in taste. . . . Taste affords no doctrine but 
rather criticism. It requires practical understanding and, in order to preserve it, examples. 
[Kant (c. 1773-79), 15: 354]  

How does the transcendental Logic of judgments of taste operate? By understanding this we 
establish a fundamental understanding of the properties of judicial math. In turn these properties 
lead to, first, the construction of practical maxims of practical math and, second, later objective 
constructions of theoretical math in the manifold of concepts. They are, to somewhat poetically 
put it another way, the "essence" of the human capacity for mathematics. Let us look at the Logic.  
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Figure 5: The addition table for decimal digits 0 through 9 with carries indicated. 

§ 4.1  Patterning   

Patterning is the act of representing a pattern. A pattern is an arrangement of form as a 
grouping or distribution of elements. A mathematical set is an example of a pattern. Judicial math 
in terms of Quantity in representation is, therefore, the aesthetical determination of patterns found 
in the data of the senses. This gives us one property of mathematics in general: mathematics is all 
about patterns. Now, the general idea of a "pattern" is very broad. In formal theoretical math the 
constructs that are called theorems are, at their judicial roots, nothing more and nothing less 
than identified patterns. For example, consider the addition table (A plus B) for the decimal 
digits zero through 9 (figure 5). If you look along the top (A = 0) row, you will see that this row is 
merely the regular counting sequence from 0 to 9. Now do the same for the first column (B = 0). 
You see the same pattern. These two patterns in the table are the conceptual root of the idea of 
"the additive identity element," zero, in mathematics.  

Now look at the B = 1 column. What you see is the counting sequence beginning with B. Look 
at the B = 2 column. You see the counting sequence beginning with B once again. This pattern is 
repeated in every column in the table. But there is another as well. When the count reaches "10" 
the non-carry digit "wraps around" to remain within the 0 to 9 range with the "wrap around" 
going up by one box each time you move one column to the right. That's another pattern. This 
one is the root idea for what mathematicians call an "equivalence class," although if you try to 
read the typical definition of this idea in a post-Bourbaki-era math textbook you'll probably get 
dizzy and might start to feel nauseous. Formalism goes to great lengths to disguise and hide how 
simple every one of its constructs really is and how aesthetically pleasing they can be. Formalism 
is, as Poincaré said, contrary to all healthy psychology.  
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Warfield remarked that mathematicians "were not able to imagine that their beautiful field, if 
presented with a carefully thought out axiomatic structure, could fail to be clear and inspiring in 
the eyes of the learner" [Warfield (2007)]. She is not wrong about this. Where the mathematicians 
developing New Math made their mistake was in thinking it was the axiom structure that made 
math "clear and inspiring." No. What makes math "clear and inspiring" are its patterns. The error 
comes from focusing on object cognition as the thing that is important in learning mathematics 
and not recognizing the real importance lies with aesthetical functions of the approval of taste.  

Look down the B = 9 column. From A = 1 through the rest of the column, the non-carry digit 
is "A take away 1." Look down the B = 8 column; the non-carry digit is the digit in the B = 9 
column take away 1. Look at the B = 7 column; you get the digit in the B = 8 column take away 1. 
The same "take away" idea holds as you go leftward in the table. This is the pattern of a pattern. 
If you know about this pattern and its pattern, you can learn to do addition in your head. If you 
find this a little too challenging at first, use an abacus. An abacus helps make the patterns very 
visible. An electronic calculator hides the patterns. If you want to make a child mathematically 
illiterate, teach him to first do arithmetic by punching buttons on a calculator.  

If you make a game of looking for them, you might be surprised by how many patterns you 
can discover in the dull old addition table. For example, look at the right to down-and-left minor 
diagonals entries. Mathematicians call this "symmetry" and it underlies, among other things, the 
commutative property of addition. You can also come to the idea of the commutative property by 
observing that the same "game" I described above for the columns of the table also works for the 
rows. This is a pattern to the pattern of the patterns. There is a lot of mathematics, going well 
beyond basic arithmetic, "hiding" in the addition table. For example, start anywhere in the top 
row and go down the diagonal left-to-right (wrapping about to the left side of the table after you 
reach the right-hand edge). You'll see that this is "counting by twos."  

All of mathematics consists of patterns and patterns of patterns. Patterns please aesthetically 
because, once recognized, they can be anticipated and so are aesthetically expedient. When I was 
a little boy first learning how to add, we were told to "memorize the addition table." Fortunately, 
as it turned out, this was something I found myself unable to do. There are a hundred entries in 
the addition table and I just could not keep that many entries in my head. But I did happen to 
notice the pattern in the B = 9 column of the table I have just described. I thought that pattern was 
"pretty neat" and I liked the fact it made "adding 9" a pretty trivial thing to do.  

Then I noticed the pattern of the pattern in the B = 8 column. It was "almost the same" as the 
"9's pattern," and I thought that was pretty neat. And useful. Then I found the pattern of the 
patterns. By using them I was able to conceal from my teacher my inability obey her instruction 
to memorize the table and the fact that I was disobeying her – two things that were subjectively 
important to me because I didn't want to be called "dumb" or labeled as being "disobedient."  

Step by step, as school went on to more advanced lessons in arithmetic, I kept finding new 
patterns of patterns and soon I had developed the habit of looking for them. It also gave me an 
aesthetic regard for math as "something that is neat and tidy" – and I liked things that were neat 
and tidy. Irrational numbers irritated me a little; to me they weren't tidy.  

My teachers came to think of me as a math prodigy of some sort and some of them were 
puzzled when they discovered I really don't have all that keen a memory. But I was just a kid who 
had learned to make it a habit to find the patterns and use them. Instead of memorizing, I made 
myself become a little algorithm/heuristics developer. In Piaget's terminology, I developed 
mobile schemes for doing math. This, as it turned out, was my "secret" to understanding mathe-
matics at all levels. (It also happens to be the "secret" to being a scientist). Mathematics is 
patterns and patterns of patterns. Mathematicians are people who have "developed a taste for 
patterns." Every human being has the capacity for patterning in making judgments of taste. Every 
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person therefore has the latent capability to be a mathematician. Young children do not hate math 
until the instruction they receive makes mathematics so frustrating for them that they develop an 
aversion to it (which is a learned type-α compensation). Making the instruction non-frustrating 
means making it appeal to the learner's approval of taste functions.  

§ 4.2  Coalescing     

Coalescing is the aesthetic function of syncretism in judgmentation. Syncretism and juxtaposi-
tion are well known phenomena that have been studied in children [Piaget (1928), pp. 221-232]. 
Psychology theory has taken note of them going back at least as far as William James:  

Where the parts of an object have already been discerned, and each made the object of a 
special discriminative act, we can with difficulty feel the object again in its pristine unity; 
and so prominent may our consciousness of its composition be that we can hardly believe 
that it ever could have appeared undivided. But this is an erroneous view, the undeniable 
fact being that any number of impressions, from any number of sensory sources, falling 
simultaneously on a mind WHICH HAS NOT YET EXPERIENCED THEM SEPARATELY, 
will fuse into a single undivided object for that mind. The law is that all things fuse that can 
fuse, and nothing separates except what must. [James (1890), vol. I, pp. 487-488]  

The capacities for objective syncretism ('fusing') and juxtaposition (inability to represent 
distinct parts of a whole as a whole) are built into the threefold synthesis of matter in sensibility, 
i.e., the Verstandes-Actus of Comparation → reflexion → abstraction in the synthesis of an 
intuition (figure 6) [Wells (2009), chap. 3]. The formation of an intuition, in terms of its matter, is 

 
Figure 6: Functional organization of the processes of the motivational dynamic in judgmentation. 

453 



Chapter 14: The Mathematics Framework  Richard B. Wells 
© 2014 

 
Figure 7: Accretion model of sensuous matter in an intuition during the synthesis in sensibility. 

a process that can be pictured as a sort of coalescing of its materia in qua by means of a kind of 
accretion process (figure 7). During this process, other sensuous materia is excluded from the 
final intuition by one or the other of the three steps in the Verstandes-Actus. However, sensibility 
does not judge and formation (Gestaltung) of an intuition is adjudicated by reflective judgment. 
Of particular interest for the present topic-at-hand is the "flavor" of this judgment in regard to the 
process of reflexion. Here, Kant tells us,  

Reflexion (reflexio) does not have to do with objects themselves, in order to acquire 
concepts directly from them, but is rather the state of mind in which we first prepare our-
selves to find out the subjective conditions under which we can arrive at concepts. It is the 
consciousness of the relationship of given representations to our various sources of know-
ledge through which alone their relationships among themselves can be directly 
determined. [Kant (1787), B316]  

The coalition that occurs during the Gestaltung of an intuition is objective coalition, but the 
coalescing function of taste is a subjective function. It pertains to the entirety of the process of 
judgmentation (figure 6). Quality in taste services the motivational dynamic in judgmentation.  

Coalescing is an agreement function and so immediately pertains to judicial math. Instruction 
in regard to this Quality function does not so much pertain to stimulating coalescing because the 
learner's laws of sensibility and judgmentation will perform coalition as a necessary part of the 
way the phenomenon of mind works. The aim of instruction, rather, is to try to get the learner's 
coalition to coalesce around an intended object of intuition at which the instruction is aimed. This 
is to say that the instruction is aimed at setting up a state of mind in the learner such that reflexion 
gathers together that which pertains to the intended lesson. To put it another way, Quality in 
judicial math instruction has the task of combating the phenomenon of juxtaposition rather than 
stimulating the phenomenon of syncretism.  

Here James' remark quoted above is especially pertinent. Bearing in mind that theoretical math 
achieves knowledge through generalizing constructions of concepts, Quality in judicial math 
instruction must be concerned with gathering together previously learned mathematical concepts 
and seeking to integrate these in a concept structure of greater generality. This means de facto 
that divers objects are to be brought together and seen (by the learner) as parts of some greater 
mathematical object. There is a great difference between merely "getting an answer" and "getting 
a principle for getting answers." Too much of the traditional instruction in mathematics is aimed 
at "getting an answer" and too little at "getting a principle."  

To illustrate what I mean, consider the progression of arithmetic → algebra → geometry → 
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trigonometry → analytic geometry → calculus. Each prior step in this progression is necessary 
for each succeeding one. This is shown by nothing more complicated than just looking at what 
goes into the increasingly more complex operations involved in each of these topics. I do not 
mean by this that everything pertaining to algebra is propaedeutic to everything in geometry – 
that is obviously not so – but, rather, that some concepts of algebra are needed by geometry, etc. 
For example, the proof of proposition 6 in Book III of Euclid's Elements, "If two circles touch 
one another, they will not have the same center," calls upon concepts of algebra. This is, of 
course, the reason that these courses are presented in the order they are presented in junior high 
school and high school mathematics curricula.  

But the very fact that the divers parts of mathematics are taught in a sequence, and that each 
has objects peculiar to it, means that at the next step the learner is confronted by objects he has 
already experienced in prior classes as well as new ones being introduced to him at that moment. 
He therefore is psychologically confronted by a juxtaposition of objects he must somehow learn 
to 'fuse together' in a mathematical object of greater scope of generality. His challenge is not to 
"feel the object again in its pristine unity" but rather to come to know the object for the first time.  

There is a lesson and warning for developing instructional téchne for mathematics to be found 
in the phenomenon of synthetic incapacity exhibited by young children in their drawings [Piaget 
(1928), pp. 221-227]. When a child draws an eye beside a head or an arm beside a torso, studies 
have found that the child thinks the one "goes with" the other rather than both being part of one 
whole. This is juxtaposition. As they grow older, children develop beyond synthetic incapacity of 
this sort, at least in regard to their drawings. However, just in the normal course of life they are 
bombarded with all sorts of experience that provides a sufficient number of disturbances to 
equilibrium that they develop maxims and concept structures for overcoming the incapacity. This, 
however, does not happen so readily with mathematics and for many people the only place where 
it can happen is in a mathematics class. Judicial math instructional Quality has to aim squarely at 
the issue of the synthetic incapacity of learners in regard to objects of mathematics.  

One of the esoteric secrets mathematics departments do not share with outsiders is that the 
history of mathematics is a history of designing mathematical structures. For example, the every-
day arithmetic we are all familiar with is a substructure within a greater one, namely the general 
structure of algebra. But this formal structure had to be originally constructed and mathematicians 
were the people who constructed it. For example, the first few formal structures one encounters 
on the road to algebraic structure in mathematics are:  

1. the groupoid: a set of elements with a closed binary operation ◦ such that for any two 
elements x and y in the set the operation x ◦ y → z yields an element z that also belongs to 
the set;  

2. the semigroup: a groupoid in which the operation is associative;  

3. the monoid: a semigroup whose set contains an identity element e such that x ◦ e → x; 

4. the group: a monoid in which for every element of the set there is also an inverse element 
belonging to the set, i.e., there is an element x-1 for every x such that x ◦ x-1 → e.  

If you are one of the overwhelming majority of human beings who have never heard of any of 
these, don't worry. The key point I want you to understand is that each successive structure in the 
list above is built by adding some property to its set or operation that the earlier structures do not 
have. Mathematics is the doctrine of knowledge through construction of concepts.  

Personally, I think that designing mathematical structures is the most fun part of mathematics. 
In my engineering work, I often have to work with systems whose natures do not lend themselves 
well to solution by using any of the well known mathematical structures but are easily solved by 
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inventing a special purpose mathematical structure. I call this "rolling my own math" and 
"making the math fit the problem instead of distorting the problem to fit the math." I do not quite 
understand why it is that mathematics departments choose to not tell people that if they become 
mathematicians then they'll get to do this fun thing – the creative part of mathematics – and get 
paid for doing it. In fact, I've yet to meet a mathematician who has admitted to me that he does 
design mathematical structures. Perhaps that reflects nothing more than the strength of the grip 
the Euclid myth has on the pseudo-metaphysics of mathematicians. After all, you can't create 
something if it already exists – as the Euclid myth claims. All you can do is "discover" it.  

Nonetheless, teaching mathematics cannot be effective if it begins with this sort of step by 
step construction. This is because, for instance, the groupoid, the semigroup, etc. are abstract 
concepts. They have no meaning for the learner unless he first has specific and concrete examples 
of 'doing math' to which he can refer in understanding the more abstract concept. All human 
beings learn from the particular case to the general case. Once the learner has come to the general 
concept then he understands it through the divers meaning implications that stand under it and he 
can then, but only then, use it to construct additional specific concepts. Reversing this learning 
sequence will not be effective; that was the fundamental error and cause of the failure of the New 
Math experiment in 1960s mathematics education. It is still an error regularly committed at the 
college level and institutionalized in the formalism of math textbooks. I have seen it very often 
convert students who entered college with a liking for mathematics into students who are trained 
(a psychologist would say 'conditioned') to be highly averse to mathematics.  

In the Logic of concept structuring in the manifold of concepts, a constructed higher concept 
of theoretical mathematics is a structure built in the form of a polytomy through determining 
judgments of Classifications and Co-Divisions [Wells (2012); Kant (1800), 9: 146-148]. These 
types of concept structures are constructed through inferences of Reason and multiple exercises 
of the cycle of judgmentation in reasoning. Juxtaposed concepts have to be brought together and 
'fused' by means of judgmentations that gradually put these rich but very complex structures to-
gether. The key to enabling the learner to carry out these constructions, however, does not at all 
lie with coldly rational logic but, rather, with manipulation of learner affectivity and judgments of 
taste. Only then can learner juxtaposition be overcome by enabling his capacity for syncretism to 
be brought to bear on the juxtaposed concepts.  

How can mathematics instruction combat the phenomenon of juxtaposition? To answer this it 
is important to understand the nature of how reflexion is adjudicated by reflective judgment. The 
process of reflexion in the synthesis in sensibility is a species of comparison. But in this process 
representations are not compared to each other but, rather, to the state of the thinking/reasoning 
Subject (the person) in regard to the compatibility of the representation with expedience for pure 
Reason. There are three ways representation in sensibility can be expedient for the Subject [Wells 
(2009), chap. 3, § 4.2]. All three involve harmonization, i.e., the act of making diverse representa-
tions compatible and homogeneous with one another so that they may be combined in composi-
tion. The first is harmonization of the free play of imagination and understanding, and this is 
equilibrium in thinking. The second is harmonization in the interaction between sensibility and 
reflective judgment, and this is called aesthetic harmony. The third is equilibrium in the cycle of 
judgmentation, and this is called the harmonization of reasoning. From the judicial Standpoint, 
reflexion is the act of coalition in sensibility that produces any of these three forms of harmony. 
Mathematically, reflexion is a synthesis that produces what mathematicians call "congruence 
classes"; this explanation is reflexion viewed from the theoretical Standpoint.  

Representations in sensibility of juxtaposed objects that are able to be harmonized by reflexion 
can for this reason be brought into a unity of representation under a new concept that understands 
them all by means of polytomy structures. For example, you are familiar with the idea of 
'distance' as 'how far apart two things are.' But 'how far apart' turns out to be a concept with a lot 
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of different meanings depending on context. The one most people use most of the time is what 
mathematics calls "Euclidean distance." Its formula is that of the familiar Pythagorean theorem, 
"the square root of the sum of the squares of two sides of a right triangle equals the hypotenuse." 
But 'how far apart' might also mean "two days' walk from here." Or it might mean "how many 
letters are different in two words" (this is called a Hamming distance; the words 'cat' and 'cad' are 
a Hamming distance of 1 from each other because they differ in just one letter; they are "one 
letter apart in spelling"). Mathematics unifies all these different ideas of "distance" under one 
concept, which is called a "metric" and is used to define a "metric space" [Nelson (2003)].  

Let us take a keen look at these examples to see what is going on and in what way mathe-
matics can be said to "harmonize" these different versions of "distance." Each of these ideas of 
'distance' has a specific context in which it "makes sense" and each does not "make sense" when 
we try to use it in one of the other contexts. For example, it is nonsense to say 'cat' is "one days' 
walk" from 'cad' (unless 'cat' and 'cad' are the names of two towns), and for most people it is even 
greater nonsense to try to work 'cat' or 'cad' into the notion of a triangle7. The general concept of a 
'metric,' however, provides the idea of a general meaning implication schema under which the 
divers specifying concepts of these different "distances" can all be understood under one set of 
conditions. It provides, in other words, a general definition of the notion of "distance" under 
which divers species of distance are understood. This is the significance of adjectives such as 
"Euclidean" distance or "Hamming" distance or "walking" distance.  

And here we can find a concrete practical explanation for what "harmonizing different repre-
sentations" means. The divers concepts with their contexts (Euclidean, Hamming, and walking 
distance) are brought together and "made free of" the specialization given to each by their 
contexts so that what is left after "skinning" one of them of its context is in some way the same as 
what is left after "skinning" the others. The "way they are the same" might involve some fairly 
non-trivial practical scheme (the full definition of 'metric' and 'metric space' in Nelson's 
dictionary takes three fairly dense paragraphs to describe). But once the scheme has been worked 
out, then all the various meaning implications of the originally juxtaposed concepts are "the same 
despite being different."  

This is not really as obscure a thing as my examples here might make it seem. You do these 
kinds of comparisons of reflexion every day. Barbara Bush is a human being. So are you. So was 
Albert Einstein. Obviously being Barbara Bush is not the same as being Albert Einstein but they 
are both, nonetheless, known to be human beings. They are "the same only different." And that is 
what the coalescing function of taste does: it makes juxtaposed things "the same only different." 
Mathematics instruction, in terms of the coalescing function, aims at guiding the learner to 
develop maxims of looking for how things can be the same even though they are different, and 
making this looking-for-sameness habitual. The grounding judgment for this "sameness" is a 
reflective judgment, which means that it is based on "feeling" two different things are somehow 
"the same." A teacher might, for instance, make a game of coming up with ways of seeing 
different things as being "the same" somehow. She might, for example, show the pupils a circle 
and a square and ask them to find all they ways they are "the same" as they can find8. What the 
pupils come up with doesn't really matter (as long as they come up with something). What 
matters is the pupils develop schemes for looking-for-sameness. Once a learner has started to 
                                                 
7 It can be done, though. Write down the letters of the alphabet in any planar arrangement you like on a 
piece of paper. Then draw a line from 'c' to 'a,' another from 'a' to 't,' and a third from 't' to 'c.' Now you have 
'cat' represented as a triangle. Do the same for 'cad' and you can define at least one 'metric' (if you're very 
imaginative, you can probably define more than one) by which you can measure 'how far apart cat and cad 
are." Other than for the fun of mathematical frolicking, I don't know why you might want to do this, but the 
point is that if you wanted to, you could.  
8 In topology a circle and a square are "the same." They both have one "inside" and one "outside." 
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develop schemes of this sort, he can apply them to understanding the abstract noumena of 
theoretical math. Without them, the concepts of theoretical math are just "things to memorize" 
and the learner will be unable to use them outside the context of parroting back an answer on a 
test. That kind of "mathematics" deserves to be called "Polly want a cracker" math, which is the 
only kind of mathematics competency Taylorites' standardized math tests measure.  

§ 4.3  Conceptualizing     

Conceptualizing is the intelligibility function of approval of taste, but what is meant by saying 
this? What is 'intelligibility' to be taken to mean? 'Intelligibility' is an English rendering of the 
word Kant actually used, which was Begreiflichkeit. The verb begreifen means "to comprehend" 
and it denotes the highest of the seven levels of Kant's hierarchy classification of the degree of 
perfection of knowledge [Kant (1800), 9: 64-65]. Regarded in this Kantian context, judgments of 
taste are to be seen as aesthetical judgments that serve to promote the individual's perfection of 
his knowledge. Thus, Kant's Begreiflichkeit is best understood to imply comprehendability.  

The conceptualizing function pertains to the making of concepts, but this is not all there is to 
it. It pertains as well to using concepts to construct higher ones, specifically, comprehensive con-
cepts. All concepts originally are formed because their corresponding intuitions satisfy some 
motivation. Critical motivation is accommodation of perception [Wells (2009), chap. 10]. Motiva-
tion is said to be satisfied when perception in sensibility is accommodated in such a way that the 
individual recovers a state of equilibrium. A judgment of taste makes no direct reference to the 
appetitive power of pure practical Reason, but the symbolism built into a concept does. Intuitions 
are made symbolic when they are formed. The symbolism is the meaning implication adjudicated 
by the process of teleological reflective judgment. The symbolism marks the intuition as 
expedient in motivation [Wells (2009), chap. 8, pp. 310-311].  

From time to time philosophizers and philosophizing psychologists have questioned what it is 
that concepts and the ability to conceptualize do for human beings. Mental physics doctrine 
teaches that concepts, reintroduced into sensibility by the process of reproductive imagination, 
serve to satisfy motivations and thus they support reequilibration in judgmentation. They do so by 
means of the meaning implications that concepts symbolize. Because growth in concept structure 
multiplies the possible ways by which a human being can achieve reequilibration, the fact that 
human beings can conceptualize is what makes our species the extraordinary generalists that we 
are. In practical terms, that is what concepts and the ability to conceptualize do for us. As Piaget 
famously put it, "intellectual organization merely extends biological organization" [Piaget (1952), 
pg. 409]. The ability to conceptualize allows each of us to make himself become much more than 
he starts out as at birth and much more than mere biological growth and maturation could ever 
provide.  

What sort of thing is 'conceptualizing'? William James put a finger on a very important aspect 
of this when he wrote,  

The word 'conception' . . . properly denotes neither the mental state nor what the mental 
state signifies, but the relation between the two, namely the function of the mental state in 
signifying just that particular thing. It is plain that one and the same mental state can be the 
vehicle of many conceptions, can mean a particular thing, and a great deal more besides. If 
it has such a multiple conceptual function, it may be called an act of compound conception. 
[James (1890), vol. I, pg. 461]  

Here is a starting point for understanding the conceptualizing function of approval of taste in 
relationship to judicial math. That which is expedient for perfecting the manifold of concepts 
promotes comprehensive understanding by means of bringing more particular concepts to stand 
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under a higher (and thereby more general) one. This expedience for the pure purpose of practical 
Reason is vested in making reequilibrations quicker and easier to achieve because the higher 
concept, when reintroduced into sensibility along with its enriched store of meaning implications 
represented by the concepts standing under it, promotes the ability to satisfy motivation (which, 
again, is accommodation of perceptions). Comprehending is perfecting of knowledge and this 
context points us to a purpose for mathematics instruction. In regard to Relation, the aim of 
mathematics instruction is to teach by: (1) presenting the learner with examples that supply the 
particular (lower) concepts to be subsumed under a higher concept of comprehension; and (2) to 
provoke the learner to construct that higher concept. To successfully accomplish the latter, the 
learner's ability to conceptualize possibilities must be cultivated. Within the present topic of 
discussion, those possibilities are in particular the possibilities of mathematical objects.  

It is important to understand a few things about the psychology of possibility. First, Piaget has 
pointed out that  

Possibilities are in fact not observable, resulting as they do from subjects' active 
constructions. Even though the properties of objects play a role in these constructions, the 
properties always get interpreted in the light of a subject's acting on them. Such actions at 
the same time generate an ever-increasing number of new possibilities with increasingly 
rich interpretations. We are thus dealing with a creative process very different from the 
simple reading of reality invoked by empiricism. . . .  

 In short, possibility in cognition means essentially invention and creation, which is why 
the study of possibility is of prime importance to constructive epistemology. [Piaget 
(1981), pp. 3-4]  

Piaget and his coworkers were able to distinguish three levels of development in regard to 
children's ability to invent possibilities. These are:  

Level I (preoperational, age 4 to 6 years): possibilities generated by successive 
analogies characterized by the absence of reversibility, systematic inferences, or 
closure; 

Level II (concrete operations, age 7 to 10 years): formation of concrete co-
possibilities; 

Level III (hypothetico-deductive operations, age 11-12 years and up): appearance 
of unlimited numbers of speculative co-possibilities. [Piaget (1981), pg. 145]  

It cannot be presumed the learner will discover the possibility of subsuming lower concepts of 
mathematics under higher ones or that, even if a learner does, the higher concept he constructs 
will be one of fecund pertinence to mathematics. The cycle of judgmentation and all that happens 
during it is always under absolute regulation by the process of pure practical Reason and this is a 
process that regulates for one thing only – equilibrium. With objects of mathematics we are 
dealing with objects that lie beyond the horizon of possible experience. The most absurd fantasy a 
learner can imagine can serve the purpose of pure Reason just as ably as the most profound 
mathematics conception. Furthermore, the learner always has recourse to type-α compensation 
behavior – i.e., he might be able to satisfy the dictates of pure Reason by simply ignoring things. 
The task of judicial math instruction is to guide the learner to conceptualizing the higher concepts 
of mathematics that the lesson is intended he should come to construct.  

Thus the instruction aims not merely at cultivating the learner's capability to conceive creative 
possibilities but at cultivating the learner's development of presentative schemes and procedural 
schemata that are fecund for mathematical reasoning. The seeds of this development are planted 
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in only one way – by well designed exercises. As Piaget said above, possibilities depend on active 
constructions. Because learning comprehensive concepts only proceeds from lower to higher 
concepts – from particulars to generals – the learner must be provided with examples he can use 
in constructing his presentational schemes and his procedural schemata (chapter 10). Further-
more, the examples and exercises must gradually introduce equilibrium-disturbing cases that 
require the learner to gradually conceive broader possibilities and expand the scope of his 
concepts. If he is hit with too much too soon the result will be cycle rupture. Piaget found that  

 To conceive of new possibilities, it is thus not enough to think of procedures oriented 
toward a particular goal . . .: one also needs to compensate for that actual or virtual pertur-
bation that is the resistance of reality to explanation when it is conceived as pseudo-
necessary. Such a compensation mechanism, once it has enabled subjects to conquer this 
obstacle (pseudo-necessity) in a particular situation, in addition leads them to realize 
almost immediately that if one variation is possible, others are also possible, beginning 
with the most similar or those that are opposite.  

 It now becomes clear where these hypotheses lead us: if it is true that the notion of the 
possible derives from having overcome certain resistances of reality to explanation and 
from filling the gaps that are perceived as a result of having envisioned one variation . . . 
then it can be concluded that this dual process involves equilibration in its most general 
form. But although the system of presentative and structural schemes is characterized by 
intermittent or lasting states of equilibrium, the nature of the possible that is accessed via 
the procedural system is one of constant mobility, further strengthened by generalizations 
once a specific result is obtained. [Piaget (1981), pg. 6]  

This is a point dramatically illustrated and passionately argued for in Lakatos (1974). Lakatos' 
book is composed as one very long dialogue that might be described as "Socratic inquiry without 
Socrates." If something like what takes place during this dialogue ever were to happen in a real 
mathematics class, I'm not confident a teacher would know how to handle it. But Lakatos was not 
trying to present a real-life situation. He was arguing that real mathematics is carried out as a 
series of propositions, counterexamples, and what Piaget called "resistances to explanations":  

 The core of this case-study will challenge mathematical formalism . . . Its modest aim is 
to elaborate the point that informal, quasi-empirical mathematics does not grow through a 
monotonous increase of the number of indubitably established theorems but through the 
incessant improvement of guesses by speculation and criticism, by the logic of proofs and 
refutations. [Lakatos (1974), pg. 5]  

Lakatos was not particularly known for being 'modest' about much of anything and his dialogue-
format "classroom example" is not a very practical or realistic picture of real instruction in a real 
classroom. Nonetheless, what he called "the dialectic of the story" contains on-going illustrations 
of, as Piaget put it, "having to overcome resistances of reality to explanation and having to fill in 
the gaps" these "resistances" bring out. In this way, the dialogue has its uses as a vehicle for 
teaching teachers how to teach mathematics. What is different about Lakatos' imaginary class-
room and a traditional mathematics class is that Lakatos' learners do not passively accept what 
they are told but, instead, actively seek to understand it by posing questions and raising problems.  

Studies of children reinforce the requirement that mathematics instruction must not only build 
up from examples but that, furthermore, examples must be strongly tied to physical objects if the 
learner is to be able to formulate meanings for the supersensible objects of mathematics. Even 
such a basic concept as "a number" is not so basic as most of us presume. It is widely assumed 
that the ideas of numbers, counting, and addition grow out naturally and rationally from counting 
with one's fingers. Aside from the fact that this presupposition seems to be gainsaid by the fact 
that different cultures throughout history have used non-base-10 number systems, psychological 
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facts likewise run counter to the presupposition. It is not enough for a learner merely to make a 
concept of a mathematical object. He must also conceive of that object as a permanent object in 
order for him to formulate the various conservations required to apply mathematics. Piaget wrote,  

 Every notion, whether it be scientific or merely a matter of common sense, presupposes a 
set of principles of conservation, either explicit or implicit. . . . It is unnecessary to stress 
the importance in everyday life of the principle of identity; any attempt by thought to build 
up a system of notions requires a certain permanence in their definitions. In the field of per-
ception, the scheme of the permanent object presupposes the elaboration of what is no 
doubt the most primitive of all these principles of conservation. . . .  

 This being so, arithmetical thought is no exception to the rule. A set or collection is only 
conceivable if it remains unchanged irrespective of the changes occurring in the relation-
ship between the elements. . . . A number is only intelligible if it remains identical with it-
self, whatever the distribution of the units of which it is composed. A continuous quantity 
such as a length or volume can only be used in reasoning if it is a permanent whole 
irrespective of the possible arrangement of its parts. In a word, whether it be a matter of 
continuous or discrete quantities, of quantitative relations perceived in the sensible 
universe, or of sets and numbers conceived by thought, whether it be a matter of the child's 
earliest contacts with number or of the most refined axiomatization of any intuitive system, 
in each and every case the conservation of something is postulated as a necessary condition 
for any mathematical understanding. [Piaget (1941), pp. 3-4]  

Piaget documented three stages in children's conceptions of mathematical quantities. These 
stages are characterized by the following:  

Stage I: characterized by the absence of conservations; no exact correspondence 
and no equivalence; 

Stage II: characterized by the beginnings of construction of permanent sets; one-to-
one correspondence but without lasting equivalence of corresponding sets; this 
stage serves as an intermediary stage between stage I and  

Stage III: conservations and quantifying coordinations; one-to-one correspondence 
with lasting equivalence of corresponding sets.  

The essential importance of coordination between mathematical objects and objects to which they 
are applied cannot be overlooked and is not to be underestimated in mathematics instruction. The 
philosophy of Russell and the other logicians placed much stress on one-to-one correspondence in 
the definition of the whole and natural numbers, but psychologically this is not enough. Piaget 
tells us,  

Both counting on the fingers and the exchange of one object for another are indications of 
the considerable part played by correspondence in the synthesis of number. Yet although 
one-to-one correspondence is obviously the tool used by the mind in comparing two sets, it 
is not adequate, in its original form or forms, to give true equivalence to the corresponding 
sets, i.e. to give each set the same cardinal value, which is seen as constant as a result of the 
correspondence. As we saw . . . either the correspondence is held in check by perceptual 
factors or the correspondence itself develops from mere global correspondence, which 
issues in necessary equivalence and thus in cardinal invariance. . . .  

 We must first make a distinction between two kinds of situations in which the child is led 
to discover or to make one-one correspondence. On the one hand, there are those cases in 
which he is required to assess the value of a given set of objects by comparing them with 
objects of the same kind. For instance, if two children are playing marbles and one puts 
four or six on the ground, his partner will want to put one opposite each of them and thus 
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obtain an equivalent set without needing to be able to count. . . . On the other hand, there is 
an even simpler situation . . . namely, correspondence between objects that are hetero-
geneous but qualitatively complementary, a correspondence which is thus, as it were, 
provoked by external circumstances. . . . We must also include in this category the 
exchange of one object for another [Piaget (1941), pp. 41-42]  

Lack of "provoked" correspondences has some significant effects. One of them is the absence 
of associativity in mathematical conceptions. The associative property of addition, i.e. A + B + C 
= (A + B) + C = A + (B + C), is taken more or less for granted by adults. However, this is a 
learned correspondence that very young children do not make:  

If we give 4- or 5-year-olds various cut-out shapes . . . they can put them into little 
collections on the basis of shape. The youngest children will make what I call figural 
collections; that is, they will make a little design with all the circles, and another little 
design with all the squares, and these designs will be an important part of the classification 
[into circles and squares]. They will think the classification has been changed if the design 
is changed.  

 Slightly older children will forego this figural aspect and be able to make little piles of 
the similar shapes. But while the child can carry out classifications of this sort, he is not 
able to understand the relationship of class inclusion. It is in this sense that his classifying 
ability is still preoperational. He may be able to compare subclasses among themselves 
quantitatively, but he cannot deduce, for instance, that the total class must necessarily be as 
big as, or bigger than, one of its constituent subclasses. A child of this age will agree that 
all ducks are birds and that not all birds are ducks. But then, if he is asked whether out in 
the woods there are more birds or more ducks, he will say, "I don't know; I've never 
counted them." It is this relationship of class inclusion that gives rise to the operational 
structure of classification, which is in fact analogous to the algebraic structures of the 
mathematicians. The structure of class inclusion takes the following form: ducks plus other 
birds that are not ducks form the class of all birds; birds plus the other animals that are not 
birds together form the class of all animals; etc. . . . And it is easy to see that this relation-
ship can be readily inverted. The birds are what is left when from all the animals we 
subtract all the animals but the birds. This is the reversibility by negation . . . A – A = 0. 
This is not exactly a group; there is inversion . . . but there is also the tautology, A + A = A. 
Birds plus more birds equal birds. This means that distributivity does not hold within this 
structure. If we write A + A – A, where we put the parentheses makes a difference in the 
result. (A + A) – A = A – A = 0, whereas A + (A – A) = A – 0 = A. [Piaget (1970), pp. 27-
28]  

It might seem as though these considerations become unimportant for teaching older learners, 
but this is not true. In conceptualizing mathematics there are always two types of concepts in 
play. One is the concept of the mathematical object or objects. The other is the concept of the 
presentative scheme or procedural schemata operating on these objects. Mathematicians I have 
known, and seemingly also mathematicians who write mathematics books, appear to be unaware 
of the operational aspects of mathematics as they do mathematics. At the least they appear to not 
be cognizant that the operational aspects are as key to teaching mathematics as the objects are. 
With young children, this synthetic necessity is more or less out in the open for a teacher to see. 
But it must be understood that older learners are learning about mathematical objects that are 
increasingly remote from the horizon of possible human experience and are therefore 
fundamentally defined by operations and the transformations these produce. The instructional 
import of this is that the development of maxims of mathematical thinking have to be cultivated 
so that they always maintain some connection back to principal quantities of mathematics – those 
mathematical objects that are placed by definition in correspondence with sensible objects of real 
human experience. Correspondences and set equivalences are not automatic consequences of 
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thinking. They first require development of practical maxims leading to procedural schemata. 
Formalism in instruction is contrary to cultivation of such maxims.  

If the habit of always connecting mathematical objects back to principal quantities is not 
cultivated in the learner, then those mathematical objects tend to become isolated in a sort of 
intellectual island universe, unable to be applied to serve useful purposes. Mathematics becomes 
a sort of game-of-symbols without any context outside of the manipulation of symbols. Equations 
do not come with an owner's manual directing, "Use me here and here but not there." One of the 
most noticeable characteristics of the majority of science and engineering students at the 
collegiate level is their habit of indiscriminately grabbing some equation and trying to use it to 
solve some problem without ever giving a thought to whether or not that equation has anything to 
do with that problem whatsoever. They do not know that they must connect it back to real objects 
before they can make use of it. Their mathematics skills are imprisoned in that symbolic island 
universe of context-free math. I have carried out my own experiments on college students over 
the course of thirty years, and here is what I have regularly seen: If I give the student a straight-up 
math problem (e.g., find the other two interior angles of a right triangle given the length of its 
sides), most of them solve it easily. What they cannot do is develop a mathematical description 
of a problem from scratch and figure out what math to apply to it. They are, as it were, lost in 
space with no way to navigate back to the universe where human beings live. This is nothing else 
than a failure to educate them when they were first learning mathematics. They have been well 
trained to manipulate symbols; they have not received an education in mathematics.  

Today one hears much about "constructivist mathematics" in education. There is on the one 
hand no doubt that some sort of constructivist approach to mathematics instruction is a correct 
strategy. Mathematics is knowledge through the construction of concepts. On the other hand, any 
constructivist approach that neglects traditional presentation of explanations and methods of 
doing, say, arithmetic ipso facto neglects the necessity of the co-development of object concepts 
and operational scheme-development concepts (procedural schemata) linking mathematical 
objects to the world of experience via principal quantities. Such an approach will accomplish 
little no matter how much it claims to be "based" on Piaget's research – a rather remarkable claim 
in itself because Piaget did no education research, proposed no teaching methods, and the few 
text materials that exist and are used for teacher training in colleges of education are, in my 
opinion, caricatures of Piaget's research injecting unfounded and misleading speculations into it.  

As an example of what I mean, there is much furor over NCTM algorithms for teaching pupils 
addition and multiplication. The furor, both from the educologists and from lay political groups 
who attack these methods, is based on the presupposition that there is a "one best method" of 
doing mathematics. That is hogwash. For example, my mother was a bookkeeper and had an old 
fashioned Addometer, a mechanical calculator you could use to add or subtract (figure 8). It had 8 
wheels you turned with a stylus. You rotated the wheels clockwise to add, counterclockwise to 
subtract. When I was a little boy, I used to play with this thing for hours at a time.  

 
Figure 8: An Addometer, a mechanical calculator manufactured by the Reliable Typewriter and Adding 

Machine Company of Chicago from the 1900s until the 1960s. It was a very useful kind of abacus. 
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One of the things I discovered from playing with it was that it doesn't matter whether you add 
from right-to-left (which was the algorithm I was taught in school) or from left-to-right. The same 
is true for subtraction. The inner mechanics of the calculator took care of propagating carries or 
borrows from one digit to the next. In school, where a pupil had to add or subtract by hand, I 
always used the right-to-left method because I didn't want to get scolded for "doing it wrong." 
But from then to today I sometimes add or subtract large numbers left-to-right if all I want is a 
quick estimate of the answer rather than the exact answer. It turns out you can add digits in any 
order you want to so long as you remember to propagate the carries whenever they occur. From 
playing with the Addometer I formed concepts of principal quantities relating to the process of 
carrying out the "mechanics" of adding or subtracting that I still use to work problems today. 
Using a mechanical calculator-abacus (and, especially, playing with one) promotes the building 
of "mechanical" process concepts, the values of which go way beyond just "getting an answer."  

"Doing" arithmetic and most other "mechanical" operations of mathematics always comes 
down to executing algorithms or using heuristics to manipulate quantities to the point where you 
can execute an algorithm. Some wonderful examples of this are found in Péter (1957). Different 
methods, from the "old way" favored by many of the lay groups to so-called "constructivist" 
methods introduced by educologists, have their uses in different circumstances. In my own 
professional practices, I pass back and forth between them at my convenience depending on what 
I am trying to do. Mathematics instruction must not be confined to teaching just one method; it 
should teach many different methods of getting to the same answer, including the "old" methods. 
To do otherwise is to starve the development of pupils' schemes for inventing possibilities and 
systematically comprehending them. The majority of students I have known are so rigidly locked 
into single algorithms that one might suspect they'd been toilet trained at gunpoint.  

The Math Forum, a center for mathematics education on the Internet in the School of 
Education at Drexel University, describes "constructivism" in the following way:  

Students need to construct their own understanding of each mathematical concept, so the 
primary role of teaching is not to lecture, explain, or otherwise attempt to 'transfer' 
mathematical knowledge, but to create situations for students that will foster their making 
the necessary mathematical constructions.  

Some of this statement is true, some of it is hogwash. As I have tried to explain here, it is true that 
learners have to construct their knowledge of mathematics. It is also true that teachers can only 
immediately reach them via judicial math. It is utter hogwash to say teaching's primary role is not 
"to explain or otherwise attempt to 'transfer' mathematical knowledge." That is precisely what 
instruction must have for its primary aim. Instruction is guidance and cultivation through 
examples that develop procedural schemata. You cannot do this if you do not present and explain 
procedural examples providing the learners with basal concepts necessary for the possibility of 
constructing higher ones. To cultivate the learner's knowledge and skill, a teacher must be a pro-
active guide and role model, not a semi-passive facilitator. A teacher must also understand mathe-
matics himself; a person who does not understand mathematics cannot teach mathematics.  

There seems to be no shortage of so-called "constructivism" articles on the Internet today. I 
have no reasonable doubt that educologists who present these articles mean well and think what 
they write is true. But what I see there is not based on sound science; it is based on what I can 
only call "pseudo-Piagetianism" or "pseudo-Vygotskyism" or some hybrid of the two. These 
pseudo-theories illustrate the extent to which current educology is ignorant of or misunderstands 
Piaget's theory. In one 2013 Internet article from TERC's9 Investigations in Numbers, Data, and 

                                                 
9 TERC is the acronym-name of a non-profit education research and development organization. It has been 
around for about 40 years or so. The acronym originally stood for Technical Education Research Centers.  
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Space website, Clements & Battista wrote, "When a teacher demands that students use set mathe-
matical methods the sense-making activity of children is seriously curtailed." This is a false 
statement. Piaget certainly never said any such thing. It is a prime example of the sort of pseudo-
Piagetian hogwash that gets promoted and blamed on Piaget. One might as well base economics 
on astrology as base instruction téchne on such pseudo-theories. In the 20th century some of the 
most egregious and damaging mistakes in PEM reform were based on speculative and, as it 
turned out, unsound psychology interpretations. I see current educologists repeating this mistake 
through ignorance of the psychology theory on which they think they base their practices.  

It is true that students studying to become teachers are exposed to the existence of Piaget's 
theory. But this exposure is limited to sound bites. The theory is enormous, extremely detailed, 
and its most important lessons are contained in its many specific observations. Encapsulated 
summaries of its findings can be extremely misleading because of overgeneralizations a student 
"reads into them" based on presuppositions of how he looks at the world via own private pseudo-
metaphysic. Textbooks I have examined typically contain nothing more than a few fragments of 
Piaget's findings as parts of a few chapters. This is wholly inadequate. Even taking just one single 
course in Piaget's theory is inadequate. I estimate a sequence extended over about three or four 
years is likely necessary to adequately teach teaching students the theory. And this assumes that 
suitable textbooks for it are written. Piaget didn't write textbooks; he wrote research reports. Until 
an educologist has acquired such an education as this, he has no legitimate basis to claim his 
teaching theory is "based" on Piaget's theory. At most it is based on rumors of Piaget.  

This is not to say positions advocated by lay groups – for example the group Utahns Against 
Common Core – are correct. "That's the way I was taught" is not a legitimate scientific argument. 
With the exception of conspiracy crackpots who infest organizations like these, laypeople are not-
incorrect to oppose pseudo-scientific educology reforms. Taking a conservative view when it 
comes to doing experiments on children is well justified. But these groups are a long way from 
having the right answers for reforming public education. To the question, "Which side is right?" 
the only answer I can give is, "Neither of them. Their reforms would both be disastrous." It is 
near heresy in this country to say so, but democracy cannot dictate to nature. If you didn't already 
know this, I am sorry to have to tell you that nature doesn't care what your opinion is. That is why 
Mankind invented science.  

§ 4.4  Precisioning     

Precisioning is the act of making something precise. Its Latin root, praecisio, literally meant 
the act of amputating or "lopping off" an extremity. This is what a person does when he makes a 
concept precise. He lops off connections and contexts that are outside of the scope of the concept 
being made precise. It is this act Kant meant by "promoting the distinction of a manifold from 
other manifolds." Technical definitions used in science are products of precisioning. Lavoisier 
wrote,  

 The impossibility of separating the nomenclature of a science from the science itself is 
owing to this, that every branch of physical science must consist of three things: the series 
of facts which are the objects of the science, the ideas which represent these facts, and the 
words by which these ideas are expressed. Like three impressions of the same seal, the 
word ought to produce the idea, and the idea to be a picture of the fact. And, as ideas are 
preserved and communicated by means of words, it necessarily follows that we cannot 
improve the language of any science without at the same time improving the science itself; 
neither can we, on the other hand, improve a science without improving the language or 
nomenclature which belongs to it. However certain the facts of any science may be, and 
however just the ideas we may have formed of these facts, we can only communicate false 
impressions to others while we want words by which these may be properly expressed. 
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[Lavoisier (1789), pp. xiv-xv]  

The objective validity of Lavoisier's dictum traces back to the precisioning function of the 
approvals of taste. Indeed, this subjective function of Modality is what gives the expressions of 
mathematics the character of a language and their employment as language. To demonstrate what 
I mean by this, consider the learned writings that were characteristic of books and essays from the 
17th century up through the first decades of the 20th century. One thing that is striking about 
these works is the authors' employments of Latin phrases embedded in their sentences. Here is an 
early 18th century example of this from a book written in English:  

 Everyone that looks towards infinity does, as I have said, at first glance make some very 
large idea of that which he applies it to, let it be space or duration; and possibly he wearies 
his thoughts by multiplying in his mind that first large idea; but yet by that he comes no 
nearer to the having a positive clear idea of what remains to make up a positive infinite 
than the country fellow had of the water which was yet to come and pass the channel of the 
river where he stood:  

Rusticus expectat dum defluat amnis, at ille 
Labitur, et labetur in omne volubilis ævum. [Locke (1706), pg. 159]  

These authors provide no footnote translations when they do this, nor are they trying to show the 
readers how educated they are. They clearly expect the readers to know their Latin well enough to 
understand the Latin passage. But why suddenly drop out of one's first language and into another, 
especially one that is a dead language no longer spoken in any nation on earth?  

The answer comes out from the fact that Latin was a dead language. In a living language the 
meanings of words gradually undergo alterations. Eventually the usual fate of a word is to lose 
the crispness of meaning it originally had and to become burdened by so many metaphors that its 
meaning is no longer always clear to the reader. You can see this from even a casual inspection of 
any unabridged dictionary. But what if an author wishes to preserve some specific and exacting 
meaning in what he writes? His recourse is a simple one: write it in a language that is no longer 
undergoing changes. That is what Latin did for these authors: it preserved the specificity of what 
the author meant to say (assuming later readers could still read and understand Latin). Kant wrote 
that if you had something precise to say you should say it in Latin so that the meaning of your 
words would not change over time. His own lectures and writings are peppered with Latin 
phrases. Everywhere these occur a translator must take extra care in how he translates Kant's 
Latin phrases or he will alter the technical meaning Kant was expressing. He will lose the 
precision of Kant's thought. It is always a mistake to paraphrase Kant's Latin phrases.  

This strategy, of course, fails when later readers no longer understand Latin. In modern day 
America very few people have any knowledge of Latin at all, due in large measure to the reforms 
of the Progressive Education Movement. PEM reformers' contempt of Latin and literary classics, 
and their willingness to cast away an entire heritage of Western civilization preserved in these 
works, can stagger one's imagination by the ignorant hubris it displayed. Speaking for myself, I 
see little difference between this aspect of PEM reform and the apocryphal legend of the burning 
of the Library of Alexandria, supposedly in 642 AD, attributed to an order supposedly issued by 
Umar ibn Al-Khattab (529-644 AD): "If these books are in agreement with the Quran, we have no 
need of them; and if these are opposed to the Quran, destroy them." There are many sound 
reasons to doubt the truth of the story blaming Umar for the burning of the Library of Alexandria, 
but there is no reasonable doubt about what the PEM reformers of the 20th century did to 
American public education and Americans' knowledge of America's Western heritage.  

In science, engineering, economics, and, to a lesser extent, in psychology, mathematics has 
taken the place of Latin in books and papers as a language for saying things precisely and in such 
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a way that apodictic consequences of what is said can be deduced. This is the language aspect of 
mathematics. It does not go too far to say mathematics has become the new Latin. This aspect of 
mathematics is one that I find entirely lacking in college students' understanding of mathematics 
– a lack of knowledge I attribute as much to the pseudo-philosophy of formalism in mathematics 
as to the way mathematics is taught. For example, here is an excerpt taken from a popular 1970s 
physics textbook for college freshmen and sophomores:  

 A semiquantitative definition of [electric] flux is  

   , SE ∆•Σ≅ΦE

which instructs us to add up the scalar quantity E•∆S for all elements of an area into which 
the surface has been divided. [Halliday & Resnick (1970), pg. 450]  

Look carefully at the sentence structure here and how it is punctuated. The "symbolic hieroglyph" 
in the second line is nothing else than a phrase within the overall sentence. When we forego the 
use of "math language" (i.e., math symbols), this sentence reads,  

 A semiquantitative definition of flux is that electric flux is approximately the total of the 
product of the normal component of electric field intensity multiplied by per unit surface 
area added up over an entire surface area, which instructs us to add up the scalar quantity 
given by the product of the normal component of electric field intensity times per unit 
surface area for all elements of an area into which the surface has been divided.10  

To a person who has been adequately trained to understand the "hieroglyphs" used above, the 
first way of expressing the sentence appears to be much clearer than the second, although both are 
completely equivalent in terms of the physics objects being discussed. What I have found to be 
the case for the great majority of engineering students is that these students do not understand that 
the mathematical symbols are part of the sentence and it does not occur to them that the symbols 
can be "translated" into equivalent English words. Instead they view the symbols as if they were 
figures or graphs – i.e. as something that is not part of the sentence – and usually fail to connect 
the hieroglyphs with any physical "picture" of physical entities. Consequently, they do not under-
stand what they are reading and tend to want to just "grab the equation" and use it without any 
notion of what it means. The symbols do not "speak" to the students because the students have 
never been taught to read them nor have they even been taught that the symbols can be read.  

Indeed, even when I point out to students that the symbols are a kind of language and I 
translate it into English for them, most of the students greet this with deep skepticism and tend to 
ignore it. Their prior training in mathematics has left them with such a limited understanding of 
mathematical symbolism that they have become rigidly locked into a single maxim for how to use 
mathematics. And this locked-in maxim is astoundingly mistake prone.  

Engineering and science students I have known over the past three decades also exhibit 
another mathematical language deafness. It is this: Symbols do not have to be algebraic in their 
appearances in order to be mathematical expressions. Figures and graphs also serve this function. 
This is perhaps better appreciated by freshman and sophomore college students in economics than 
it is in engineering or the physical sciences, perhaps because economics students receive much 
more graphical instruction than engineering and physics students receive. You may have noticed 
                                                 
10 I will point out in passing that the approximate equation in this example is actually incorrect. It is missing 
a factor called the "permittivity of free space." Even physics professors are sometimes guilty of not proof-
reading what they are saying when they write down equations. That is apparently what happened here. 
What the equation defines has to be called "the flux of an electric field intensity," which is not the same 
thing as "electric flux." Halliday & Resnick neglected to point out this difference.  
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and perhaps wondered about how few equations appear in this treatise. You may have even 
concluded from this that The Institution of Public Education is a non-mathematical and 
qualitative treatise. This is not so. Almost every figure that has appeared in this treatise makes a 
mathematical statement. These mathematical statements merely are not algebraic statements. 
Furthermore, they are mathematical statements geared towards helping the reader make fuller use 
of his visual sense to "make sense" of what he is being taught. I think not enough teachers reflect 
on the psychological implications inherent when a learner says, "That makes sense."  

The engineering and science students I have known in my teaching career rarely ignore 
algebra-like mathematical statements because they recognize them as mathematical; on the other 
hand, they frequently ignore figures and graphs, deeming them of little to no importance "because 
they are not mathematics." Their maxims of thinking in this way have been so rigidly fixed by 
their prior mathematics training that getting them to break this habit rivals getting a heroin addict 
to give up his drug use. It is a habit that severely hinders their learning of science and technology. 
It is also a habit abetted by the pseudo-philosophy of formalism, which holds that mathematics 
ought to be taught with no references to objects or illustrations. This, indeed, is one of the most 
harmful legacies of the Bourbaki mathematicians. It is certainly one of the most profound errors 
that can be committed in mathematics instruction at any level of instruction.  

Because I have no reason to assume you have received any training in mathematics that would 
have left you with an understanding different from that of my former students, I ask you to take a 
look at a copy of Euclid's Elements. Mathematical symbolism was not very advanced in 300 BC, 
and what you will find is that the greater part of Euclid's proofs are expressed in natural human 
language rather than in mathematical symbols. But if you look at geometry proofs in modern 
geometry textbooks, you will see the natural language largely displaced by the hieroglyphics of 
mathematics. Mathematics is used as a language but learners are not being taught how to speak it.  

One thing this illustration brings out is that the precisioning function is, so to speak, a two-
edged sword. To be useful concepts have to be made precise. But concepts can be made too 
precise and then a learner's capacity for creating possibilities or using his knowledge in new ways 
is severely crippled. When you hear someone exhorting another person to "think outside the box," 
the likelihood is that the situation is one in which over-precisioning is an important factor.  

The precisioning function is a Modality function. This means that in judgments of taste the 
precisioning function pertains to the relationship of the person to the concept and not to how the 
concept represents its object. Modality functions pertain not at all to the object of the concept. 
The other headings (Quantity, Quality, and Relation) pertain to the representing of an object. The 
Modality heading pertains to the manner(s) in which the person views the concepts of the object, 
e.g., as possible or impossible, actual or unreal, necessary or contingent.  

Because aesthetic Ideas are representations that give rise to so much to think about that they 
cannot be contained in a single concept, precisioning is that in judgmentation which, by 'lopping 
off' part of the representation, allows intuitions to be apprehended and keeps the Subject from 
being overwhelmed by feelings of sublimity. The feeling of sublimity is an act of aesthetical 
reflective judgment that occurs when a person is unable to concentrate all that he is trying to 
apprehend in one intuition. Kant wrote,  

 Nature is thus sublime in those of its appearances whose intuition brings with it the Idea 
of its infinity. Now the latter cannot happen except through the inadequacy of even the 
greatest effort of our power of imagination in the estimation of the magnitude of an object. 
. . . Thus it must be the aesthetic estimation of magnitude in which is felt the effort at 
concentration which exceeds the capacity of imagination to comprehend progressive 
apprehension in one whole of intuition [Kant (1790), 5: 255].  
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The feeling of sublimity is a feeling disturbing to equilibrium. The accommodation of 
perceptions in judgmentation attempts to equilibrate this disturbance. Being unable to concent-
rate the data of sensibility all in a single intuition, and thereby produce an intuitive representation 
expedient for equilibrium, the act of precisioning is the sole recourse left in judgmentation for 
settling disturbances raised by aesthetic Ideas. The act of precisioning can in this sense properly 
be called a psychologically necessary approval of a judgment of taste in the phenomenon of mind.  

However, because precisioning is a function of Modality, how an intuition and its concept is 
made precise by the thinking Subject carries no guarantee that the concept formed will have real 
objective validity. This is vividly illustrated by various childish conceptions of physical causality 
Piaget documented [Piaget (1929); Piaget (1930)]. Precisioning combined with the satisficing 
character of human judgmentation lies at the root of all superstitions.  

The act of precisioning has profound implications for teaching. In the first place and especially 
for the age group from 5 to 15 years, a teacher must observe and evaluate whether precisioning is 
producing objectively valid concept structures in the learner or is instead giving rise to overly-
rigid maxims of reasoning and objective misconceptions in understanding. The teacher must prod 
and probe to discover what the learner is learning from his lessons and how he is learning it. This 
aspect of teaching is profoundly important for this age range because this is the age range during 
which the learner is developing his maxims and habits of logical thinking that, for better or for 
worse, will dominate the rest of his life. Changing them later requires a psychological trauma.  

One institutional consequence of this is that, in order for a teacher to be able to adequately 
carry out this key aspect of the teaching mission, pupil-teacher ratios in the earlier grade levels 
must be made significantly lower than at the higher grade levels. If this is not done, teachers will 
simply not have the capacity in terms of time and attention to do the prodding and evaluating of 
what habits of taste in reasoning and judgmentation the pupils are developing or for correcting 
these when they are shaping up in such a way as to hinder later learning abilities. How one thinks 
and logically reasons are developed habits. The importance of cultivating productive thinking 
and reasoning habits at the early ages cannot be overemphasized.  

Two aspects of PEM reforms in the 20th century had severely debilitating effects in this 
regard. The first came about because of the PEM reform's zeal for differentiated curricula (and 
the accompanying institutionalized bigotry of "tracking" pupils into job tracks beginning at the 
age of twelve). In order to support curricular differentiation in junior high and high schools, in the 
teeth of budgets fixed by the amount of tax levy acceptable to the public, the PEM reformers 
single-mindedly emphasized raising teaching staff levels in the junior high and high schools at the 
expense of staffing levels in the grade schools. It was only the phenomenon of the "baby boom" 
from circa 1946 to circa 1964 that forced school districts to divert expenditures to increase the 
staffing of primary school teachers [Wells (2013), chap. 15, pp. 564-568].  

The second aspect lies in the misguided and overzealous dogma of so-called "child-centered 
education" championed by some PEM reformers who seriously misunderstood what Dewey had 
meant by this term. So-called child-centered methods too often were interpreted to mean letting 
pupils more or less determine their own lesson objects in the mistaken belief that this was a more 
"natural" way for pupils to learn. Of course, teachers could not let educational anarchy reign in 
the classroom and therefore did prepare lesson plans and try to guide the learning activities. But, 
and this is my point, the dogma of child-centered education as the PEM envisioned it paid no 
attention to observing and evaluating how learner judgments of taste were developing. As a result 
no notice was paid to what intellectual effects precisioning was producing in the pupils. Without 
proper cultivation and guidance by the teacher, the effect on the majority of learners was, not to 
put too fine a point on it, calamitous. Lay groups opposed to "child-centered education" reforms 
were, I think, not able to well-articulate their objections to this movement, but I think that parents 
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and others likely did have a vague intuition that the effects on schoolchildren were damaging. If 
so, this intuition was objectively valid. Real learner-centered education is education centered on 
cultivating the learners' powers of their persons. An important part of this is guiding and 
cultivating the direction the natural and necessary act of precisioning has on educational Self-
development undertaken by the learner.  

A teacher cannot control a learner's acts of precisioning. These acts are bound up in dynamics 
of judgmentation that serve the pure purpose of the process of practical Reason, namely equilibra-
tion. But while precisioning cannot be controlled by a teacher, it can be guided by the way that 
lesson objects are presented. Acts of precisioning happen because the learner must respond to 
disturbances to his equilibrium. Precisioning is guided by carefully introducing sequences of 
disturbances which are designed such that successively more robust equilibriums are achieved if 
the learner's construction of concepts coalesces around concept structures that accord with those 
of theoretical math.  

Lakatos' fanciful dialogue in Proofs and Refutations recreates an historical series of arguments 
and counterexamples leading up to a proof famous among mathematicians (or at least some of 
them) and blissfully unheard of by all the rest of us. The specific conjecture around which his 
dialogue is built is not particularly important for our purposes here; the ideas contained in Proofs 
and Refutations that are important for us are: (1) the use of the method of Socratic inquiry in 
teaching mathematics; and (2) the use of heuristics in stating problems in mathematical form and 
then solving them. The refutations serve to introduce the factor of disturbance; the intermediate 
proofs serve to reestablish it by new constructions of mathematical concepts. However, this in no 
way minimizes the importance of establishing basic algorithmic procedures (e.g. those of basic 
addition and multiplication, fractions, long division, etc.) in elementary arithmetic. Before a 
learner can construct higher concepts he must construct basic practical maxims, without which he 
can do nothing at all. So it is, for instance, that multiple examples of different ways to add the 
same two numbers – all of which produce exactly the same answer – serve to introduce 
disturbance factors to counteract the development of rigidity in the learner's understanding of 
mathematics and to cultivate his capability to discover and invent new possibilities. Mathematics 
is not so much about correct answers as it is about ways to get to correct answers in divers 
contexts and for divers real-world problems. An answer merely validates the reasoning.  

There are two natural tendencies in human judgmentation that a teacher's manipulation and 
guidance of precisioning must combat: (1) over-precisioning; and (2) overgeneralization. The first 
cripples a person's ability to use mathematics as a tool. The second is under-precisioning and 
leads to false beliefs. Bacon commented upon these two tendencies at the dawn of what historian 
Will Durant called the Age of Reason:  

 In general, men take for the groundwork of their philosophy11 either too much from a few 
topics or too little from many; in either case their philosophy is founded on too narrow a 
basis in experiment and natural history, and decides on too scanty grounds. For the 
theoretic philosopher seizes various common circumstances by experiment without 
reducing them to certainty or examining and frequently considering them, and relies for the 
rest upon meditation and the activity of his wit.  

 There are other philosophers who have diligently and accurately attended to a few experi-
ments and have thence presumed to deduce and invent systems of philosophy, forming 
everything to conformity with them. . . . There are, therefore, three sources of error and 
three species of false philosophy: the sophistic, empiric, and superstitious. [Bacon (1620), 
pg. 35]  

                                                 
11 In Bacon's day "philosophy" and "science" were not distinct terms. Here he means "science."  
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The satisficing character of human judgmentation can combine with acts of precisioning to 
produce dogmatism and rigidity of thinking – both of which seriously retard Progress in any 
Society – if early instruction does not combat these factors in human reasoning. Bacon described 
the problem rather neatly:  

 The human understanding, when any proposition has once been laid down (either from 
general admission and belief or from the pleasure it affords), forces everything else to add 
fresh support and confirmation; and although most cogent and abundant instances may 
exist to the contrary, yet either does not observe or despises them, or gets rid of and rejects 
them by some distinction, with violent and injurious prejudice, rather than sacrifice the 
authority of its first conclusions. [ibid., pg. 23]  

I think it likely that one of the best sources for a teacher to learn how to construct "proofs and 
refutations" kinds of lessons is found in those Platonic dialogues providing relatively easy-to-
follow examples of the Socratic method. The one thing the teacher must not copy from Plato, 
however, is Plato's persistent inability to get to any sort of answer to the questions he poses. 
Fortunately, in mathematics there are answers that can be reached, and the design of the lessons 
sequence can be made to steer the learner to these destinations.  
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